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INTRODUCTION 
 
The BASIC assembler which is available on the BBC Microcomputer and Acorn 
Electron is a very powerful tool for programmers. It provides a comprehensible 
interface between the programmer and the machine code language which the 6502 
processor itself uses. Hence the programmer is able to control the machine more 
directly using assembler. 
 
The main reason why people write programs in assembler rather than BASIC is 
probably because of the speed difference between the two. Assembler instructions 
can be executed extremely quickly, a program written in BASIC will take between 
10 and 100 times as long. Hence assembler is particularly useful for games' 
programmers since it enables them to move missiles and creatures across the 
screen quickly and smoothly. If BASIC was used to calculate the new co-ordinates 
of each object and draw them at those positions then movement would tend to 
occur in jerky leaps. 
 
However, speed is not the only factor to be taken into consideration. Assembler 
programming gives you more power to solve a problem than BASIC does. All high-
level languages require programs to have a certain structure and this puts 
constraints on programs written in that language. 
 
Sceptics may advise against using assembler on the grounds that it is too complex. 
It is true that operations such as multiplication and division which are easy to 
perform in BASIC are not as straightforward in assembler. For what might be 
considered a trivial task, for example multiplying a number by three, several 
assembler instructions are required instead of just a single BASIC one. A further 
problem is that there are no FOR ... NEXT or REPEAT … UNTIL loops in 
assembler; if you require a loop you must set one up yourself. The same applies to 
floating point arithmetic  assembler only supports integer calculations. 
 
My advice is that you ignore these sceptics. It isn't difficult to learn to program in 
assembler. The programs look much less like English than BASIC I ones do but 
nevertheless to someone who knows the language they are easy to understand. 
Like learning to do anything else, all that is required is a certain amount of 
knowledge and a lot of practice. This book has been written to provide the 
knowledge - the rest is up to you. 
 
The book is divided into three sections, each of which has a different task to 
perform. The first part aims to introduce the more useful assembler instructions 
available for the 6502 processor, giving simple examples of how they can be used. 
The second part introduces some of the more complex programming techniques 
which are aimed in particular at people writing large assembler programs. The third 
part is aimed mainly at the games' programmer. It provides many useful routines 
and finally shows how these can all be linked together to produce a complete game. 
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1. DATA STORAGE 
 

Before you can start writing programs in assembler you need to know a few things 
about how data is stored inside the computer and how that data can be accessed 
and changed. This chapter looks at the ways in which you can enter numbers from 
the keyboard and the notation which the computer uses to store these values in its 
memory. 
 
1.1 Hexadecimal notation 
 
To most people it seems natural to use base ten when dealing with numbers. We 
have ten digits; 0,1,... 8,9, and can use these to represent numbers as large as we 
please by making the value of a digit depend on which column it is in. Thus, when 
we consider the number 171 the first '1' represents 100, and the second '1' 
represents just one. Moving a digit one column to the left multiplies its value by ten; 
this is why our system is called base 10 or decimal. 
 
When entering numbers into a computer you can still use base 10 if you wish, but 
another base - base 16 - is also available. For reasons which should become clear 
as you read through this chapter, base 16 (or hexadecimal) is far more suitable for 
working with computers. Hence it is advisable at this stage to spend some time 
becoming familiar with this number system. 
 
 
In base 16 we need 16 different symbols to represent the 16 different 'hexadecimal 
digits'. For convenience we retain the symbols 0 to 9, and use the letters A to F to 
represent the values of ten to fifteen. 
 
Hexadecimal 0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F 
 
Decimal  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 
 
Another difference between base 10 and base 16 is what happens to a digit or 
hexadecimal digit when it is shifted one column to the left. Whereas we have seen 
that in base 10 this multiplies the value of the digit by ten, in base 16 it multiplies the 
value by sixteen. Hence 10 in hexadecimal represents the value sixteen. 
 
Having two bases in which we can work can lead to confusion. Consider, for 
example, the number 10; as we have seen this can represent either of the values 
ten or sixteen depending on whether it is being interpreted as a decimal or 
hexadecimal number. We need a method of specifying whether a number is 
decimal or hexadecimal. Normally we do this by prefixing hexadecimal numbers 
with an ampersand (&), e.g. 
 
&B1 
 
The 'B' has the value 16*11 because it is in the second column to the left, and the 
'1' represents 1 unit; the number therefore has the decimal value  176 +1 = 177. 
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&123 
 
The '1' is in the third column to the left, so it has the value 16*16*1, the '2' has the 
value 16*2 and the '3' has the value 3. Adding these together produces  
256 + 32 + 3 = 291 
 
There is no real need to learn how to convert between hexadecimal and decimal 
because the computer can do it for you, as shown below. 
 
Converting hexadecimal to decimal 
 
To print out the decimal value of a hexadecimal number, such as &123, type 
 
PRINT &123 
 
The answer, 291, is printed out. 
 
Converting decimal to hexadecimal 
 
To print, in hexadecimal, the value of a decimal number, type 
PRINT ~123 
 
The answer, 7B, is printed out. The number printed will be in hexadecimal notation, 
but note that the computer doesn't use the symbol '&' when it is printing 
hexadecimal numbers. In this case it is obvious that the answer is a hexadecimal 
number but for an answer such as 79 you would need to know which base you 
requested the computer to use to be able to interpret the result correctly. 
 
The symbol twiddle or, more accurately, tilde ~ means 'print in hexadecimal'; thus 
writing 
 
PRINT~&123 
 
will print 123. 
 
1.2 Binary notation and bits 
 
Although the computer can accept numbers in either decimal or hexadecimal 
notation, it uses neither of these two systems for storing the numbers in its memory. 
The computer's memory consists of electronic circuits that can be put into one of 
two different states. The two states are normally represented as 0 and 1, but they 
are often referred to by different terms as listed below: 
 
 0  1 
 zero  one 
 low  high 
 clear  set 
 off  on 
 false  true 
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The circuits are said to be in a 'bistable state', i.e. they are always in one of two 
possible states. When the digits 0 and 1 are used to refer to these two states they 
are termed 'binary digits', or 'bits' for brevity. 
 
With two bits, e.g. M and N, four different states can be represented: 
 
 M N 
 0 0  

0 1  
1 0 
1 1 

 
With a 'nibble', which is four bits, 16 different values can be represented (16 = 2^4). 
This means that a hexadecimal digit can be represented by a four-bit binary 
number. The hexadecimal digits and their binary equivalents are shown in the 
following table: 
 
 Decimal Hexadecimal Binary 
 0 0 0000 
 1 1 0001 
 2 2 0010 
 3 3 0011 
 4 4 0100 
 5 5 0101 
 6 6 0110 
 7 7 0111 
 8 8 1000 
 9 9 1001 
 10 A 1010 
 11 B 1011 
 12 C 1100 
 13 D 1101 
 14 E 1110 
 15 F 1111 
 
Any hexadecimal number can be converted into its binary representation by the 
simple procedure of converting each hexadecimal digit into the corresponding four 
bits, for example 
 
Hexadecimal    &19 
                                   /  \ 
                                  /    \ 
                                 /      \ 
Binary         0001   1001 
 
 
Thus the binary equivalent of &19 is 00011001, (or leaving out the leading zeros 
which are irrelevant, 11001). 
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1.3 Memory locations and bytes 
 
The computer's memory is made up of a number of 'locations', each capable of 
holding a value. The size of each memory location is normally referred to as a 
'byte'. Each byte can hold an eight-bit number, which means that it can store any 
one of 256 (2^8) different values; 0... 255. 
 
We have seen already that each hexadecimal digit requires four bits to specify it. A 
byte, since it contains eight bits, can therefore represent any hexadecimal number 
between 0 and &FF. 
 
The bits in a byte are usually numbered for convenience, as follows: 
 
bit number 7  6  5  4  3  2  1  0 
byte            0  0  0  1  1  0  0  1 

 
 

Bit 0 is often referred to as the 'low-order bit' or 'least-significant bit', and bit 7 as the 
'high-order bit' or most-significant bit'. 
 
1.4 More about memory locations 
 
Somehow it must be possible to distinguish between one location and another. 
Houses in a town are distinguished by each of them having a unique address. Even 
when the occupants of a house change, the address of the house remains the 
same. Similarly, each location in a computer has a unique 'address' consisting of a 
number which remains unchanged even when the contents of the memory location 
are altered. Thus we can speak of the 'contents of location 100' as being the 
number found in the location whose address is 100. The memory locations start 
from address 0 and could look something like this: 
 
Decimal value of the number being stored:    27  35   6  91 
Address:      0     1    2    3 
 
An address can be one or two bytes long. This means that addresses can cover the 
range 0 to &FFFF. For a detailed look at which part of the memory each address 
corresponds to see the memory maps in Appendix A. 
 
Examining memory locations 
 
We can look at the contents of some memory locations in the computer using the 
query (?) operator. The reference '?X' means use the value of X as the address of 
the location under consideration. Hence the reference '?&FFEE' means that we are 
concerned with the location whose address is &FFEE. To look at this location type 
 
PRINT ?&FFEE 
 
This prints out the value found at the location specified, which in this case should be 
the number 108. Any memory location can be examined in this way and all of them 
will contain a number between 0 and 255. 
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It is often convenient to look at several memory locations in a row; for example, to 
list the contents of the 32 memory locations from &70 upwards, type 
 
FOR N = 0 TO 31 : PRINT ?(N+&70); : NEXT N 
 
An alternative way of writing this is 
 
FOR N=0 TO 31 : PRINT N?&70; : NEXT N 
 
This method is tidier than the other and gives identical results; i.e. for each of the 
values of N between 0 and 31, N is added to the number &70 to give the address of 
the location whose contents are to be printed out. This should result in the contents 
of 32 memory locations being listed on the screen. 
 
Changing memory locations 
 
It is possible to change the number stored at a particular memory location by 
assigning a new value to it. As an example try changing the contents of &70. First, 
print the contents of this address; the value there will be whatever was in the 
memory when the computer was switched on since the computer does not use this 
location for storing any of the variables it is working with. To change the contents to 
7, type 
 
?&70=7 
 
To verify the change, type 
 
PRINT ?&70 
 
Try setting the contents of this memory location to other numbers. Setting the 
contents to a number greater than 255 or &FF will result in the number entered 
modulo 256 being stored there, for example 
 
?&70=600 
PRINT ?&70 
 
This will print out 
 
(600 MOD 256) 
 
A word of warning: Before you change the contents of any other memory locations 
be sure that you know what you are doing. Although it is quite safe to look at almost 
any memory location in the computer, care must be exercised when changing any 
of them. The example given here uses a specific location which is not used by the 
computer; if you change any other location you may lose any program you have in 
memory or confuse the computer to such an extent that it proves necessary to reset 
it by pressing BREAK to make it accept any further commands. 
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1.5 Negative numbers - two's complement 
 
Although the values stored in the memory locations are between 0 and 255 these 
can be used to represent both positive and negative numbers. To do this two's 
complement representation is used. To represent a number using this system we 
first have to consider what its positive counterpart is in binary notation. For example 
to find out how -5 would be stored consider the number 
 
 +5 = 00000101 
 
We then find the complement of this, i.e. change each 0 into a 1 and each I into a 0, 
e.g. 
 
complement of +5 = 1111010 
 
Finally we add one: 11111010 
 1 + 

11111011 
 
This gives us the two's complement representation of -5. 
 
We can now try adding together +5 and -5 to see if they give us 0. 
 00000101 
 11111011 
(1) 00000000 
 
Ignoring the 1 which has overflowed gives us the result, zero, which we were 
expecting. 
 
Note that when representing numbers using two's complement notation a single 
byte can represent any number between -128 and +127. The left-hand bit is 1 if the 
number is negative and 0 otherwise. Zero is classed as a non-negative number. 
 
1.6 Storing text 
 
If locations can only hold numbers between 0 and 255, how is text stored in the 
computer's memory? The answer is that numbers are used to represent the 
different characters. Hence text is stored simply as a sequence of numbers in 
successive memory locations. The computer does not become confused about 
whether a number is representing an actual number or a character since the context 
will always make it clear how it should be interpreted. 

 

The unique number corresponding to each character is given by its ASCII code 
(American Standard Code for Information Interchange). To find the ASCII code of a 
given character the ASC function can be used, for example type 
 
PRINT ASC “A” 
 
and the number 65 will be printed out. This means that the character 'A' is 
represented internally by the number 65. If you try repeating this process for B C D   
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you will notice that there is a certain regularity. The same is true for a b c ~... and 
the sequence 1 2 3 4 
 
A full table of the ASCII codes used to represent all the characters is given in 
Appendix A. 
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2. CARRYING OUT INSTRUCTIONS 
 
The previous chapter showed how characters and numbers are represented in the 
computer's memory, i.e. how the computer deals with data storage. However, data 
on its own is useless to a computer, it also needs instructions telling it what to do 
with the data. This chapter looks at how the computer handles instructions and 
explains some of the simpler assembler instructions which it can use. The instruc-
tions listed refer only to the 6502 processor so if you have any other sort of 
processor connected to your machine, e.g. a Z-80 second processor, this will have 
to be disabled before attempting any of the routines given in this and subsequent 
chapters. 
 
2.1  The CPU, the computer's brain. 
 
The Central Processing Unit or CPU is the computer's brain. It is the most active 
part of the computer; although areas of memory can remain unchanged for hours 
on end when a computer is being used, the CPU is working all the time the machine 
is switched on. The CPU's job is to read a sequence of instructions from memory 
and carry out the operations specified by those instructions. 
 
The instructions which the CPU acts on are just values stored in memory locations. 
The CPU takes a byte and interprets it as an instruction, e.g. &18 will be interpreted 
to mean 'clear carry flag'; this will be explained later in this chapter. It then performs 
the operation as instructed and goes on to collect the next byte. 
 
The first byte of all instructions is the operation code, or 'op-code'. Some 
instructions, such as the example above, consist of just the op-code; other 
instructions require data on which they must operate. These instructions therefore 
consist of two or three bytes, the first one being the op-code and the other one or 
two consisting of data. For example the value &E6 is translated into the instruction 
'increase the contents of the memory location with the following one-byte address 
by one'. Hence the CPU then takes the next byte from the memory and interprets 
this, not as an instruction, but as the address of the location whose contents are to 
be incremented. It then adds one to the number stored in that location. Having 
executed this instruction, the CPU then goes on to the next byte which is taken to 
represent the next instruction it must perform. 
 
2.2 Machine code assembler 
 
The above few paragraphs should have given you the idea that everything the CPU 
acts upon is a number between 0 and &FF (255 decimal); each number being 
interpreted by the CPU as an instruction or some data which an instruction must 
use. The list of numbers which are being used are referred to as machine code. It is 
possible for us to talk to the computer in its own language, i.e. program in machine 
code, but this would mean that we would have to know which instructions all the op-
codes stand for. Programming in assembler alleviates the need for learning all 
these translations. In assembler each op-code is represented by a three letter 
mnemonic, e.g. CLC is used instead of &18 to give the instruction 'clear carry'. The 
computer then converts all the mnemonics into the corresponding op-codes. 
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This process is carried out by an assembler and hence is known as 'assembling'. 
The program that the assembler takes as its input is known as the source code, and 
the machine code output is referred to as the object code. 
 
2.3 The accumulator and the carry flag 
 
The accumulator is just a temporary location inside the CPU which plays a part in 
many of the operations performed by the CPU. For example, to add two numbers 
together you have to load the first number into the accumulator from the memory, 
add in the second number from memory, and then store the result somewhere. To 
do this the following assembler instructions will be needed: 
 
Mnemonic  Description Symbol 
 
LDA load accumulator from A=M 
 memory 
STA store accumulator in M=A 
 memory 
ADC add memory to A=A+M+C 
 accumulator with carry 
CLC clear carry C=0 
 
The carry is needed to allow numbers greater than one byte (255 or &FF) to be 
generated. When an eight-bit value is added to another eight-bit value the result 
could be too great to be represented by eight bits, e.g. 140 +160 = 300 (>255). 
 
In order to allow for this, the CPU will use the carry as the ninth bit of the 
accumulator, and thus the carry will contain the extra bit. In the above example, 
when the numbers 140 and 160 are added together and the result stored in a 
memory location, this location will contain the value 44 (300 MOD 256). By using 
the carry flag you will have a record of whether the result of the addition was 
actually the value 44 or if it was 300. Hence, to avoid confusion, clear the carry 
before performing any additions. 
 
2.4 Writing an assembler program 
 
Enter the following assembler program: 
 
10  DIM P% 100 
20[ 
30 LDA &80 
40 CLC 
50 ADC &81 
60 STA &82 
70 RTS 
80] 
90  END 
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The meaning of each line in this assembler program is as follows: 
 
10  The DIM statement is not an assembler mnemonic; it is a BASIC instruction 

to tell the assembler where to put the assembled machine code by 
DIMensioning off an area of memory for it. The DIM statement is followed by 
a number (not in brackets) and the statement reserves this number of bytes 
for the machine code which will be generated. As a rough guide to the 
amount of room needed count the number of assembler instructions used, 
treble it and reserve at least this number of bytes. 

 
The BASIC variable P% is used by the assembler as a location counter to 
specify the next free address. Hence the statement sets P% to the lowest 
address of the reserved block of memory and then as each byte of machine 
code is generated, P% increases by one byte so that it always points to the 
next free location. 
 

20 The '[' symbol is an 'assembler delimiter' which has to be used immediately 
before the first assembler statement to tell the BASIC interpreter that the 
following statements will be in assembler rather than BASIC. 

 
30 Load the accumulator with the contents of the memory location whose 

address is &80. (The contents of the memory location are not changed.) 
  
40 Clear the carry flag. 
 
50 Add the contents of location &81 to the accumulator with the carry. (Location 

&81 is not changed by this operation.) 
 
60 Store the contents of the accumulator to location &82. (The accumulator is 

not changed by this operation.) 
 
70 The RTS instruction will usually be the last instruction of any program; it 

causes a return to BASIC from the machine-code program. The mnemonic 
stands for 'return from subroutine'. 

 
80 The ']' symbol is an assembler delimiter which has to be used after the last 

assembler instruction to tell the interpreter that the following statements will 
be in BASIC. 

 
90 The END statement is not an assembler mnemonic; it just denotes the end of 

the program. 
 
Now type RUN and the assembler program will be assembled; the assembled code 
being inserted directly in memory at the address specified by P%. 
An 'assembler listing' will be printed out to show the machine code the assembler 
has generated to the left of the corresponding assembler mnemonics: 
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>RUN 
OE5D 
OE5D A5 80 LDA &80 
OE5F  18  CLC 
0E60  65 81 ADC &81 
0E62  85 82 STA &82 
0E64  60  RTS 
      operand 
   mnemonic statement 
  instruction data/address 
  instruction op code 
location counter statement 
 
The program has been assembled in memory starting at &0E5D, immediately after 
the program text. This address may be different when you enter the example 
program if you have inserted extra spaces into the program or if you have filing 
systems other than cassette in your machine, but that will not affect any other part 
of the listing. All the numbers in the listing are in hexadecimal; thus &18 is the op-
code for the CLC instruction, and &A5 is the op-code for LDA when the number 
being loaded is not given directly but is obtained by looking in the memory location 
whose one-byte address is given. Hence this LDA instruction consists of two bytes; 
the first byte is the op-code, and the second byte is the address; &80 in this case. 
 
Another method of finding out where the machine code is, is to find out where 'TOP' 
is by typing 
 
PRINT  ~TOP 
 
This value gives the address of the memory location immediately after the program 
text. Since the machine code follows on straight after the text this address is the 
one corresponding to the first instruction, &A5. Thus the machine code is stored in 
memory as follows: 
 
A5 80 18 65 81 85 82 60 
^ 
TOP 
 
When 'RUN' was typed this assembled the assembler program and put the machine 
code produced into the computer's memory, however it did not execute the 
program. The method for doing this is described below. 
 
2.5  Executing a machine-code program 
 
To execute the machine-code program at TOP, type 
 
CALL TOP 
 
Nothing obvious will happen except for the '>' prompt being printed again on the 
screen. This indicates that the computer has finished executing the program and 
hence the contents of locations &80 and &81 will have been added together and the 
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results placed in &82. 
 
You can verify this by setting the contents of &80 and &81 to certain values by 
typing, for example 
 
?&80=7 : ?&81=9 
 
If you wish you can also set the contents of &82 to 0. Now type 
 
CALL TOP 
 
and then look at the contents of &82 by typing 
 
PRINT ?&82 
 
The result is 16 (in decimal); the computer has just added 7 and 9 and obtained 16. 
 
2.6 Adding two-byte numbers 
 
Try executing the program for different numbers in 
&80 and &81. You might like to try the following: 
 
?&80=140 : ?&81=160 : CALL TOP 
 
We saw earlier in this chapter that if an addition generates a number greater than 
255 then the result stored in the memory location specified will be that number 
modulo 256. Hence the result in this case will be 44 rather than 300. Here is the 
calculation in hexadecimal: 
 
 160 &A0 
 140 &8C 
 300 &12C 
 
Only two hex digits can fit in one byte, so the '1' of &12C is lost, and only the &2C is 
retained. Luckily the '1' carry is retained for us in the carry flag as was mentioned 
earlier, though we didn't see then how to use this. The example below shows how 
the two numbers can be treated as being two-byte numbers and added together 
using the carry to produce a two-byte number which is the complete answer. This 
method can be extended to any number of bytes since the carry flag makes it a 
simple matter to add together two numbers as large as we please. Modify the 
program already in memory by retyping lines 50 to 120, if you wish (leaving out the 
comments to the right of the assembler text). Here is the modified program: 
 
10 DIM P% 100 
20[ 
30  LDA &80  Low byte of one number 
40  CLC  Clear carry flag 
50  ADC  &82 low byte of other number 
60 STA &84 low byte of result 
70 LDA &81 high byte of one number 
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80 ADC &83 high byte of other number 
90 STA &85 high byte of result 
100  RTS 
110] 
123  END 
  
Assemble the program: 
 
>RUN 
OE6E 
 OE6E A5 80 LDA &80 
 0E70 18  CLC 
 0E71 65 82 ADC &82 
 0E73 85 84 STA &84 
 0E75 A5 81 LDA &81 
 0E77 65 83 ADC &83 
 0E79 85 85 STA &85 
 OE7B 60  RTS 
 
Now set up the two numbers as follows: 
 
?&81=&8C : ?&81=&00 
?&82=&A0 : ?&83=&00 
 
Finally, execute the program by typing 
 
CALL TOP 
 
and look at the result, printing it in hexadecimal this time for convenience: 
 
PRINT ~?&84,~?&85 
The low byte of the result is &2C, as was obtained before using the one-byte 
addition program, but this time the high byte of the result, &1, has been correctly 
obtained. The carry generated by the first addition was added into the second 
addition, giving 
 
0+ 0 + carry = 1 
 
Try some other two-byte additions using the new program. 
 
2.7 Subtraction 
 
The subtract instruction is just like the add instruction, except that there is a 'borrow' 
if the carry flag is zero. Therefore to perform a single-byte subtraction the carry flag 
should first be set with the SEC instruction. 
 
Mnemonic 
SEC set carry flag  C=1  
SBC subtract memory from A=A-M-(1-C) 
 A with carry 
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Example 
 
10 DIM P% 100 
20[ 
30  LDA  &80  Low byte of first number 
40 SEC  Initialise carry flag 
50  SBC  &82 Low byte of other number 
60  STA &84  Low byte of result 
70  LDA  &81  Now do high bytes 
80 SBC &83 
90  STA  &85 
100  RTS  Return 
110] 
120 END 
 
Note that the above program is very similar in structure to the addition example in 
section 2.6. 
 
2.8 Comments 
 
There are two methods of putting comments in assembler programs. The first of 
these, which is used in previous examples, is to put the comment after an 
assembler instruction, separated from it by one or more spaces, e.g. 
 
60  STA&84   low byte of result 
 
Alternatively a statement may start with a backslash (\), in which case the 
remainder of that statement is ignored, e.g. 
 
65  \ Now for the high bytes 
 
Note that a colon (:) will end the comment and start a new assembler statement, for 
example line 60 could be replaced by 
 
60  \ Low byte of result : STA &84 
 
2.9 Printing a character 
 
The computer contains routines for the basic operations of printing a character to 
the VDU, and reading a character from the keyboard, and these routines can 
be called from assembler programs. 
 
Name Address Function 
OSWRCH &FFEE Puts character in accumulator 
   to output (VDU) 
OSRDCH &FFE0 Reads from input (keyboard) 
   into accumulator 
 
In each case all the other registers are preserved. The names of these routines are 
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acronyms for ‘operating system write character' and 'operating system read 
character' respectively. These routines are executed with the instruction JSR (jump 
to subroutine). 
 
A detailed description of how the JSR instruction works will be left until the following 
chapter. 
 
The following program outputs the contents of memory location &80 as a character 
to the VDU, using a call to the subroutine OSWRCH: 
 
10 DIM P% 100 
20 oswrch=&FFEE 
30[ 
40   LDA &80 
50   JSR oswrch 
60   RTS 
70] 
80 END 
 
The variable 'oswrch' is used for the address of the OSWRCH routine. Assemble 
the program, and then set the contents of &80 to &21 by typing 
 
?&80=&21 
 
Then execute the program using 
 
CALL TOP 
 
and an exclamation mark will be printed out before returning to the computer's 
prompt character, because &21 is the code for an exclamation mark. An alternative 
method of setting the contents of location &80 to &21 is therefore 
 
?&80=ASC"!" 
 
Try executing the program with different values in &80, with values chosen from the 
table of ASCII values in Appendix A. 
 
2.10 Immediate addressing 
 
In the previous example the instruction 
 
LDA &80 
 
loaded the accumulator from the location whose address is &80, this is known as 
'absolute' addressing. The location was then set to contain &21, the code for an 
exclamation mark. If at the time the program was written it was known that an 
exclamation mark was to be printed in would be more convenient to specify this in 
the program as the actual data to be loaded into the accumulator. Fortunately an 
'immediate' addressing mode is provided which achieves just this. Change the 
instruction to 
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LDA #&21 
 
where the '#' (hash) symbol specifies to the assembler that immediate addressing is 
required. Assemble the program again, and note that the instruction op-code for 
'LDA #&21' is &A9, not &A5 as it was previously for the absolute addressing. The 
op-code of the instruction specifies to the CPU whether the following byte is the 
actual data loaded, or the address of the location containing the data. 
 
2.11 Using addresses 
 
So far when a value has been saved, a numerical address has been used to define 
where it is to be stored, e.g. 
 
STA &80 
 
A better method of giving an address is to use a variable name, e.g. 
 
STA addr 
 
In this case 'addr' must be specified at the beginning of the program, e.g. 
 
addr = &80 
 
This method is better than the previous one since it makes the program easier to 
understand, i.e. an address can be given a relevant name, e.g. 'xlowbyte' or 
'yhighbyte'. In addition, changing the location of a value becomes easier, since only 
the initial specification need be altered rather than every occurrence of that value 
throughout the program. 
 
The locations used must be chosen carefully to avoid corrupting operating system 
or BASIC workspace. The memory map in Appendix A should help to show which 
locations can be used in different circumstances. Also there are some locations 
which are always free when using BASIC; these are &70 to &8F. 
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3. JUMPS, BRANCHES AND LOOPS 
 
When an assembler program has been assembled and is being executed, the 
address of the next instruction to be executed is kept in a register called the 
'program counter'. All the programs met so far have been executed in the order that 
the instructions were written, so the program counter has just steadily increased 
until it reached the last instruction. This chapter introduces the jump and branch 
instructions which can make the program counter jump over instructions or move 
back to previous ones to execute them again. These instructions make it possible to 
implement loops and perform different instructions depending on the outcome of 
previous ones. 
 
3.1 Jumps 
 
Ordinary jumps 
 
Mnemonic Description 
JMP  jump to instruction whose address is given 
 
The JMP instruction is followed by the address of the instruction to be executed 
next, e.g. 
 
JMP &E48 or JMP addr 
 
Instead of describing the address by a number, we can use a 'label' to indicate to 
the assembler where we want to go. In the assembler, labels are variables prefixed 
with a full stop (.). 
 
10  oswrch =&FFEE 
20  DIM P% 100 
30[ 
40.enter 
50 LDA #ASC”*” 
60.loop 
70 JSR oswrch 
80 JMP loop 
90] 
100 END 
 
When the program is assembled the address corresponding to the label '.loop' will 
be inserted in the machine code. When the code is executed the value of the 
program counter will be set to this address and the CPU will collect its next 
instruction from the location with that address and will continue executing from 
there. 
 
The label '.enter' at the start of the program has been included so that this label can 
be called in order to execute the program. This is a better way of executing a 
program than calling TOP since TOP doesn't always point to the first machine code 
instruction. This is true for the above example since TOP will point to the 
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assignment statement  ‘oswrch=&FFEE'. 
 
The program will output an asterisk (*), and then jump back to the previous 
instruction. The program has become stuck in an endless loop! Compare this 
program with the following BASIC program: 
 
10 A=48 
20 VDU A 
30 GOTO 20 
 
To get out of the BASIC loop you press ESCAPE. This will not automatically halt 
machine code programs, however. To exit from a machine code loop without losing 
the program you must press BREAK, and then type 'OLD' to retrieve the original 
program. 
 
Jumps to subroutines 
 
Mnemonic Description 
JSR  jump to subroutine 
 
Examples of this instruction have been used previously. Like the JMP instruction it 
is followed by a two-byte address, e.g. 
 
JSR oswrch 
 
In this case the address of the instruction directly following the JSR instruction in 
the code is noted, and then the value of the program counter is set to the address of 
'oswrch'. The CPU will go to this address for its next instruction and start executing 
the code from there until it meets an RTS. This will set the program counter to the 
address which was noted earlier so that the CPU can then continue executing the 
code following the JSR instruction. Subroutines jumped to can either be part of the 
assembler program or, as in this example, sub-routines which exist in the operating 
system memory. 
 
3.2 The zero and negative flags 
 
There are several flags in the CPU which can be set or cleared depending on the 
outcome of certain instructions. The carry flag was introduced in the previous 
chapter, this is set or cleared as the result of an ADC (add with carry) instruction. 
Another very useful one is the zero flag, called Z. This is set if the result of the 
previous operation gave zero, and is cleared otherwise, e.g. 
 
LDA &80 
 
would set the zero flag if the contents of &80 were zero. 
 
Similarly the negative flag, N, is set if the result of the previous operation was 
negative in two's complement notation, i.e. if the top bit was set, e.g. 
 
LDA &80 
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would set the negative flag if the number stored in location &80 was greater than 
127 (01111111). 
 
The conditions of all the flags are stored in a byte called the status register (P), and 
each flag is represented by one bit: e.g. the top bit of the status register is set if N=1 
and the bottom bit is set if C=1. 
 
3.3 Conditional branches 
 
Conditional branches enable the program to act on the outcome of an operation. 
There are eight different branch instructions, six of which are introduced. 
 
Mnemonic Description   Status 
BEQ  branch if equal to zero (ie Z=1) 
BNE  branch if not equal to zero (ie Z=0) 
BCC  branch if carry clear  (ie C=0) 
BCS  branch if carry set  (ie C=1) 
BPL  branch if plus   (ie N=0) 
BMI  branch if minus  (ie N=1) 
 
The conditional branch instructions test the state of the various condition flags, e.g. 
the zero flag and negative flag. If the condition is not satisfied then it carries on 
executing, but if the condition is satisfied then the computer goes to the place 
indicated by the byte following the branch op-code. This byte is stored as a relative 
address, thus if you say 
 
BCS notzero 
 
the assembler works out the difference (in bytes) between the current instruction 
and the place where the label '.notzero' is, and puts this value after the op-code. 
This means that the value of this byte is used, in conjunction with the address of the 
current instruction, to tell the CPU where to go next. 
 
Because only a single byte is allowed in this relative addressing mode, the branch 
instructions can only point to one of 255 nearby bytes. The two's complement 
representation of numbers is used to give the offset relative to the current address. 
Branches which point forwards are restricted to 0-127 bytes beyond the current 
location. The value of the byte following the op-code for these is then 0-127. 
Branches which point backwards to places at lower addresses in memory require a 
negative value to be added to the current location. These use the numbers 128-255 
to represent the values -128 to -1. 
 
The JMP instruction does not use relative addressing; it is followed by two bytes 
which specify the absolute address which will be the destination. Hence the branch 
instruction is shorter than the jump instruction, the jump being three bytes long (op-
code and two-byte address) and the branch being two bytes long (op-code and one-
byte offset). This difference is automatically looked after by the assembler. 
 
The following simple program will print an 
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exclamation mark if 'character' contains zero, and a star if it does not. The 
comments to the right of the assembler statements may be omitted when you enter 
the program. 
 
10 DIM P% 100 
20 character=&80 
30 oswrch = &FFEE  
40[ 
50.enter 
60 LDA  character 
70 BEQ  exclamation If zero print '!’ 
80 LDA #ASC"*"  Star 
90 JSR  oswrch  Print it 
100 RTS   Return 
110.exclamation 
120 LDA  #ASC"!"  Exclamation mark 
130 JSR  oswrch  Print it 
140 RTS   Return 
150] 
160 END 
 
Note that the above program can be made shorter, by replacing the instructions 
 
JSR oswrch 
RTS 
 
with the single instruction 
 
JMP oswrch 
 
Replacing JSR and RTS instructions by a JMP to a subroutine reduces the size of 
both a source program and the object code it produces, and hence increases 
execution speed. 
 
Now assemble the program by typing RUN. You should get the message: 
 
No such variable at line 70 
 
This is because the assembler processes the mnemonic instructions in the order in 
which they are listed in the program. Therefore when it encounters 'BEQ 
exclamation' it has not yet found the label exclamation' so it cannot work out the 
offset which is required in the following byte. This is known as the forward-reference 
problem, and is easily overcome using the method of two-pass assembly which is 
explained below. 
 
3.4 Two-pass assembly 
 
When a program contains forward references it needs to be assembled twice. 
During the first pass of the assembler the addresses of all the labels are noted so 
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that during the second pass the offsets of the branch instructions can be included. 
And the assembler must be told not to worry when, during the first pass, it comes 
across errors of the sort indicated above. 
 
This can be done using the OPT statement, an assembler directive which has a 
single parameter for which the following values are possible: 
 
OPT 0 No error messages, and no listing 
OPT 1 No error messages, and listing 
OPT 2 Error messages reported, and no listing 
OPT 3 Error messages reported, and listing (Default) 
 
Thus to suppress messages and a listing on the first pass, and to restore them on 
the second pass, we need to use OPT 0 and OPT 3 respectively. This can be 
effected by placing the directive inside a FOR NEXT loop, which goes from 0 to 3 in 
steps of 3. Then 
 
The value of the control variable is used as the parameter of the OPT statement. 
So, to alter the program which was given above, simply enter these lines: 
 
10 DIM code 100 
23 FOR pass = 0 TO 3 STEP 3 
26 P% = code 
30[ OPT pass 
145 NEXT pass 
 
This time the error message will not be produced and the correct offset will be 
calculated for the branch instruction. 
 
Note lines 10 and 26, which replace the old 'DIM P% 100' statement. P% must be 
reset to the starting value each time that the code is assembled. 
 
Now execute the program by typing 
 
CALL enter 
 
and verify that the program behaves as it should for different values in &80. 
 
3.5 X and Y registers 
 
The CPU contains two registers, called the X and Y registers, in addition to the 
accumulator. As with the accumulator, there are instructions to load and store the X 
and Y registers: 
 
Mnemonic  Description    Symbol 
 
LDX  load X register from memory  X=M 
LDY  load Y register from memory Y=M 
STX  store X register to memory   M=X 
STY  store Y register to memory   M=Y 
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However, unlike the accumulator, the X and Y registers cannot be used as one of 
the operands in arithmetic instructions; they have their own special uses which will 
be outlined later. 
 
The X and Y registers are particularly useful as the control variables in iterative 
loops, because four special instructions exist which will either increment (add 1 to) 
or decrement (subtract 1 from) their values. 
 
Mnemonic Description   Symbol 
 
INX  increment X register  X=X+1 
INY  increment Y register  Y=Y+1 
DEX  decrement X register X=X-1 
DEY  decrement Y register Y=Y-1 
 
Note that these instructions do not affect the carry flag: incrementing &FF will give 
&00 without changing the carry bit. The zero and negative flags are, however, 
affected by these instructions. 
 
3.6 Iterative loops 
 
The iterative loop enables the same set of instructions to be executed a fixed 
number of times, e.g. 
 
10 DIM P% 100 
20 oswrch = &FFEE 
30[ 
40.enter 
50  LDX #8  Initialise X 
60  LDA  #ASC"*"  Code for star 
70. Loop 
80  JSR  oswrch Output star 
90  DEX  Count it 
100  BNE   Loop all done? 
110  RTS] 
120 END 
 
Assemble the program by typing RUN. This program prints out a star, decrements 
the X register, and then branches back if the result after decrementing the X 
register is not zero. Consider what value X will have on successive trips around the 
loop and predict how many stars will be printed out; then execute the program with 
'CALL enter' and see if your prediction was correct. (If you were wrong, try thinking 
about the case where X was initially set to 1 instead of 8 in line 50.) 
 
How many stars are printed if you change the instruction on line 50 to 'LDX #0'? 
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3.7 Comparing values 
 
In the previous example the condition X=0 was used to terminate the loop. 
Sometimes we might want to count up from 0 and terminate on some other 
specified value. The compare instruction can be used to compare the contents of a 
register with a value in memory; if the two are the same, the zero flag will be set. If 
they are not the same, the zero flag will be cleared. The compare instruction also 
affects the carry flag by setting it to 1 if the register is greater than or equal to the 
value in memory, and 0 otherwise. 
 
Mnemonic  Description Symbol 
 
CMP      compare accumulator with A-M 
 memory 
CPX compare X register with X-M 
 memory 
CPY compare Y register with Y-M 
 memory 
 
Note that the compare instruction does not affect its two operands, it just changes 
the flags as a result of the comparison. 
 
The next example again prints eight stars, but this time it uses X as a counter to 
count upwards from 0 to 8. 
 
10 DIM P% 100 
20 oswrch=&FFEE 
30[ 
40.enter 
50 LDX  #0 Start at zero 
60.loop 
70 LDA #ASC”*” Code for star 
80 JSR oswrch Output star 
 90 INX  Next X 
100 CPX #8 ALL done? 
110 BNE loop If not then repeat 
120 RTS  Else return 
130] 
140 END 
 
In this program X takes the values 0, 1, 2, 3, 4, 5, 6, and 7. The last time around the 
loop X is incremented to 8, and the loop terminates. Try drawing a flowchart for this 
program. 
 
3.8 Using the control variable 
 
In the previous two examples X was simply used as a counter, and so it made no 
difference whether we counted up or down. However, it is often useful to use the 
value of the control variable in the program. For example, we could print out the 
character in the X register each time around the loop. The order in which we want 
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the characters would then determine whether we count up or down. We therefore 
need a way of transferring the value in the X register to the accumulator so that it 
can be printed out by the OSWRCH routine. One way would be to execute: 
 
STX tempaddr  
LDA tempaddr 
 
where 'tempaddr' is not being used for any other purpose. However, there is a more 
convenient way, using one of four new instructions: 
 
Mnemonic  Description     Symbol 
 
TAX  transfer accumulator to X register  X=A 
TAY  transfer accumulator to Y register  Y=A 
TXA  transfer X register to accumulator  A=X 
TYA  transfer Y register to accumulator  A=Y 
 
Note that the transfer instructions only affect the register being transferred to. 
 
The following example prints out the alphabet by making X cover the range A to Z. 
 
10 DIM P% 100 
20 oswrch = &FFEE 
30[ 
40.enter 
50 LDX #ASC"A"  Start with the Letter A 
60.loop 
70 TXA    Put it in the accumulator 
80 JSR oswrch Print it 
90 INX   Next one 
100 CPX #(ASC"Z”+1)Finished ? 
110 BNE loop   If so - continue 
120 RTS   Else return 
130] 
140 END 
 
All these examples could have used Y as the control variable instead of X in exactly 
the same way. 
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3.9 Conditional assembly 
 
Assembler source text can contain tests, and assemble different statements 
depending on the outcome of these tests. This is especially useful where slightly 
Different  versions of a program are needed for many different purposes. Rather 
than creating a different source file for each different version, a single variable can 
determine the changes using conditional assembly, eg: 
 
10 DIM CODE%100 
20 char=&70 
30 oswrch=&FFEE 
40 osrdch=&FFE0 
50 bell=7   Beep = VDU 7 
60 prompt=ASC":” 
70 INPUT"bell",bell$  Input 'bell$' 
80 bellflag=INSTR("Yy",bell$) 'bellflag' is true if 
90 FOR pass=0 TO 3 STEP 3  bell$ = 'y' or 'Y' 
100 P%=CODE% 
110[ OPTpass 
120.enter 
130] 
140 IF bellflag THEN [OPT pass:LDA #bell :JSR oswrch:] 
150[OPT pass 
160 LDA #prompt   Load A with ':' prompt 
170 JSR oswrch   Print from A 
180 JSR osrdch   Read in a character 
190 STA char    store it at char and 
200 JSR oswrch   print it out 
210 RTS  
220] 
230  NEXT pass 
 
When this program is run it asks if you want the computer to bleep or not and sets 
'bellflag' accordingly. Then when the machine code is executed it inputs a character 
from the keyboard, bleeping if 'bellflag' is set to remind you that an input is required, 
and prints out a character corresponding to the first key pressed. This character is 
also saved at the address 'char'. 
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4. LOGICAL OPERATIONS, SHIFTS AND ROTATES 
 
 
We have seen previously that each byte or memory location is made up of eight 
bits, each of which can be set to the value 0 or 1. Although the operations we have 
considered so far have treated the whole byte as the smallest quantity being dealt 
with, many operations in the computer's instruction set are best considered as 
operations which act on eight separate bits. Some of these perform such important 
tasks as changing the case of characters, or multiplying and dividing. 
 
4.1 Logical operations 
 
Logical operations are performed between the individual bits of two operands; one 
of the operands is always the accumulator and the other is a memory location or 
immediate value. In this section three such operations are introduced; AND, OR 
and EOR. A truth table is used to give a compact description of each operation. 
This takes two single bit inputs which, for convenience, we call A and B, and shows 
the bit which is produced as a result of ANDing, ORing or EORing them together. 
This is known as Boolean logic after its inventor, George Boole. 
 
AND 
 
Mnemonic Description    Symbol 
AND  AND accumulator with memory  A=A AND M 
 
Truth table: 
 

A B out 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 
The AND operation sets a bit of the result to a 1 only if the corresponding bit of one 
operand is a 1 AND the corresponding bit of the other operand is a 1; otherwise the 
bit in the result is a zero, e.g. 
 
  Hexadecimal Binary 
operand 1  A9 10101001 
operand 2  E5 11100101 
result of AND  Al 10100001 
 
 
One way of thinking of the AND operation is that one operand acts as a 'mask', and 
only where there are ones in the mask do the corresponding bits in the other 
operand 'show through'; otherwise, the bits are zero. 
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OR 
 
Mnemonic Description  Symbol 
ORA  OR accumulator with A=A OR M 
  memory 
 
Truth table: 

A B out 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 
The OR operation sets a bit of the result to a 1 if the corresponding bit of one 
operand is a 1 OR the corresponding bit of the other operand is a 1, or indeed, if 
they are both ones; otherwise the bit in the result is zero, e.g. 
 
  hexadecimal  Binary 
operand 1  A9  10101001 
operand 2  E5  11100101 
Result of OR  ED  11101101 
 
 
Exclusive OR 
 
Mnemonic  Description   Symbol 
EOR  Exclusive-OR accumulator  A=A EOR M 
  with memory 
 
Truth table: 

A B out 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
 
The Exclusive-OR operation is like the OR operation, except that a bit in the result 
is set to 1 only if the corresponding bit of one operand is a 1, or if the corresponding 
bit of the other operand is a 1, but not if they are both ones, e.g. 
 
  hexadecimal  Binary 
operand 1  A9  10101001 
operand 2  E5  11100101 
result of EOR  4C  01001100 
 
 
Another way of thinking of the Exclusive-OR operation is that a bit of the result is 1 
if and only if the corresponding bits in the operands are different. 
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Example - converting lower to upper case 
The following example converts all characters entered in lower case to upper case. 
See Appendix A for the ASCII character set. 
 
.loop 
 JSR osrdch Get character 
 AND #&DF Make case bit zero 
 JSR oswrch Print it 
 JMP loop And do it again 
 
Try altering this using the 'ORA' instruction to convert all characters to lower case. 
When you have succeeded in doing this try writing a routine to swap case. 
 
4.2 The BIT instruction 
 
This instruction is available to test whether individual bits of a number are set or not. 
 
Mnemonic  Description 
BIT  Compare memory bits with accumulator 
 
The instruction AND's the bits of the accumulator and the memory. The zero and 
negative flags are set or cleared as a result of this operation; Z=1 if the result was 0 
and N = top bit, V = bit 6 of contents of location. 
 
Hence BIT may be used to test any bit of the memory by loading the accumulator 
with a value containing a 1 in the relevant position and 0's everywhere else. Then 
the values 0 and 1 for Z show whether the bit was or was not set respectively, e.g. 
 
LDA #4 4=00000100 
BIT addr 
BEQ bit-not-set 
 
If addr contained, for example, &43 (01000011) then the branch would occur. If, 
however, addr contained &44 (01000100) then the branch would not take place. Bit 
differs from the AND instruction in that it does not corrupt the accumulator. 
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4.3 Rotates and shifts 
 
The rotate and shift operations move the bits in a byte either left or right. 
 
Mnemonic  Description 
 ASL arithmetic shift left 
 ROL rotate left 
 LSR logical shift right 
 ROR rotate right 
 
The ASL instruction moves all the bits one place to the left; what was the high-order 
bit is put into the carry flag, and a zero is put into the low-order bit of the byte. The 
ROL instruction is identical except that the previous value of the carry flag is put into 
the low-order bit instead of zero. 
 
The right shift and rotate right instructions work in a similar way except that the bits 
are shifted to the right. 
 
ASL – Arithmetic shift Left one bit 
 
ROL - Rotate Left one bit  

 
LSR - Logical shift right one bit 
 
Example - multiplying by two 
 
The most efficient way to multiply a two-byte number, stored in 'addr' and 'addr+1,   
by two, is to shift the contents of the two bytes one place to the left. Where 'addr' 
and 'addr+1' are the addresses of the locations storing the low and high bytes of the 
number being doubled, use the following two statements: 
 
ASL addr 
ROL addr+1 
 
This works by using the carry to hold the bit that falls off the end of 'addr', and then 
using the ROL statement, which puts the carry into the correct place in the high-
order byte. 
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5. ADDRESSING MODES 
 
So far we have met two addressing modes. One of these is absolute addressing as 
in 
 
LDA addr 
 
which, when executed, loads the accumulator with the contents of the location 
whose address is 'addr'. The other is immediate addressing as in 
 
LDA #&81 
 
which, when executed, loads the accumulator with the actual value &81. 
 
However, other addressing modes exist and one of the most important, 'indexed 
addressing', is introduced here prior to a summary exposition of all the addressing 
modes available to the 6502 processor. 
 
5.1 Indexed addressing 
 
In this addressing mode one of the index registers (X or Y) is added to the address 
as an offset which gives the precise location for the stored data. For example, we 
can write: 
 
LDA addr, X 
 
If X contains zero this instruction will behave just like 'LDA addr'. However, if X 
contains 1 it will load the accumulator with the contents of 'one location further on 
from addr'. Since X can contain any value from 0 to 255, the instruction 'LDA 
addr,X' gives you access to 256 different memory locations. If you are familiar with 
BASIC's byte vectors you can think of 'addr' as the base of a vector, and of X as 
containing the subscript, e.g. 
 
addr?7 = 12 
 
is equivalent to 
 
LDA #12 
LDX #7 
STA addr, X 
 
5.2 String types 
 
Two examples of the use of indexed addressing are given below, both involving 
strings. There are two string types available for use in BASIC and assembler; 
ATOM strings and Microsoft strings. An ATOM string is a string of characters 
terminated by a RETURN character. The name which identifies the string is 
preceded by a dollar ($) sign and the strings can be easily set up in BASIC, e.g. 
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$name = "Fred" 
 
ATOM strings must have an area of memory set aside for them. This can be done, 
as in the examples, by using a DIM statement. The characters making up the string 
are then stored in the location identified by the name of the string. This is very 
useful as the address of each character is then also known. 
 
A Microsoft string is a string of characters preceded by a byte which gives the 
length of the string. In this case, the name of the string has a dollar ($) sign after it. 
It is more flexible than the ATOM string because it can contain RETURN 
characters. Its disadvantage is that all the characters making up the string are 
stored in locations chosen by BASIC, hence the addresses of these are not known. 
 
Example - print inverted-case string 
 
The following program uses indexed addressing to print out a string of characters 
terminated by a carriage return (which is represented in the memory by &D), 
swapping case as it prints out each character. 
 
10 DIM string 256, code 100  
20 oswrch = &FFEE 
30 FOR pass = 0 TO 3 
40 P% = code 
50[OPT pass 
60.enter 
70 LDX #0   Set index to zero 
80.loop 
90 LDA string,X  Get characters from string 
100 CMP #&D   Is it end of string? 
110 BEQ return  If so, end 
120 EOR #&20   Else invert case bit 
130 JSR oswrch  Print it 
140 INX    Increment index 
150 BNE Loop   If string longer than 256 
160.return     
170 RTS    then end anyway 
180] 
190 NEXT pass 
200 END 
 
Assemble the program by typing RUN, and then try the program by entering: 
 
$string = "Test String" : CALL enter 
 
Example - index subroutine 
 
Another useful operation, easily performed in a machine-code routine, is looking up 
a character in a string and returning its position in that string. The following 
subroutine reads in a character, using a call to the OSRDCH read-character routine, 
and saves in '? found' the position of the first occurrence of that character in 
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'$target'. This is exactly the same as the BASIC '?found =INSTR ("ABCDEFGH", 
GET$)'. 
 
 
0 REM Index Routine 
10 DIM target 25,P% 100 
20 osrdch=&FFE0 : $target="ABCDEFGH" : found= &70 
30[ 
40.enter 
50 JSR osrdch   Get character 
60 LDX#(LEN($target)-1) Length of string 
70.loop 
80 CMP target,X   Compare character 
90 BEQ match    Got a match 
100 DEX      Try again 
110 CPX#255    Until end of string 
120 BNE loop 
130.match 
140 INX      The position in the 
150 STX found    String is stored 
160 RTS     Return 
170] 
180 END 
 
The routine is entered at '.enter', and as it stands it looks for one of the letters A to 
H. 
 
5.3 Summary of addressing modes 
 
The following sections summarise all addressing modes that are available on the 
6502, some of which have been met already. 
 
Immediate addressing 
 
Use immediate addressing when the data for an instruction is known at the time of 
writing the program. In this mode the second byte of the instruction contains the 
actual eight-bit data to be used by the instruction. The '#' symbol denotes an 
immediate operand. 
 
Examples: LDA #value  

CPY #flag+2 
 
Absolute addressing 
 
Use absolute addressing when the effective address, to be used by the instruction, 
is known at the time the program is being written. In this mode the two bytes 
following the op-code contain the 16-bit effective address to be used by the 
instruction, the low byte being given first, followed by the high byte. 
 
Example: LDA address 
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Zero page addressing 
 
Zero page addressing is a subset of absolute addressing. They are similar in that 
the instruction specifies the effective address to be used; the difference between 
them is that in absolute addressing the address used can be anywhere, whereas in 
zero page addressing the address is in zero page, i.e. from &0000 to &OOFF. 
Hence this address is only one byte rather than two. The assembler will 
automatically produce zero-page instructions. 
 
Examples: JSR loop 

ASL &9A 
 
Indexed addressing 
 
Indexed addressing is used to access a table of memory locations by specifying 
them in terms of an offset from a base address. The base address is known at the 
time that the program is written; the offset, which is provided in one of the index 
registers, can be calculated by the program. 
 
In all indexed addressing modes one of the eight-bit index registers, X and Y, is 
used in order to calculate the effective address to be used by the instruction. Five 
different indexed addressing modes are available, and are listed below. 
 
Absolute indexed addressing 
 
The simplest indexed addressing mode is absolute indexed addressing. In this 
mode the two bytes following the instruction specify a 16-bit address which is to be 
added to one of the index registers to form the effective address to be used by the 
instruction. 
 
Examples: LDA table,X 

LDX palette,Y 
INC score,X 

 
Zero,X indexed addressing 
 
Here, the second byte of the instruction specifies an eight-bit address, which is 
added to the X-register to give a zero-page address to be used by the instruction. 
 
Note that in the case of the LDX instruction a ‘zero,Y' addressing mode is provided 
instead of the ‘zero,X' mode. 
 
Examples: LSR &80,X 

LDX addr,Y (where addr+Y is in zero page) 
 
Indirect addressing 
 
It is sometimes necessary to use an address which is actually computed when the 



 41

program runs, rather than being an offset from a base address or a constant 
address. In this case indirect addressing is used. 
 
Indirect addressing is distinct from direct addressing (i.e. absolute, indexed, etc) in 
that the address specified after the mnemonic is used to refer to a location where 
the final address will be found. Thus the machine does not go directly to the 
address, but instead it goes indirectly, via the address given. 
 
The indirect mode of addressing is available for the JMP instruction. Thus control 
can be transferred to an address calculated at the time the program is run. 
 
Examples: JMP (&2800) 

JMP (addr) 
 
For the dual-operand instructions ADC, AND, CMP, EOR, LDA, ORA, SBC and 
STA, two different modes of indirect addressing are provided: pre-indexed indirect, 
and post-indexed indirect. Pure indirect addressing can be obtained, using either 
mode, by first setting the respective index register to zero. 
 
Pre-indexed indirect addressing 
 
Examples: STA (zerotable,X)  

EOR (&60,X) 
 
 
This mode of addressing is used when a table of effective addresses is provided in 
zero page; the X index register is used as a pointer to select one of these 
addresses from the table. 
 
In pre-indexed indirect addressing the second byte of the instruction is added to the 
X register to give an address in zero page. The two bytes at this zero-page address 
are then used as the effective address for the instruction. 
 
Post-indexed indirect addressing 
 
This indexed addressing mode is like the absolute,X or absolute,Y indexed 
addressing modes, except that in this case the base address of the table is 
provided in zero page, rather than in the bytes following the instruction. 
 
In post-indexed indirect addressing the second byte of the instruction specifies a 
zero-page address. The two bytes at this address are added to the Y index register 
to give a 16-bit address which is then used as the effective address for the 
instruction. 
 
Examples: ADC (&66),Y 

CMP (pointer),Y 
 
This last addressing mode is very useful. An example of its use is given in the 
program below, which will only work on a machine without a second processor 
attached. It clears the screen. 
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10 DIM MC% 100 
20 addr=&70 
30 FOR pass=0 TO 2 STEP 2 
40 P%=MC% 
50[OPT pass 
60.cls 
70 LDA #&58  High byte of start address 
80 STA addr+1 
90 LDY #0  Low byte of address, 
100 STY addr  and value to write to screen 
110 TYA   Put zero (black) into A 
120.clsloop 
130 STA (addr),Y store zero 
140 INY   
150 BNE clsloop do 256 times 
160 INC addr+1 Increment hi byte of address 
170 LDX addr+1 Set status register to addr 
180 BPL clsloop Compare with top of RAM 
190  RTS 
200] 
210 NEXT pass 
220 MODE 4 
230 COLOUR 129 
240 CLS   White out screen 
250 A=GET   Wait for a key 
260 CALL cls  Black out screen 
270 COLOUR 128 
280 END 
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6. THE STACK 
 
The 6502 processor supports a hardware stack. This is an important part of the 
computer which can be used both by the CPU and the programmer. This chapter 
looks at how the stack can be used and how it performs its task. 
 
6.1 Using the stack 
 
A hardware stack is simply a set of memory locations (&100 to &1FF) which are 
reserved by the processor. These locations can be used as temporary storage 
locations. Up until now, when we have wanted to store a value, we might have 
used. 
 
STA tempaddr 
 
And to recall the value which was in the accumulator at that time, the instruction 
 
LDA tempaddr 
 
Loading the accumulator with the value from 'tempaddr' does not alter the value 
stored in 'tempaddr'. Hence the number may be recalled several times. When 
storing a value on the stack, however, the situation is different. The value to be 
stored is 'pushed' onto the stack and when it is wanted again, it is 'pulled' off into a 
register - a one-time only operation. 
 
The stack is a LIFO structure, these initials stand for 'last-in, first-out', which means 
that the first item put on the stack will be at the bottom and so will be the least 
readily available, whereas the last item on the stack will be at the top and will be the 
first one to be pulled off it. 
 
The four instructions which a programmer can use to access the stack are: 
 
Mnemonic Description 
 
PHA  push the contents of A onto the stack 
PLA  pull a value off the stack and store it in A 
PHP  push the contents of the status register P 
PLP  pull a value off the stack and store it in P 

 
'Last-in, first-out': the stack forbids the use of any item other than in that order. 
 
A stack pointer is used to manage the stack. This is a register which contains the 
address of the top location being used. For example, on encountering a PLA 
instruction, the accumulator is loaded from the memory location pointed to by the 
stack pointer and then the stack pointer is automatically moved back one location. 
Whenever a PHA instruction is executed, the accumulator is stored in the memory 
location pointed to by the stack pointer and then the stack pointer is moved on to 
the next location. 
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Example 
The following series of pushes and pulls leaves the stack in a state which is shown 
below: 
 
LDA #78 
PHA 
LDA #79 
PHA 
PLA  
LDA #80 
PHA 
 
 Stack pointer points to next free space 
    80 Last value pushed onto the stack 
    78 Previous value pushed onto the stack 

 
Note that the value 79 which was pushed onto the stack and then pulled off it again 
no longer occupies a location on the stack. 
 
To see why the stack is used as a temporary storage place in preference to a 
memory location such as ‘tempaddr', consider the two alternative sections of 
assembler below: 

PHA   STA tempaddr 
LDA addr  LDA addr 
CLC  CLC 
ADC #12 ADC #12 
STA addr STA addr 
PLA  LDA tempaddr 
 
These both produce the same result when executed but the one on the left will 
produce less code. This is because the LDA and STA instructions consist of either 
two or three bytes, one for the op-code and one or two for the address. The PHA 
and PLA instructions, however, just consist of an op-code. 
 
Note that if more than one value is stored on the stack at once, care must be taken 
when these values are retrieved. Because it is a LIFO structure, the values must be 
taken off the stack in the opposite order to how they were placed on it, e.g. 
 
PHA save accumulator 
TXA prepare to save X 
PHA save X 
PLA restore value 
TAX transfer to X the last value pushed  
PLA    restore accumulator 
 
When using the stack it is very important to pull as many values as you push. 
Otherwise confusion can arise as we will see below. 
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6.2   How the CPU stores addresses 
 
The stack is used by the CPU as well as by the programmer. On encountering a 
JSR instruction, the address of the instruction following the JSR is stored so that the 
CPU knows where to start executing from when it comes to the end of the 
subroutine. This is done by pushing the two bytes of the address onto the stack so 
that they can be retrieved when the RTS is reached. Thus a routine which is 
entered with a JSR and finishes with RTS should always pull the same number of 
bytes as are pushed otherwise the value obtained from the top of the stack by the 
RTS will not be the correct return address, e.g. 
 
.entersubroutine 
PHA 
LDA addr 
CLC 
ADC #12 
RTS 
 
When the RTS is reached the CPU will pull two values off the stack, and put them 
into the program counter. However, as one of these values is the value pushed with 
the 'PHA', the program counter will almost certainly contain the wrong address. This 
will mean that the CPU will start trying to execute instructions at the wrong address 
and do something undefined by the designers of the 6502. 
 
6.3  Recursion 
 
One of the most important reasons for using a stack to hold the addresses of 
subroutine returns is that recursion is then automatically supported. 

 
A recursive subroutine is one which calls itself. This can be a very powerful feature 
and enables a programmer to implement tree structures as shown below. 
 
Using trees 
A tree in computing is normally pictured as follows: 
 *  root 
         /   \ 
        /      \ 
       *        *   node 
     /   \     /  \ 
    /      \  /     \  
   *       * *      * branch    
  /                 / \   
 
Note that it is usually drawn with the 'root' at the top. 
 
In order to print out all the elements (root and nodes) in the tree, you must write a 
routine which prints out an element and then goes down a branch to the element 
beneath it. If there isn't an element below, then it goes back up one level and sees if 
there is an alternative branch from there. For the above tree the order that the 
elements would be visited, assuming that the routine shows a preference for right-
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hand branches, is: 
 
 * 1  root 
          /   \ 
         /      \ 
      *6        *2  node 
     /   \       /  \ 
    /      \    /     \  
 8 *    7* *4   *3 branch    
   
 
A BASIC routine to do this is as follows: 
 
DEFPROCtree(element) 
PRINT value(element) 
IF right(element) THEN PROCtree(right(element)) 
IF left(element) THEN PROCtree(left(element)) 
ENDPROC 
 
This assumes that each element has three things known about it: its value, the 
element that its right branch leads to (FALSE if no branch) and the element that its 
left branch leads to (FALSE if no branch). These should be stored in three arrays 
whose names are 'value', 'right' and 'left'. 
 
The routine can be called using 
 
PROCtree(0) 
 
The assembler version of this is: 
 
.enter 
 LDX #0   Start at root (zeroth element) 
.tree 
 LDA value,X  Get value of element 
 JSR printnumber See section 13.1 for details 
 LDA right,X  Is there a right branch? 
 BEQ tryleft  If not, try a left one 
 TAX 
 JSR tree    Else take that branch 
.tryleft    
 LDA left,X  Is there a left branch?  
 BEQ backup  If not, go back up one level 
 TAX 
 JSR tree   Else take that branch 
 RTS    Return 
 
In this case the block of memory locations starting with the address 'value' should 
contain the values of each element in turn: those starting at 'right' should contain 
the element to which each one's right-hand branch leads, and 'left' the element to 
which each one's left-hand branch leads. 
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7. MACROS 
 
If an assembler programmer wants to use a block of instructions several times 
during a single program then this block only needs to be entered once. There are 
then two methods of using this block when it is needed. The first is to put a label 
before it and an RTS instruction at the end, and reference it as a subroutine using 
the JSR instruction which was described earlier. In this case the CPU will 'jump' to 
the label when it reaches the JSR and 'jump' back again when it reaches the RTS at 
the end of the subroutine. 
 
The alternative method is to turn the block of instructions into a macro, the method 
for doing this will be explained later. Essentially what this does is to give this block 
of instructions a name and, when the assembler comes across this name, it inserts 
the instructions of the macro into the object code which it is producing so that the 
CPU does not have to perform any jumps when it is executing the code. 
 
Hence the main difference between macros and subroutines is that subroutines are 
called at run-time and macros are called at assembly time. 
 
The advantage of macros is that they are faster than subroutines since no jumps 
are needed during execution. The disadvantage is that if the macro is to be used 
several times, the resulting machine code program will have to contain multiple 
copies of the instructions represented by the macro, and thus be long. Using a 
subroutine would only require one copy of the instructions. Macros can be more 
useful than just an aid to save typing however, and this chapter explains some of 
their other features. Further examples can be found in section 12.5 (General 
purpose macros). 
 
7.1 Generating and calling a macro 
 
Consider the sequence of instructions: 
 
ROR A : ROR A : ROR A : ROR A 
 
This simply shifts the upper nibble of the accumulator into the lower nibble. A macro 
with the name 'FNrotateacc' containing this sequence can be set up outside the 
assembler program as follows: 
 
 
DEF FNrotateacc 
[OPT pass 
ROR A : ROR A   ROR A : ROR A 
] :=pass 
 
This macro can then be called from inside the assembler with the statement 
OPT FNrotateacc 
 
The OPT statement is being used here as a dummy statement, simply to call 
FNrotateacc and have no other effect. We therefore arrange for the value of the 
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function to be 'pass', which should be the value used in the initial OPT statement. 
Therefore on reaching this statement the assembler will generate the machine code 
corresponding to the assembler instructions of the macro, and place this in the 
object code. Then it will move on to the next instruction of the assembler program. 
 
The flow of control when the program is being typed will look something like this: 
 
LDA addr 
FNrotateacc 
STA addr 

The flow of control when the program is being assembled will look something like 
this: 
 
LDA addr 
DEFFNrotateacc 
ROR A 
ROR A 
ROR A 
ROR A 
:=pass  
STA addr 
 
The machine code produced will be as follows: 
 A5 81 LDA addr  
 6A  ROR A 
 6A  ROR A 
 6A  ROR A 
 6A  ROR A 
 85 81 STA addr 
 
7.2 Macro parameters 
 
Macros can take parameters, thus the previous example could be rewritten in such 
a way that it could rotate the accumulator any number of times (as long as this 
number is greater than 0): 
 
DEF FNrotateacc(rotate) 
FOR number=1 TO rotate  
[OPT pass 
ROR A 
] 
NEXT number 
= pass 
 
So, to rotate the bits in any memory location any number of times to the right, 
simply set up a macro as follows: 
 
DEF FNrotate(address, rotate) 
FOR number = 1 TO rotate 
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[OPT pass 
ROR address 
] 
NEXT number 
= pass 
 
A typical call might be 
 
OPT FNrotate(&3000, 4) 
 
This would generate machine code to rotate right four times the bits in location 
&3000. 
 
7.3 Conditional assembly in macros 
 
Macros can also be constructed to contain conditional instructions, so that they will 
assemble different pieces of code according to the parameters passed. For 
example, the following macro works out the shortest way of rotating the 
accumulator left: 
 
DEF FNoptimumrotate(rotate) 
IF rotate < 1 THEN = pass 
IF rotate < 5 THEN FOR number=1 TO rotate 
[OPT pass : ROL A:]:Next number 
ELSE FOR number = 1 TO (9-rotate): 
[OPT pass : ROR A:]:Next number 
= pass 

 
7.4 Labels in macros 
 
Labels cannot be used in the normal way inside macros. Consider, for example, the 
macro given below: 
 
DEFFNstar 
[OPT pass 
LDX addr 
BEQ exclamation 
LDA #ASC"*" 
JSR oswrch 
.exclamation 
LDA #ASC”!” 
JSR oswrch 
] : =pass 
 
When the assembler reaches the 'BEQ exclamation' loop instruction on the second 
pass, it will give the offset the same address of the label which was set up the first 
time around. If forward referencing is not used then this problem will not occur, but it 
is still undesirable to use label names time and again. The program becomes very 
difficult to follow and to debug. 
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To use labels in macros that are called from more than one place, it is necessary to 
set up tables of labels. Thus if the label 'start' is used in a macro, an array called 
'start' would have to be DIMensioned at the beginning of the program together with 
as many elements as the number of times the macro is called. If the macro with 
'start' in it was called three times from within the program, the statement 'DIM 
start(2)' would have to be inserted before the first call to that macro took place. 
Also, each call to the macro would have to pass a parameter which contained a 
number (0,1 or 2) so that the correct label would be used. To illustrate: 
 
DEF FNmacro(fred,jim,no) 
[OPT pass 
LDA fred  
LDY jim 
.start(no) 
JSR oswrch 
DEY 
BNE start(no) 
] 
=pass 
 
The above macro will print the contents of 'fred' as an ASCII character, 'jim' times. 
By convention the label number is always passed as the last parameter, and it is 
also a good idea to have all the macros using the same variable to hold the number 
(in this case 'no'). 
 
A typical call to the above macro might be 
 
OPT FNmacro(addr, 45, 1) 
 
This would use the label 'start(1)'. 
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8. BASIC I, BASIC II AND ELECTRON BASIC 
 
There are, at the time of writing, two versions of BBC BASIC available for the BBC 
Microcomputer, known officially as BASIC and BASIC II. In this book, however, they 
are referred to as BASIC I and BASIC II respectively, and the name BASIC is used 
as a general term to cover either. This chapter looks at the differences between the 
two which affect the assembler programmer and provides BASIC I versions of the 
new directives and keyword. 
 
The BASIC provided on the Electron can be assumed to be BASIC II. The BASIC 
routines given elsewhere in this book will all work on machines containing BASIC II 
and can be adapted to work with BASIC I as well. 
 
8.1 Distinguishing BASIC I from BASIC II 
 
To find out if you have BASIC I or BASIC II press BREAK and then type REPORT. 
BASIC II will give the message: 
 
(C)1982 Acorn 
 
Whereas BASIC I will produce: 
 
(C)1981  Acorn 
 
8.2 The main differences between BASIC I and BASIC II 
 
The main differences between the two BASICs which concern assembler 
programmers are: 
 
OPT 
In BASIC I only the lowest two bits in the OPT statement are significant; if the 
lowest bit is set then the machine code is listed and if the next bit is set error 
messages are reported. The other bits are ignored. However, in BASIC II the third 
bit is significant as well; it is used to produce code which will execute somewhere 
other than the assembled position. If the third bit is set (OPTs 4 to 7) then the code 
is assembled at the value of O% (the code origin), not at P%. However, all the 
JMP's etc. will be set up as if it is going to execute at P%, and so it is an easy 
matter to relocate the code. This is particularly useful if, for example, you had 
written a routine which had to work in ROM, or some other space which is not 
normally accessible. Note that if this option is used then as the code is produced 
both O% and P% are incremented, otherwise just P% is incremented. 
 
EQUB, EQUW, EQUD and EQUS 
Four assembler directives have been introduced in BASIC II which are not present 
in BASIC I. These new directives are EQUB, EQUW, EQUD and EQUS which stand 
for 'equate byte', 'equate word' (2 bytes), 'equate double word' (4 bytes) and 'equate 
string' (0 - 255 bytes). These each take a single argument, and put its value into the 
assembly code at P% (also incrementing P% by the correct amount), e.g. 
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EQUB &FE   Put ‘&FE' at P% 
 
EQUW oswrch  Put contents of 'oswrch' at P% and P%+1 
 
EQUD 0   Set the next four bytes to zero 
 
EQUS "Fred"+CHR$(13)Put 'Fred'+Carriage Return in memory starting at P% 
 
OSCLI 
A new keyword, OSCLI, has been introduced which takes as its argument an 
expression, which it then passes to the operating system command line interpreter. 
This is not directly useful in assembler source code, but is useful when saving or 
loading variable amounts of data, or when sending variable FX commands. For 
example the following routine sets up soft key 0 to contain the string 'LIST+ERL+ 
[RETURN]': 
 
PROCkey (0, "LIST "+STR$ERL+"|M") 
* 
* 
DEFPROCkey(number, A$) 
OSCLI(“KEY " + STR$number + " " + A$) 
ENDPROC 
 
Another example is to SAVE a BASIC program by typing 
 
OSCLI(“SAVE <filename> ” STR$~PAGE + “ ” + STR$~TOP) 
 
Note: this is exactly the same as the BASIC command SAVE <filename>. Note 
also the use of 'STR$~' here to convert a hexadecimal number to a string. 
 
8.3 BASIC I versions of EQUB, EQUW, EQUD and EQUS 
 
Macros can be set up in BASIC I to emulate these directives: 
 
EQUB 
 
DEF FNequb(byte) 
?P% = byte 
P% = P% + 1 
= pass 
 
EQUW 
 
DEF FNequw(word) 
?P% = word AND &FF  
P%?1 = word DIV &100 
P% = P% + 2 
= pass 
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EQUD 
 
DEF FNequd(doubleword) 
!P% = doubleword 
P% = P% + 4 
= pass 
 
EQUS 
 
DEF FNequs(string$) 
$P% = string$ 
P% = P% + LEN(string$) 
= pass 
 
Note that 'FNequs' will put the string into memory from ‘P%’ on, and will also set the 
byte following the string to a &D byte (RETURN character), although the next 
mnemonic assembled will overwrite this. In the event that this is a problem, 
'FNequs' could be rewritten so that only the string is put into memory, and nothing 
more. This is left as an exercise for the reader. 
 
8.4 BASIC I version of OSCLI 
 
The following routine can be used in exactly the same way as OSCLI is used in 
BASIC II, e.g. 
 
PROCoscli("SAVE <filename> " + STR$~PAGE + “ ” + STR$~TOP) 
 
Note that 'cli' is an ATOM string which should be DIMensioned at the start of the 
program, e.g. DIM cli 64 
 
DEFPROCoscli ($cli) 
LOCAL X%, Y% 
X% = cli AND &FF 
Y% = (cli AND &FF00) DIV &100 
CALL oscli     oscli is at &FFF7 
ENDPROC 
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9. OS ROUTINES AND SPECIAL EFFECTS 
 
A whole book would be needed to describe all the features of the operating system 
and the routines it contains. This chapter briefly introduces two operating system 
calls, 'OSBYTE' and 'OSWORD'. Between them, they perform a wide variety of 
tasks. It then shows how operating system routines can be intercepted and 
replaced by user defined ones. Finally it takes a look at some of the special effects 
which can be obtained using either the operating system commands or specialised 
hardware provided by the BBC Microcomputer and Acorn Electron. 
 
9.1 OSBYTE and OSWORD  
 
OSBYTE - &FFF4 
 
OSBYTE calls can be used to access several operating system routines. The 
particular routine is selected by the number passed in the accumulator. The X and 
Y registers are used to pass any parameters needed to the routine and to pass 
back any results which may be produced as a result of the call, e.g. 
 
LDA #12 
LDX #10 
JSR osbyte 
 
will call OSBYTE 12 which sets the keyboard auto repeat rate, in this case to 10 
centiseconds. 
 
LDA #129 
LDX #&9D 
LDY #&FF 
JSR osbyte 
 
will call OSBYTE 129 which performs the INKEY function, in this case it is being 
called with a negative value (&9D = -99) and performs a keyboard scan to see if the 
key with this value, the Space bar, is being pressed. 
 
On exit, X and Y contain &FF if the key being scanned was pressed and 0 
otherwise. 
 
*FX calls are used to access OSBYTE calls from BASIC. In this case the values of 
the registers are passed in the following way: 
 
*FX 12,10 
 
This will have the same effect as the first example. 
 
However *FX calls do not return results so it is not appropriate to replace the 
second example given by a *FX call. 
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OSWORD - &FFF1 
OSWORD routines are similar to OSBYTE routines, the difference being that 
parameters are not passed in the X and Y registers, instead they are passed in a 
parameter block, and the X and Y registers are used to contain the address of this 
block, e.g. 
 
LDA #2 
LDX #&80 
LDY #&00 
JSR osword 
 
This calls OSWORD 2 which sets the value of the system clock to the five byte 
value which is stored in memory starting at the address &0080. 
 
LDA #1 
LDX #&80 
LDY #&00 
JSR osword 
 
This calls OSWORD 1 which reads the system clock, the five byte value being 
returned in memory starting at the address &0080. 
 
9.2 Revectoring operating system routines 
 
Many of the operating system routines are not entered directly by jumping to their 
position in the ROM, instead they are entered via addresses stored in the RAM. 
 
For example, to use the operating system write character routine (OSWRCH) (the 
instruction which has been used in previous examples is JSR &FFEE). Location 
&FFEE, however, contains not the start of the routine, but the instruction JMP 
(&20E), since the address of the code for OSWRCH is stored in locations &20E and 
&20F in RAM. These locations are known as the 'vector' for this routine. 
 
Accessing routines indirectly, via vectors in the RAM has several advantages. In 
different operating systems the entry position of the routine may alter, but this will 
not affect the user since the instructions JSR &FFEE or JMP (&20E) will still access 
it. The difference will be dealt with by the operating system which will store the 
correct addresses in locations &20E and &20F. 
 
In addition the user can intercept any of the routines by 'revectoring' them. For 
example he could change the contents of &20E and &20F so that they contained 
the address of a user defined routine. One use of this is shown below. 
 
Pretty Printer – prettyprint 
 
When printing text to the screen it is often difficult to ensure that words will not be 
broken at the end of the line. The following routine achieves this. When linked in, it 
will buffer characters up to a space or carriage return character, and then only 
output the characters on the same line if there is room without splitting them. Note 
that the routine does not deal with control characters (codes less than 32) that have 
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trailing characters. The routine should be linked into the OSWRCH vector at &20E - 
&20F, by typing !&20E = !&20E AND &FFFF0000 OR prettyprint 
 
Notice that the variable 'linelength' is set to the length of the line (19, 39 or 79, 
depending on the screen mode selected). On entry A holds the character to be 
printed. X and Y are irrelevant. A typical call would be any call to OSWRCH. On exit 
all registers have been preserved. 
 
An example of the output of this is: (40 column screen) 
 
This text is Prettily Printed This text is Prettily Printed This text 
Is Prettily Printed This text is Prettily Printed This text is 
Prettily Printed this text is prettily Printed 
 
.prettyprint 

PHA 
STX savedx  Save X register 
LDX pointer  Get line pointer 
CMP #ASC” ”  Is it a space ? 
BEQ isspace 
STA buffer,X  Store character 
INX    Increment pointer 
CPX # linelength Is buffer full ? 
BNE exit   If not, get next character 
STX pointer  Update pointer 
BEQ newline  Branch always 

.isspace 
CPX #0 
BEQ exit 
JSR getpos 
LDX #0   set X to zero for printbuffer 
LDA pos   get cursor position( x-coord) 
CLC 
ADC pointer  get cursor x+pointer 
CMP # linelength If >= linelength 
BCS newline  print buffer 
LDA pos   If cursor is at beginning 
BEQ printbuffer of a line print the buffer 
LDA #ASC “ “  else print a space 
JSR printchar  
JMP printbuffer and print the buffer 

.newline 
LDA #13   
JSR printchar 
LDA #10 
JSR printchar 

.printbuffer 
LDA buffer,X  get characters 
JSR printchar  print characters 
INX    increment pointer 
CPX pointer  if line pointer<> line end 
BNE printbuffer then get next character 
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LDX #0 
.exit 

STX pointer  save pointer 
LDX savedx  restore X register 
PLA    restore A 
RTS    Return 

.getpos 
TYA    save Y 
PHA    push to stack 
LDA #&86   osbyte 86 is read cursor position 
JSR osbyte  return pos and vpos in X and Y 
STX pos   X holds x pos of cursor 
PLA    restore Y 
TAY    
RTS 

.printchar  
JMP (oldoswrch) old oswrch holds original contents 

of &20E and &20F 
 
9.3 Screen Scrolling 
 
On both the BBC Microcomputer and the Acorn Electron, there are two screen-
scrolling methods known as software scrolling and hardware scrolling. Software 
scrolling is often slow. If you define a text window to cover the whole screen (VDU 
28,0,24,39,0 in MODES 6 or 7 only) and then scroll and screen (by moving the 
cursor off the bottom of the screen), you will notice the scrolling slowing down as it 
attempts to move all the screen memory up a line. An alternative and faster method 
of scrolling has been incorporated in the hardware. 
 
A section of each computer incorporates a register designed to hold the start of 
screen memory. In the BBC machine it is the 6845 CRTC (Cathode Ray Tube 
Controller), and in the Electron it is a section of the ULA (Uncommitted Logic Array). 
To employ this screen-scrolling method, it is only necessary to change the number 
in the register. On the next vertical sync, the new screen will be displayed starting at 
that number. To scroll the screen up on the BBC machine, simply type: 
 
MODE 6 
VDU 23; 12, &0C; 0; 0; 0; : VDU 23; 13, &28; 0; 0; 0; 
 
and on the Electron 
 
MODE 6 
?&FE02 = &A0 : ?&FE03 = &30 
 
To explain: on the BBC machine there are in fact two registers which control 
hardware scroll. These are registers 12 and 13. Register 12 contains the high byte 
of the start address, and register 13 contains the low byte. Things are not quite this 
simple however, as the start address held in the two registers is only to the nearest 
8 bytes (1 character cell in the MODEs 0 to 6), and so the number put into the 
registers is the start address, DIV 8. In the above example, the new address is 



 58

&6000 + 40 * 8 (=&6140) DIV 8, which is &C28, and so we put &C in register 12 
and &28 in register 13. 
 
On the Electron things are not quite the same. The address held in the hardware is 
not to the nearest 8 bytes, but to the nearest 64 bytes. 
 
The value to put into the Electron's ULA is the address of the top of the screen, 
divided by 2. The two registers are at &FE02 and &FE03 (low byte and high byte). 
The address, &6140, is written there by working out &6140 DIV 2 (=&30A0), and 
then writing the low and high bytes of the new value into the registers. 
 
You will have noticed that the hardware scroll operation is not exactly the same as 
that of the operating system scroll, in that the top line is filled not with spaces but 
with what was on the bottom line when the process began. This is because the 
memory map will 'wrap round', as in the following diagram; 
 
          0        1        2          3            37        38 39 

0  &6140 &6148 &6150 ….. ….. &6268 &6270 &6278 
1  &6141 &6149 &6151 ….. ….. &6269 &6271 &6279 
2  &6142 &614A &6152 ….. …. &626A &6273 &627B 
3  &6143 &614B &6153 ….. ….. &626B &6273 &627C 
4  &6144 &614C &6154 ….. ….. &626C &6274 &627C 
5  &6145 &614D &6155 ….. …. &626D &6275 &627D 
6  &6146 &614E &6156 ….. ….. &626E &6277 &6?7E 
7  &6147 &614F &6157 ….. …. &626F &6277 &627F 
8  &6280 &6288 &6290 ….. ….. &64E8 &64F0 &64F8 
  ….. ….. ….. ….. ….. ….. ….. ….. 

24*8+6  &7F46 &7F4E &7F56 …. &606E &6076 &607E 
24*8+7  &7F47 &7F4F &7F57 …. &606F &6077 &607F 

 
 
9.4 Palette handling 
 
Both the BBC Microcomputer and the Acorn Electron provide a palette facility in the 
'soft' screen modes. On the Electron all modes are 'soft' screen modes, but on the 
BBC machine Teletext (MODE 7) has no palette facility. The idea is that each mode 
can display a certain number of colours at any one time (16 in MODE 2, 4 in MODE 
5 and so on). 
 
Essentially the palette provides a mapping between the screen memory and what 
appears on the screen. The screen memory contains logical colours, and these are 
represented by the palette as physical colours which you see displayed on the 
screen. Thus in MODE 1, where there are four logical colours, each can be 
represented as any of the sixteen physical colours which these computers are 
capable of producing. Use the VDU19 statement to tell the computer how to 
represent a particular logical colour as a particular physical colour, i.e. 
 
VDU 19,  logical  colour,  physical  colour ; 0 ; 
 
For example: 
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VDU 19,1,3;0; 
 
This tells the computer to display all occurrences of logical colour 1 in its memory 
as physical colour 3 (Yellow). Think of the palette as a mapping of physical colours 
onto logical colours, where all that the VDU 19 statement does is to simply change 
the mapping. The illustration below should make this clear: 
 

 Logical 
Colour  Physical 
Mode  number colour 
 
0,3,4,6 0  black 
  1  white 
 
1,5  0   black 
  1  red 

 2  Green 
 3  Yellow 
 4  Blue 
 5  Magenta 
 6  Cyan  
 7  White 
 8  F(lashing) black / white 
 9  F red / cyan 
 10   F green / magenta 
 11  F yellow / blue 

  12  F blue / yellow 
13   F magenta / green 
14   F cyan / red 
15   F white / black 

 
Another way of changing the palette is to call OSWORD with A set to 12. In this you 
simply set up a block of 5 bytes to this format: 
 
paletteblock  logical colour 
paletteblock+1 Physical colour 
paletteblock+2 0 
paletteblock+3 0 
paletteblock+4 0 
 
Then OSWORD is called in the normal manner (with X and Y pointing to the 
parameter block, 'paletteblock' in this case). This has precisely the same effect as 
VDU 19, except that it is faster and also may be called from an interrupt or event 
routine (See Interrupts below). 
 
OSWORD 12 is not available on BBC machines with OS 0.10. 
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9.5 Interrupts, events and BREAK interrupts 
 
Both the BBC Microcomputer, and the Acorn Electron run under interrupts. 
Interrupts allow the machine to update its own internal variables, without the user 
even realising that their program is not in complete control. 
 
On the 6502 there is an interrupt request pin (IRQ) which, when a signal hits it, tells 
the processor that an interrupt request has occurred. The 6502 then has the option 
of ignoring the interrupt. This decision is made by the state of an interrupt flag. If the 
flag is set, then the interrupt will be ignored, otherwise the operating system will 
deal with it. 
 
The interrupt flag can be altered with the two assembler instructions: 
 
Mnemonic  Description 
SEI  set interrupt disable flag 
CLI  clear interrupt disable flag (Default state) 
 
Note that the interrupt flag should not really be altered, as then all interrupt driven 
devices (keyboard, flashing colours, sound, etc.) would stop working. 
 
There are two interrupt vectors provided by the operating system. These are IRQ1V    
(at &204), through which all interrupt requests are passed, and IRQ2V (at &206), 
through which any unrecognised interrupts are passed. Normally, IRQ2V would be 
used, but if you want to update your own device before the operating system can 
act, then you should use IRQ1V. The routine must first handle the interrupt, then 
disable the device that caused the interrupt, and finally, it must perform a 'JMP 
(oldIRQIV)' (where 'oIdIRQ1V' is the old contents of IRQ1V). This should only be 
used if there is no other way of achieving the desired effect. 
 
One way to set up interrupts on the BBC Microcomputer is by the User 6522 VIA 
(Versatile Interface Adapter). This has two timers, which can be set to count down 
from any particular 16-bit value, and to cause an interrupt request on reaching zero. 
Also, it will be necessary to write a routine to handle this, and to put the address of 
the entry point of the routine in the correct vector (in this case IRQ2V). Note that the 
routine must perform an 'RTI' in order to transfer control back to the operating 
system. RTI stands for return from interrupt. 
 
All this might seem a bit messy, and so a second kind of interrupt peculiar to the 
BBC microcomputer and Electron has been implemented. This second kind of 
interrupt is called an Event. (It is not implemented on BBC Microcomputers with OS 
0.1). 
 
Events 
 
These operate in a similar way to interrupts in that they are totally transparent 
(undetectable by the user program) and are indirect, via a vector (at &220). 
 
Certain occurrences within the machine have events associated with them, and 
these events can be trapped by the user. These are: 
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0 Buffer empty, where X gives buffer identity 
1 Buffer full, where X gives buffer identity and Y holds character that could not 

be stored. 
2 Keyboard interrupt 
3 ADC conversion complete 
4 Start of TV field pulse (vertical sync) 
5 Interval timer crossing zero 
6  Escape condition detected 
7 RS423 receive error 
8 Remote procedure call detected (on Econet) 
 
Events can be selectively disabled and enabled with OSBYTEs 13 and 14, where X 
specifies the event. Note that the default state is all events disabled. 
 
Example event handler: 
 
 10 REM Event handler 
 20 
 30 vsynccounter=&70 
 40 DIM code 100 
 50 FOR pass = 0 TO 2 STEP 2 
 60 P%=code 
 70[ OPT pass 
 80.event 
 90   PHP    preserve status 
 100   CMP #4    is this the event we want 
 110   BNE notvsync   if not return 
 120   INC vsynccounter  increment event counter 
 130.notvsync 
 140   PLP    restore status 
 15']   RTS    return 
 16O] 
 170 NEXT pass 
 180 
 190 eventvec = &220 
 200 ?eventvec = FNlo(event) 
 210 eventvec?1= FNhi(event) 
 220  *FX 14 4 
 230 END 
 240 
 250 DEF FNlo(value) = value AND &FF 
 260 
 270 DEF FNhi(value) = (value AND &FF00)DIV 256 
 
BRKs 
 
The 6502 supports a BRK instruction. This generates a software interrupt, which is 
similar to the interrupt request described earlier, except that it cannot be disabled. 
BASIC and the operating system use BRKs for flagging errors. This means that the 
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BRK handler will print an error message. The standard format of the BRK error 
message is; 
 
BRK instruction (op-code is &00) 
Fault number (one byte) 
Fault message (string of characters terminated by a zero byte) 
 
Thus it is possible to put error messages in a program, and have them printed out 
by the BRK handler (which, incidentally, is normally handled by the language). This 
can be useful for debugging purposes. A useful macro for this is: 
 
DEF FNerror(err,error$) 
[OPT pass 
BRK   Cause BREAK 
EQUB err  Fault number 
EQUS error$ Error message 
EQUB 0  Message terminator 
.pass 
 
A typical call to this would be: 
 
OPT FNerror(60, "Hello") 
 
where '60' is the fault number, and 'Hello' is the message to be printed when that 
BRK is activated. 
 
It is, of course, possible to write your own BRK handler, by simply putting the start 
address of a suitable routine in the BRK vector (&202). For example, the following 
routine prints out all registers at a BRK: 
 
0REM BREAK Handler 
10 
20 oswrch = &FFEE 
30 osnewl = &FFE7 
40 stringptr=&70 
50 exit=stringptr 
60 temp=strinqptr+2 
70 exit = !&202 
80 DIM code 200 
90 FOR pass = 0 TO 2 STEP 2 
100 P% = code 
110[ OPT pass 
120.header 
130 EQUS " A  X  Y  PC  N  V  U  B  D  I  Z  C”+ CHR$10 + 
CHR$ 13 
140.break 
150 TYA   X and Y 
160 PHA   push all registers so they may be printed 
170 TXA 
180 PHA 
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190 LDA &FC   Get accumulator 
200 PHA 
210 JSR osnewl  go onto a new line 
220 LDX #FNlo(header Print “A  X  Y  PC.. 
230 LDY #FNhi(header)   
240 JSR atomstring 
250 PLA    Get accumulator 
260 JSR hexandspace print it and a space 
270 PLA    Get X register 
280 JSR hexandspace Print it and a space 
290 PLA    Get Y register 
300 JSR hexandspace print it and a space 
310 LDA &FE   FE an FD hold the  
320 JSR printhex  program counter where 
330 LDA &FD   the break occured 
340 JSR hexandspace 
350 PLA     Status register 
360 JSR printbinary Print P in binary 
370 JMP exit   return to old error 
380   
390. hexandspace 
400 JSR printhex  Print A in hexadecimal 
410 LDA #ASC“ ”  load a space 
420 JMP oswrch  print it 
430 
450 PHA    Save accumulator 
460 LSR A   get 
470 LSR A   top 
480 LSR A   nibble 
490 LSR A 
500 JSR print   print top hex digit 
510 PLA    get bottom nibble 
520 AND #&0F 
530.print    print bottom hex digit 
540 CMP #&0A    
550 BCC notalpha  if not 0 – 9 get char 
560 ADC #6   carry is set here (add 7) 
570.notalpha 
580 ADC #&30   convert to ASCII 
590 JMP oswrch  print and return 
600 
610.printbinary 
620 LDX #8   eight bits per byte 
630.binaryloop 
640 ASL A   get a bit 
650 STA temp   print either 0 or 1 
660 LDA #ASC"0" 
670 BCC printzero 
680 LDA #ASC"1" 
690.printzero 
700 JSR oswrch  print 0 or 1 
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710 LDA #ASC“ ”  followed by a space    
720 JSR oswrch    
730 LDA temp 
740 DEX 
750 BNE binaryloop  Get next bit 
760 RTS    return 
770 
780.atomstring 
790 STX stringptr  Address of string 
800 STY stringptr+1 is given in X and Y 
810 LDY #&100   Y is pointer along string 
820.atomstringloop 
830 LDA (stringptr),Y get next character 
840 JSR oswrch  print it 
850 INY    increment pointer 
860 CMP #13   is it a return 
870 BNE atomstringloop if not repeat loop 
880 RTS    return 
890 
900] 
910 NEXT pass 
920 !&202=!&202 AND &FFFF0000 OR break 
930[OPT 2 
940.test 
950 LDA #&01 
960 LDX #&23 
970 LDY #&45 
980 SED 
990 CLC 
1000 BRK 
1010 EQUB 75 
1020 EQUS “HELLO” 
1030 EQUB 0 
1040] 
1050 CALL test 
1060 
1070 DEF FNlo(value)=value AND &FF 
1080 
1090 DEF FNhi(value)=(value AND &FF00) DIV &100 
 
 
>RUN 
 
 A  X  Y  PC  N V U B D I Z C 
01 23 45 1BB6 0 0 1 1 1 0 0 0 
HELLO at line 1050 
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10. LARGE ASSEMBLER PROGRAMS 
 
When writing substantial assembler programs it soon becomes evident that even 
32K of memory is insufficient to hold both the assembler source text and the object 
code produced. This difficulty is heightened still further if the graphics modes are 
used. The problem can be overcome by breaking the source text into smaller 
modules or files and this chapter looks at how to set these up and how to use them. 
 
10.1 Source files and the ‘master compiler’ program 
 
A source module is a program which acts like a subroutine but has assembly code 
inside it. The master 'compiler' program reads in each source text module and 
assembles it. This program is shown below. (Note that anything enclosed within < > 
(angled brackets) is not to be typed in, but is to be replaced with the value for your 
application.) 
 
0 REM Compile program 
10  origin = <start of area for machine-code> 
20  file$ = "ABC" 
30  PROCrun("I",<page for source files>) 
40  PROCrun("M",<page for macro file> (optional)) 
50  FOR pass = 0 TO 2 STEP 2 
60  P% = origin 
70  FOR files = 1 TO LENfile$ 
80 PROCrun(MID$(file$,files,1),<page for source files>) 
90       NEXT files 
100      NEXT pass 
110     PRINT '"Object code from &";~origin;" to &”;~P% 
120     END 
130 
140 DEFPROCrun(name$,start) 
150 PRINT name$; 
160 OSCLI "LOAD SOURCE"+name$+" "+STR$~start 
170      PAGE = start 
180 GOSUB 0 
190 ENDPROC 
 
The files are assumed to be called SOURCEA, SOURCEB, ... i.e. the word 
'SOURCE' followed by a single letter. The string 'file$' holds the letters which 
identify them and hence in this example it contains 'ABC'. Since single letters are 
used, the length of 'file$' gives the number of source programs. Note that in this 
example 'I' and 'M' should not be used for naming source files since they have their 
own special uses. 
 
The program starts by reading in and assembling SOURCEI which is the 
initialisation file to be described later in this chapter. Then the macro file (if one 
exists) will be treated similarly; again this will be explained later. The main loop 
takes each of the source files in turn, loads it into the area you have defined as 
reserved for the source files, and then assembles it. For the first source file the 
object code starts at the value of the variable 'origin', and P% is used by the 
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assembler as a pointer to the next free byte. Hence this allows subsequent source 
files to be assembled so that their code follows on directly after that produced by 
the previous one. 
 
A typical source file would be of the following format: 
 
0 REM SOURCEX 
10 
20[OPT pass 
30 
…(Assembler text) 
… 
… 
… 
900 
910] : RETURN 
 
A typical memory map might look like this: 
 
Start of BASIC    Screen - Smallest MODE possible (MODE 7) 
 

Variables shared by all source files 
 

COMPILE program 
 

Macro source file 
  

Source files 
 
 
Origin   Object Code 
 
 
Note that if you are using a 6502 second processor then the screen mode selected 
will not make any difference. 
 
This method has been designed for use with disc based systems, but can also be 
used on cassettes if the tape is rewound between the two passes. To remind you of 
this you should place a 'Rewind Tape' message, together with a 'dummy=GET' 
statement (to wait for a key to be pressed as an indication that the tape is in the 
correct position), between the two NEXT statements. 
 
10.2 Saving source files 
 
One routine which is useful when using discs and the above method is a 
PROCsave routine; 
 
DEF PROCsave:OSCLI("SAVE <filename>+ STR$~PAGE +” “+STR$~TOP) 
ENDPROC 
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Note: this routine will not work on BASIC I. See chapter 9 (BASIC 1, BASIC II and 
Electron BASIC) for a description of OSCLI and the equivalent BASIC I routine. 
 
The routine should be inserted at the ends of all the source files, and called 
whenever you wish to save the source file that is in memory at the time. 
 
Thus to SAVE the program all that is needed is to type 'PROCsave'. The reason 
this is so useful is that when editing large numbers of source files which all look 
alike, it is very easy to overwrite an existing file by typing the wrong name. 
 
An alternative to this, which works on all versions of BASIC, is to type, in immediate 
mode, 'SAVE $(PAGE+6)'. This looks at the first line of the program to find the 
filename. So, each program should start with 
 
0 REM <filename> 
100 <program> 
200 .... 
 
Default soft keys 
 
Another useful idea is to employ the machine's soft keys. This is best done by 
having a default soft keys program, which can be loaded at the beginning of the 
session. 
 10 REM Default Soft Keys 
 20 
 30 *KEY 0 |LLIST|N|M 
 40 *KEY 1 RUN|M 
 50 *KEY 2 LOAD"SOURCE 
 60 *KEY 3 CALL enter|M 
 70 *KEY 5 PROCsave|M 
 80 *KEY 6 PROCfind(" 

90 *KEY 7 MODE7|MPAGE=&600|MLOAD"COMPILE"|M 
100 *KEY 9 |L*CAT|M 

  
Note that line 80 has a reference to PROCfind. This procedure is to be used from 
immediate mode to find all occurrences of strings in the current source module. 
(PROCfind is defined in section 12.6.) This procedure should be at the end of every 
source file. 
 
10.3 Macro source files 
 
If source files are to be used then calling macros can be a problem. To understand 
why, some knowledge of how BASIC works is required. When BASIC first comes 
across a reference to a function or procedure its search for the function or 
procedure definition starts from PAGE. Once it has found the definition it stores the 
address of the start of the function or procedure in memory, so that the next time it 
finds a reference to that particular function or procedure it doesn't have to waste 
time searching through the whole program again. 
 
In the simplest case, when just one source file references a given macro, the macro 
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can be added to the end of that source file, and the file treated normally. Consider, 
however, what would happen if two source files both had a reference to a macro 
called 'FNfred', and this macro was put at the end of each of them. Since they 
would almost certainly be different sizes the definition of 'FNfred' would, in each 
case, start at different addresses. Moreover, when the first source file was 
assembled the address of the macro in this file would be stored for use by all later 
references to the macro. Thus, when the second source file tried to use the macro, 
no searching through would occur. Instead the assembler would jump straight to the 
address which was stored by the first file and be unlikely to find 'DEFFNfred' 
starting there. 
 
To avoid this problem a macro file is set up containing all the macros referenced in 
any of the assembler source files. This is present in the memory all the time, though 
in a different area of memory to the other files. Each of the macros must be called 
before the source files are assembled, however, so that the addresses where their 
definitions may be found are available to the compiler. Otherwise the first time that 
the compiler comes across a reference to a macro, e.g. FNfred, it will start 
searching for 'DEFFNfred', starting at PAGE, look through to the end of the source 
file, not find the definition, conclude that the macro doesn't exist and report 'No such 
FN/PROC'. So, set PAGE to the bottom of the macro file and call each macro once. 
 
Thus a typical macro source file looks like this: 
 
0 REM Macro file 
10 
20 pass=-1:REM Dummy compilation  
30 A% = FNmacro1(0,0)+FNmacro2(0,0,0,0).. 
40  RETURN 
50 
60 DEF FNmacro(temp,no) 
70   IF pass <0 THEN =TRUE 
80[OPT pass 
90  ... 
 
Line 20 sets 'pass' to a value that the assembler will not use, so that the first time 
the macro is referenced it will not generate any code. Note that every macro in the 
file must have a test to see if it is being referenced for the first time (as at line 70). 
 
Since the macro file needs to be resident in memory during the compilation a space 
will have to be assigned for it. This is usually between the top of the normal source 
files and the bottom of the COMPILE program. 
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10.4 Initialisation file 
 
The initial file mentioned in COMPILE (line 30) is the file that sets up all variables to 
be used in the later source files. This is normally in the form: 
 
0  REM SOURCEI 
10 
20 REM variables 
30 
------------------------------------------------------------- 
This is where all the variables that will be accessed by all 
the source files are defined. Note that all the variables are 
defined to be resident in memory one after the other. Thus to 
move the block of variables around in memory, all you have to 
do is to simply change the value of 'P%' in line 40. 
------------------------------------------------------------ 
40 P% = <start of memory to put variables> 
50[OPT2 \ Report any errors, but don't list  
60.<first variable> EQUB 0 \ Reserves one byte 
70.<second variable> EQUW 0  \Reserves two bytes 
30.<third variable> EQUS STRING$(20,CHR$(0)) 
90 etc. 
 
200] 
------------------------------------------------------------- 
This section sets up any constants that may be used in the 
program. The use of constants in any program is very 
important as is explained in chapter 12 (Program structure). 
------------------------------------------------------------- 
210 
220 REM Constants 
230 
240 limit = 45 
250 numberofshapes = 12 
260 oswrch = &FFEE 
270 etc. 
------------------------------------------------------------- 
This section reserves memory for the data tables. 
------------------------------------------------------------- 
300 
310 REM Main Memory Allocations 
320 
330 P%=<start of memory allocated for tables> 
340[OPT2 
350.jim 
360 OPT FNspace(80) 
370.fred 
380 OPT FNspace(300)  See section 12.5 
390.lenqth    for FNspace 
400 OPT FNspace(100) 
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410 etc 
------------------------------------------------------------- 
This section fills the data tables. 
------------------------------------------------------------- 
600 
610 REM fill data tables 
620 
630 FOR offset = 0 TO numberofshapes 
640 READ offset?length, offset?width, offset?type 
650  NEXT offset 
660  
670  DATA 20,12,3,36,24,1,etc. 
680  etc 
999  RETURN 
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11.  PROGRAM STRUCTURE 
 
The aim of this chapter is to help you write a large assembler program. It gives 
several tips how to produce structured and readable code which can be debugged 
easily. 
 
11.1 Where to start 
 
There are two entirely different approaches which can be used when producing a 
structured program. The first is to work out what the program is going to do and 
what it is going to look like before you start writing any code. Then you can start by 
writing the main loop which, for a game, could look something like this: 
 
.enter 

JSR initialise 
.restart 

JSR setupscreen 
.main 

JSR plotshapes 
JSR checkcollisions 
JSR keyboardscan 
JSR updatecoordinates  
JSR checkifdead 
BNE mainloop 
DEC lives 
BNE restart 
RTS 

 
Although, at this stage, the subroutines have not been defined, it is obvious from 
their names what they are meant to do. The next task is to write these subroutines, 
again breaking them down into simpler routines if this is possible. 
 
Since the main loop is the top level in the overall structure, this method is known as 
'top-down' approach. Its advantage is that you know what you are aiming at right 
from the start. You shouldn't need any 'fixes' in the subroutines to make up for the 
fact that when you wrote them you didn't make them apply to all cases eventually 
required. 
 
The alternative method is to start by writing the individual routines and then to add 
the code which joins them together into the final program. The advantage of this 
method is that all routines can be tested individually before very much effort has 
gone into the program. Consider how much time would be wasted if you used the 
first method and completed the whole program except for one routine which proved 
impossible to write in such a way that it performed satisfactorily. 
 
In practice most people use a mixture of the two methods, so that any demanding 
routines are written first; then the top-level is written, followed by the rest of the 
program. 
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11.2 Self-documenting code 
 
Long, directly referential variable names are a good idea when writing a program as 
they make the program more intelligible, e.g. 'JSR updatecoordinates' is better than 
'JSR label2'. These may make the source code longer, but the problem can be 
overcome by splitting up the code into separate sections and compiling these 
individually as described in chapter 10 (Large assembler programs). Note that the 
fewer JMP's there are, the easier it is to follow the flow of control. Hence, using 
macros rather than subroutines also helps to increase the clarity of the code. 
 
11.3 Parameters 
 
Parameter passing is also recommended in assembler, for precisely the same 
reasons as it is in BASIC, viz. It enables a single block of code to be used for more 
than one purpose. However, the method of achieving this is somewhat different. 
Parameters are usually passed in the three registers A, X and Y, or alternatively the 
X and Y registers are used to specify an address of an information block, and the A 
register then holds some other information. A third method is to pass parameters in 
specified locations, so enabling an arbitrary number of parameters to be passed. 
This method doesn't support nesting or recursion, however. 
 
The CALL statement 
 
This statement, which is used to transfer control from a BASIC program to a 
machine code program, can also pass parameters. When it is used, the bottom 
bytes of the BASIC variables A%, X% and Y% are transferred to the A, X and Y 
registers respectively. Also the lowest bit of C% is transferred to the carry flag. 
 
Control is passed to the address given after the CALL statement and any 
parameters following this address are put into the parameter block starting at &600. 
The parameter block is of the following format: 
 
 &600 Number of parameters 
 &601 Parameter address (low byte) 
 &602 Parameter address (high byte) 
 &603 Parameter type 
 &604 Parameter address (low byte) 
 
The parameter types are as follows: 
 

Type 0  8-bit byte 
Type 4  32-bit word 
Type 5  40-bit floating point string 
Type 128 ATOM string 
Type 129 Microsoft string 

 
In the case of a string parameter the address given points to a 'string information 
block', which contains the following: 
 
Start address of the string 
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Number of bytes allocated 
Current length of string 
 
An example of a CALL statement is 
 
CALL enter,fred,A$ 
 
This would cause the machine code from 'enter' to be executed and the parameters 
'fred' and 'A$' would be described in the parameter block as follows: 
 
I  02  I  C7  I  0E  I  05  I  DO |  0E |  81  I  ??  I  ??  I  ??  I 
 0600 0601  0602 0603 0604 0605 0606 0607 0608 0609 
 
The USR function 
 
Another way of transferring control to a machine code routine is via the USR 
function. The differences between CALL and USR are that USR returns a result, a 
four-byte number consisting of the Status, Y, X and A registers (most significant 
byte to least significant byte), and takes only one parameter which is the address to 
which control is transferred. 
 
11.4 Size of routines 
 
All routines, whether in BASIC or assembler, should be as small as possible, so that 
they can be seen easily in their entirety. This is another real help when debugging. 
Debugging is often overlooked when estimating the time needed to write a program, 
and yet it is probably true to say that at least 50% of the time taken to write a 
program is taken up with debugging. 
 
11.5 Conditional assembly as an aid to debugging 
 
Conditional assembly can be used to insert extra instructions which print out 
intermediate values during debugging: these statements can be removed when the 
program is finally assembled. To do this a logical variable ('flag' in the following 
example) is given the value FALSE during debugging and TRUE otherwise. In the 
following example, if 'flag' is FALSE a routine to print the value of the accumulator in 
hexadecimal notation is assembled, and calls to this routine is inserted at two 
relevant points in the test program. 
 
10 REM print hex digits 
20 DIM code 100 
30 oswrch = &FFEE 
40 FOR pass = 0 TO 3 STEP 3 
50 P% = code 
60 [OPT pass 
70 .enter CLC :ADC #&40 :] 
80 IF flag = FALSE  [OPT pass : JSR debug:] 
90 [OPT pass 
100 BEQ exit :SBC :#&10:] 
110 IF flag = FALSE [OPT pass  : JSR debug:] 
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120[OPT pass 
130 .exit RTS:] 
140 IF flag THEN 360 
150 [OPT pass 
160 \ print hex digits 
170.print 
180 AND #&0F  get bottom four bits 
190 CMP #&0A  if less then 10 then miss 
200 BCC P% + 4 the next instruction 
210 ADC #&06  Add 7 (6 + carry) 
220 ADC #ASC"0" Add ADC (0) 
230 JMP oswrch Write the character   
240 \ print A in hex 
250.debug 
260 PHA 
270 PHA 
280 LSR A   exchange top four bits 
290 LSR A   for bottom four bits 
300 LSR A   
310 LSR A 
320 JSR print  print first hex char 
330 PLA 
340 JSR print  print second hex char 
350 PLA   restore original value of A 
360 RTS   return 
370] 
380 NEXT pass 
 
The program works by finding out whether or not the four bits corresponding to 
each hex digit represent a number less than ten. If it is less than ten then the value 
ASC ("0") is added and the character, which will be a number 0... 9 will be printed. If 
it is greater than or equal to ten then a number equivalent to ASC ("A-10") is added 
so that ten will be printed as A, eleven as B etc. 
 
For debugging purposes this program is assembled by typing 
 
15 flag=FALSE 
RUN 
 
The program can then be executed for various values of A% by typing 
 
A%=&12:CALL enter 
 
The final version of the program is assembled, without the debugging aids, by 
typing 
 
15 flag=TRUE 
RUN 
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11.6 Lower case variable names 
 
As a convention, lower case is used for variable names. Most people consider this 
to make the code more readable. It also means that there is no chance of using 
variable names that conflict with BASIC's keywords e.g. 'print' can be used as a 
variable name, even though PRINT cannot). 
 
11.7 Constants 
 
Constants are used to give names to numbers which will be used several times 
throughout a program. They help to make the code easier to understand, e.g. 
 
LDX#initial-lives 
 
explains far better what is happening than 
 
LDX#3 
 
Using constants has another advantage - if a value needs to be changed and 
constants have been used, only the definition of the constant would need to be 
altered, rather than every occurrence of that value. 
 
Some languages support constants and variables as totally different data types, and 
make it impossible to change the value of the constant. BASIC does not treat 
variables and constants differently (except for it's own constants, e.g. PI) and so it is 
up to the programmer to make sure that any constants defined retain their value. 
One convention used for this is to prefix all constants with a pound (£) sign as a 
reminder. 
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11.8 Lookup tables 
 
Lookup tables are useful when converting one value to another. As an example 
consider the following: 
 
LDY index 
LDA table,Y 
 
In this example the value of A is dependent upon the value of Y. The example 
consists of a table of values, starting at 'table'. 
 
Note that the above assembler is directly equivalent to the BASIC 'A=table?index'. 
 
The values in 'table' could be the values of a palette, for example 
 
.table 
 EQUB &3 \Colour 0 is yellow 
 EQUB &1 \Colour 1 is red (default) 
 EQUB &6 \Colour 2 is cyan 
etc. 
 
Thus lookup tables should be used wherever it is necessary to produce a value 
from another value, but only when there is no simple relationship between the two. 
 
11.9 Use of absolute addresses 
 
A mark of a good assembler program is that it will contain no absolute addresses in 
the assembler source code. Thus, if a data table starts at location &30F6, a 
constant should be set up initially to have the value &30F6, and the constant used 
in the assembler code, not the number &30F6. This follows on from the above 
points, and also makes the code easier to read and alter. 
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12. UTILITIES FOR ASSEMBLER PROGRAMS 
 
This chapter consists of a number of routines which are designed to be used in any 
assembler program. Typical calls are given for each, as are the values to be passed 
to the routines in the registers, and those values to be returned by them. 
 
Note that these routines are not meant to be complete programs and cannot be run 
without additional code being added, e.g. assignment of values to any addresses 
being used and all the necessary assembler directives. If you wish to use any of 
these routines inside your own programs then the comments to the right of the 
assembler statements may be omitted. If the routines contain any BASIC 
commands then any comments to the right of these must be left out or preceded by 
REM statements. 
 
12.1 Input/Output 
 
Print BCD number – printnumber 
 
The 6502 microprocessor can perform arithmetic in two ways. These are binary 
(normal addition), and binary coded decimal (BCD). In the second method, each 
byte is split up into two nibbles, each of which can hold a decimal digit (0 to 9). Thus 
the largest number that can be held in one byte using this method is 99. The 
advantage of this method is that it is easier to output a binary coded decimal 
number in decimal than it is to output a straight binary number in decimal. 
 
The following routine takes a BCD number in the accumulator and prints it, with 
leading zero suppression, at the current cursor position. 
 
On entry, A contains the number to be printed, Y contains the leading zero flag (0 
for no suppression, else suppress zeros), and X contains the ASCII code of the 
character to be printed in place of leading zeros. 
 
A typical call to print out a two-byte BCD number, with leading zeros being replaced 
by spaces, would be: 
 

LDX#ASC" "  Set leading zero character to space 
LDY#&FF   Set leading zero flag 
LDA highbyte  Get top byte of number 
JSR printnumber Print it 
LDA lowbyte  Get bottom byte of number 
JSR printnumber Print it 

 
On exit X has been preserved and A and Y will have been corrupted. 
 
.printnumber 

PHA    Save number 
OPT FNrotateacc(4) Get top digit (See section 8.2) 
JSR printit  Print it 
PLA    Restore number 
AND#&0F   Get bottom digit 
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 .printit    Fall through 
BNE validchar  if non-zero print 
TYA    Check zero flag 
BNE leadingzero if set must be leading zero 

.validchar   digit ok 
LDY#&00   clear zero flag 
ORA#ASC”0”  add in ASCII zero 
JMP oswrch  print and return 

.leadingzero 
TXA    Get leading zero character 
JMP oswrch  print and return 

 
 
Keyboard scan – inkey 
 
This routine can be called to detect if a key is being held down at a particular 
instant; it uses INKEY of negative numbers. 
 
On entry, X specifies the key to be tested. For details of the values for each key, 
see the table of INKEY negative numbers in Appendix A. 
 
A typical call would be: 
 
LDX#firstkey 
JSR inkey 
BNE keypressed 
 
On exit, the zero flag is set or cleared depending upon the key's position at the time 
of testing. This routine does NOT go via the keyboard buffer. A and Y will have 
been preserved. 
 
.inkey 
 PHA    Save A 
 TYA    Save Y 
 PHA 
 LDY#&FF   Negative numbers 
 LDA#&81   osbyte &81 is INKEY 
 JSR osbyte  Do it 
 PLA    Restore Y 
 TAY 
 PLA    Restore A 
 CPX    Adjust zero flag 

RTS    and return 
 
 
Sound 
 
Sound routines are always useful in games programs. The routine below works by 
using a table to hold all the sounds that it is to play, and, on entry, the number of the 
sound to be played is given. To set up the table, the following could be used: 
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FOR offset = 0 TO <number  of  sounds>*8 STEP  2  
READ sndbuff!offset 
NEXT offset 
DATA 1,-15,200,20 
DATA 3,1,150,10 
DATA etc. 
 
Where 'sndbuff' is the table to be filled with sounds, on entry, A holds the number of 
the sound to be played. X and Y are irrelevant. 
 
A typical call would be: 
 
LDA#firingsound 
JSR sound 
 
On exit, all registers will have been corrupted. 
 
.sound 

ASL A   multiply soundbuffer by 8 
ASL A 
ASL A 
ADC#FNlo(sndbuff) add in address of sound table 
TAX    put low byte of address in X 
LDY#FNhi(sndbuff) Get hi byte in Y     
BCC nohibyte  If carry then X and Y correct  

   
INY    else increment hi byte 

.nohibyte 
LDA#&07   OSWORD 7 is sound 
JMP osword 

 
Print strings 
 
ATOM style string - atomstring 
 
ATOM strings are defined as being groups of characters terminated by a RETURN 
character (&0D). On entry, X and Y hold the start address in memory of the string to 
be printed (X holds low byte, and Y holds high byte). A is irrelevant. 
 
A typical call would be: 
 

LDX#FNlo(hiscorestring) 
LDY#FNhi(hiscorestring) 
JSR atomstring 

 
On exit, all registers will have been corrupted. 
 
.atomstring 
  STX stringptr   Address of string to be printed 
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     STY stringptr + 1  is given in X and Y 
    LDY #&00    Y is pointer along the string 
.atomstringloop 

LDA (stringptr),Y   Get next character from string 
 JSR oswrch   print it 
 INY     increment pointer 
 CMP#&0D    is character return 
 BNE atomstringloop  no? go back to start of loop 
 RTS     return 
 
Microsoft style strings – microsoftstring 
 
Microsoft strings are defined as being groups of characters, preceded by a byte 
giving the length of the string. A Microsoft string can be set up as follows: 
 
.fredstring 
EQUB LEN(fred$) 
EQUS fred$ 
 
On entry, X and Y hold the start address of the string (X holds low byte, Y high 
byte). A is irrelevant. 
 
A typical call might be: 
 
LDX#FNlo(fredstring) 
LDY#FNhi(fredstring) 
JSR microsoftstring 
 
On exit, all registers will have been corrupted. 
 
.microsoftstring 

STX stringptr  Address of string to be printed 
STY stringptr + 1 is given in X and Y 
LDY#&00   Set pointer to length byte 
LDA(stringptr),Y Get length of string 
STA len   Save length 

.stringloop 
INY    loop counter 

 LDA (stringptr),Y get next char from string 
 JSR oswrch  print it 
 CPY len   printed all chars? 
 BNE stringloop  no ? go back to start of loop 
 RTS 
 
Centre a string - centre 
 
This routine will centre up Microsoft strings on the current line of the cursor. The 
reason that only Microsoft strings can be centred using this routine is that their 
length is far more accessible than the length of an atom string, although the routine 
could be adapted for atom strings. 
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The BASIC equivalent of the routine given below is: 
 
PRINT SPC((screenwidth-LEN(A$)) DIV 2);A$ 
 
On entry, X and Y point to the string to be centred, and A is irrelevant. 
 
A typical call would be: 
 
LDX#FNlo(string)  Point to string 
LDY#FNhi(string) 
JSR centre   Centre it 
 
On exit, all registers will have been corrupted. 
 
.centre 

STX stringptr  Save Low byte of start address 
STY stringptr+1 Save high byte of start address 
LDY#&00   Prepare to get  Length byte 
LDA#screenwidth Get screen width 
SEC 
SBC (stringptr),Y Subtract  length 
LSR A   Divide by 2 
TAX    And transfer it to X 
LDA#ASC" "  Stand by to print X spaces 

.centreloop 
JSR oswrch  Print a space 
DEX    Decrement counter 
BNE centreloop  and loop until counter is zero 
LDX stringptr  Restore string pointers 
LDY stringptr+1 
JMP microsoftstring And print the string 
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Move cursor to X, Y – printtab 
 
This is a very simple routine to move the text cursor to X, Y. It simulates BASIC's 
'PRINT TAB(X,Y)'. 
 
On entry, X and Y hold the X and Y coordinates of the position that the text cursor is 
to be moved to, A is irrelevant. 
 
A typical call might be: 
 
LDX#xcoord 
LDY#ycoord 
JSR printtab 
 
On exit, X and Y will be preserved, and A will have been corrupted. 
 
.printtab 

LDA#31  VDU 31 (move textcursor to X,Y 
JSR oswrch 
TXA   send X coordinate 
JSR oswrch 
TYA   send coordinate 
JMP oswrch do it and return 

 
Double height characters - double 
 
This next routine will only work in Teletext mode, and is thus only suitable for the 
BBC microcomputer. 
 
The BASIC equivalent of this routine is: 
 
DEF PROCdouble(A$) 
vpos%=VPOS : pos%=POS 
FOR string% = 0 TO 1 
PRINT TAB(pos%,vpos%+string%);CHR$&8D;A$;CHR$&8C; 
NEXT string%  
ENDPROC 
 
On entry, X and Y point to the string that is to be printed in double height, A is 
irrelevant. 
 
A typical call would be: 
 
LDX#FNlo(string) 
LDY#FNhi(string) 
JSR double 
 
On exit, all registers will have been corrupted. 
 
.double 
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 STX stringptr  Save start address of string 
 STY stringptr +1 
 LDA#&86   Read text cursor position 
 JSR osbyte 
 STX pos   and store it 
 STY vpos 
 LDX#&02   Print string twice 
 STX count 
.doubleloop 

LDX pos   Move cursor to X,Y 
LDY vpos 
JSR printtab 
LDA#&8D   Teletext code for Double height 
JSR oswrch 
LDX stringptr  Restore string start address 
LDY stringptr+1 Either  'microsoft' or 'atom' 
JSR string  To centre string JSR centre 
LDA#&8C   Teletext Normal height code 
JSR oswrch 
INC vpos   Move down a  line 
DEC count   Done it twice yet 
BNE doubleloop  If not then do it again 
RTS    Else return 

 
Palette handling - ospalette 
 
This routine performs VDU 19, Y, A, 0, 0, 0. On entry, Y contains the logical colour 
to be defined, A contains the physical colour to change Y  to. (See section 9.4 for 
details of palette handling.) X is irrelevant. 
 
A typical call might be: 
 
LDY#logicalcolour 
LDA#physicalcolour 
JSR ospalette 
 
On exit, Y and X have been preserved, A has been set to zero. 
 
.ospalette 

PHA   Save physical colour 
LDA#19  VDU 19 
JSR oswrch 
TYA   Get logical colour 
JSR oswrch VDU it 
PLA   Get physical colour 
JSR oswrch VDU it 
LDA#&00  Pad out with zeroes 
JSR oswrch 
JSR oswrch 
JMP oswrch and return 
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Another routine for those of you with Electrons or BBC micros with 1.0 or 1.2 
Operating Systems is to change the palette with OSWORD 12. This has the 
advantage of being able to be called from an interrupt routine. 
 
.ospalette 
STY paletteblock  Same format as VDU 19 
STA paletteblock 
LDX#FNlo(paletteblock) 
LDY#FNhi(paletteblock) Note that all registers are  
LDA#12     corrupted 
JMP osword 
 
This is called in the same manner as before. Note that the 'paletteblock' must 
contain zeros in the last three locations before the routine is called. 
 
Wait for flyback - vsync 
 
The next routine is a must for animation. It will wait for the electron beam inside the 
VDU (Visual Display Unit) to reach the top of the screen in BBC Microcomputers or 
the bottom of the screen in Acorn Electrons, and will then return. This is when all 
shapes should be updated to avoid flickering. 
 
On entry, all registers are irrelevant. A typical call would be: 
 
JSR vsync 
 
On exit, all registers will have been corrupted. 
 
.vsync 
 LDA#19  Osbyte 19 is wait for vsync 
 JMP osbyte (vertical synchronisation) 
 
or 
 
. vsync   This routine is only for Issue 0.10  

LDA#&02  Operating Systems on the BBC micro 
STA viaier This is at &FE4E 

.vloop 
BIT viaifr viaifr stands for Versatile Interface  
BEQ vloop  Adapter Interrupt flag 
LDA #&82   Register, which is at &FE4D 
STA viaier 
RTS 
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12.2 Analogue to digital routines 
 
Analogue to digital value - adval 
 
This routine reads any A to D channel. 
 
On entry, X holds channel to be read. Y and A are irrelevant. 
 
A typical call might be: 

LDX#1   Get value of channel 
JSR adval 

 
On exit, the value is returned in Y and X (Low byte and high byte respectively). 
 
.adval 
 LDY #0   Get ADVAL(X) 
 LDA #&80 
 JMP osbyte 
 
 
Joystick handler -joystick 
 
This routine reads either of the two joysticks connected to the A to D converter. 
Note that the sensitivity of the reading is dependant upon the value of the constant 
'joyrange' (0 - insensitive to 127 - very sensitive). The variables 'xcoord' and 'ycoord' 
are user variables. 
 
On entry, X holds the number of the joystick to be read (1 or 3). A and Y are 
irrelevant. 
 
A typical call might be: 
 

LDX #1   Get readings of first joystick 
JSR joystick 

 
On exit, all registers will have been corrupted. 
 
 
.joystick 

STX temp   Preserve joystick number 
JSR adval   Get horizontal reading 
LDX temp   Restore joystick number 
CPY #joyrange  Is reading within Limit ? 
BCS tryleft  See if within other limit 

.right 
INC xcoord  Go right 

.tryleft 
CPY #256-joyrange   Is reading within limit ? 
BCC getotherpot no? try vertical component 

.left 
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DEC xcoord  go left 
.getotherpot   get vertical component 

INX    Get adval (joystick + 1) 
STX temp   preserve as before 
JSR adval   get reading 
LDX temp   restore joystick number 
CPY#joystick  all this is as above 

.down    except that y coordinate 
DEC  ycoord   is being adjusted 

.tryup 
CPY#256-joyrange 
BCC tryfire 

.up 
INC ycoord 

.tryfire    Get fire button 
 TXA    Halve X (for fire button 
 LSR A   mask) 
 STA temp   (ADVAL(0) AND X DIV 2) 
 LDX#0   Get ADVAL(0) 

JSR adval    
TXA    X holds fire button status 
AND temp   AND with mask 
BEQ exit   Not held down, then exit 

.fire 
JSR firebullet  Else do something exit 

.exit 
RTS    Return 

 
Oscilloscope 
 
The program displays the four A to D channels as four different colours (colours 1 to 
4). This program will only work on the BBC Microcomputer Model B, as it uses 
MODE 2, the Analogue to Digital converter, and Hardware scroll. The program also 
only reads the top eight bits of each channel, as the graphics vertical resolution is 
only 256. Sampling of the channels takes places every 1/50 of a second. 
 
Some of the ideas in this program can be adapted to other programs. Note the 
modular construction, with each module as small as possible, so that it could be 
debugged easily during development. 
 
10 REM Oscilloscope V1 
20  DIM code 512   set aside area for code 
30  PROCassemble   assemble code 
40  MODE 2    set up screen mode 
50  CALL oscilloscope  call machine code 
60  END 
70 
80 DEF PROCassemble    
90 osbyte = &FFF4   set up variables 
100 oswrch = &FFEE   constants 
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110 top = &80     zero page location 
120 screen = top + 2 
130 temp = screen + 2 
140 DIM colour 3, sidebuffer 255 define vectors 
150  !colour = &030C0F30   fill colour vector 
16O FOR pass = 0 TO 2 STEP 2   
170  P% = code 
18O[OPT pass 
190.oscilloscope    entry point 
200 JSR clearsidebuffer 
210 JSR readchannels 
220 JSR vsync 
230 JSR scrollscreen 
240 JSR writeside 
250 JMP oscilloscope 
260 
270.clearsidebuffer 
280 LDA#0     set buffer to 0 
290 TAY      buffer is a page long 
300.clearloop 
310 STA sidebuffer,Y 
320 DEY 
330 BNE clearloop 
340 RTS 
350 
360.readchannels 
370 LDX#4     get four channels 
380.loop JSR adval 
390 LDA colour-1, X   get channel colour 
400 STA sidebuffer, Y   put reading in buffer 
410 DEX      get next channel 
420 BNE loop 
430 RTS 
440 
450.vsync 
460 LDA#19     see section 12.1 for 
470 jmp osbyte    OS 0.10 vsync routine 
480  
490.scrollscreen 
500 LDA top     top = 16 bit address 
510 STA temp      
520 LDA top+1     store top DIV 8 in the 
530 LSR A     6845 CRTC chip, see 
540 ROR temp     section 9.3 for 
550 LSR A     details of screen 
560 ROR temp     scrolling 
570 LSR A 
580  ROR temp 
590 LDX#12     register 12 & 13 
600 JSR os6845    hold start address of 
610 LDX#13     memory to be displayed 
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620 LDA temp 
630 JSR os6845 
640 # Now increment top 
650 CLC     adjust variable that 
660 LDA top    holds start address 
670 ADC#8 
680 STA top 
690 LDA top+1 
700 ADC #0 
710 BPL validaddress 
720 SEC     allow for wraparound at 
730 SBC#&50    &3000 / &8000 barrier 
740.validaddress 
750 STA top+1 
760 RTS 
770 
780.writeside    dump buffer to screen 
790 LDX#&FF    start at top of buffer 
800 LDY#0    set offset to zero 
810 LDA top    add &270 to top 
820 CLC     to right hand side of 
830 ADC#&70    the screen 
840 STA screen 
850 LDA top+1 
860 ADC#2 
870 BPL validaddress2 
880 SEC     again allow for 
90 SBC#&50    wraparound 
900.validaddress2 
910 STA screen+1 
920.outerloop 
930 LDA sidebuffer,X  get next byte from buffer 
940 STA (screen),Y   store to screen 
950 DEX     adjust buffer pointer 
960 INY     every 8 bytes down 
970 CPY#8    the program must add in 
980 BNE outerloop   &280 to the address ,in 
990 LDY#0    order to move to the next  
1000 LDA screen   line 
1010 CLC 
1020 ADC#&80 
1030 STA screen 
1040 LDA screen + 1 
1050 ADC#2 
1060 BPL validaddress3 
1070 SEC 
1080 SBC#&50 
1090.validaddress3 
1100 STA screen + 1 
1110 CPX#&FF    buffer all transferred to 
1120 BNE outerloop   screen ? 
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1130 RTS 
1140 
1150.adval 
1160 TXA     preserve channel pointer 
1170 PHA 
1180 LDY#0    get adval(X) 
1190 LDA#&80 
1200 JSR osbyte 
1210 PLA     restore channel pointer 
1220 TAX 
1230 RTS 
1240 
1250.os6845 
1260 PHA     perform 
1270 LDA#23    VDU23;X,A,0;0;0; 
1280 JSR oswrch   to put A into 6845 
1290 LDA#0    register X 
1300 JSR oswrch 
1310 TXA 
1320 JSR oswrch 
1330 PLA 
1340 JSR oswrch 
1350 LDX#6 
1360 LDA#0 
1370.pad 
1380 JSR oswrch 
1390 DEX 
1400 BNE pad 
1410 RTS 
1420] 
1430 NEXT pass 
1440 ENDPROC 
 
12.3 Numerical routines  
 
MOD – mod 
 
This routine can be useful when rounding numbers down, or when the remainder of 
a value is wanted, and the AND instruction cannot be used (e.g. value MOD 3). 
Note that this method is not one to be recommended for anything other than single 
byte operations, as the method of repeated subtraction would then be too slow. 
Also, there is no error checking procedure, so setting Y to 0 would cause the routine 
to loop forever. 
On entry, A holds dividend, and Y holds the divisor. X is irrelevant. 
 
A typical call might be: 
 
LDA#dividend 
LDY#divisor 
JSR mod 
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On exit, A holds the remainder, X and Y are preserved. 
 
.mod     Performs A = A MOD Y 

STY temp SEC  Store divisor in temporary  location 
.modloop 
 SBC temp   Set carry (for subtraction) 
 BCS modloop  Repeatedly subtract Y from A 
 ADC temp   until A becomes less than zero 
 RTS    Add divisor (Note carry clear) and 
return 
 
Random number generator – rnd 
 
A routine which is always useful for games programs is a random-number 
generator. The following routine generates a pseudo-random number in A. 
The seed for the random number is three bytes long. This seed can be initialised 
before using the routine, in order to generate a fixed sequence of numbers. Note 
that the seed should never contain zero in all three bytes as then the routine will 
continually give zero. 
 
On entry, all registers are irrelevant. A typical call would be: 
 
JSR rnd 
 
On exit, A holds the next pseudo-random number. X and Y are preserved. 
 

LDA seed   Get low byte of shift register 
AND#&48 
ADC#&38 
ASL A 
ASL A 
ROL seed+2 
ROL seed+1 
ROL seed 
LDA seed 
RTS 
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12.4 Miscellaneous 
 
Cyclic redundancy check - CRC 
 
Cyclic redundancy checks can be useful for error detection when comparing blocks 
of data. Using the program below you can give any block of memory a 'unique' two-
byte signature. Thus you can check that two copies of a program are identical, by 
seeing if they have the same signature. This method is very secure, as it is very 
unlikely that two different blocks of memory would give the same signature. 
 
0 REM CRC calculator 
10 
20 signature = &70 
30 addr = signature + 2 
40 endaddr = addr + 2 
50 DIM code 200 
60 FOR pass = 0 TO 2 STEP 2 
70 P%=code 
8O [OPT pass 
90.crc 
100 LDA#0    initialise signature 
110 STA signature 
120 STA signature+1 
130.mainloop 
140 JSR crcbyte   get crc for each byte 
150 INC addr    16 bit increment 
160 BNE nohibyte 
170 INC addr+1 
180.nohibyte 
190 LDA addr    if at last address 
200 CMP endaddr   then end 
210 BNE mainloop   else do another byte 
220 LDA addr+1  
230 CMP endaddr+1 
240 BNE mainloop 
250 RTS 
260  
270.crcbyte 
280  LDY #0 
290  LDA (addr),Y   get byte 
300  LDX #8    8 bits in a byte 
310.loop 
320 LSR A    do crc 
330 ROL signature 
340 ROL signature+1 
350 BCC nextbit 
360 PHA 
370 LDA signature 
380 EOR #&2D 
390 STA signature 
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400 PLA 
410.nextbit 
420 DEX     get new bit in byte 
430 BNE loop 
440 RTS 
450] 
460 NEXT pass 
470 INPUT"Start address &"start$ 
480 !addr = EVAL ("&"+start$) 
490 INPUT"Length &"length$ 
500 !endaddr  EVAL("&" + length$ + "+&" + start$) 
510 CALL crc 
520 PRINT"Signature = "&";~!signature AND &FFFF 
 
12.5 General purpose macros 
 
Get low byte - FNlo 
 
DEF FNlo(value) : =value AND &FF  
 
An example call is 
 
LDA#FNlo(table) 
 
Get hi byte – FNhi 
 
DEF FNhi(value): =(value AND &FF00) DIV &100 
 
An example call is 
 
LDY#FNhi(string) 
 
Reserve space - FNspace 
 
DEF FNspace(amount) 
P% = P%+amount 
O% = O%+amount   this line is only relevant  
= pass     on BASIC II or electron 
 
An example call is 
 
.table 
OPT FNspace(500) 
 
16 bit addition – FNadc 
 
Provides 16 bit addition. 
 
A typical call might be: 
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OPT FNadc(&3000,&2000,&2004) 
 
This would add the contents of &2000 (low byte) and &2001 (high byte) to the 
contents of &3000 (low byte) and &3001 (high byte) and store the result in locations 
&2004 and &2005. 
 
DEF FNadc(operandl,operand2,result) 
[OPT pass 
LDA operand1 
CLC 
ADC operand2 
STA result 
LDA operand1+1 
ADC operand1+1 
STA result+1 
] 
= pass 
 
16 bit subtraction - FNsbc  
 
Provides 16 bit subtraction. A typical call would be: 
 
OPT FNsbc(&3000,&2000,&2004) 
 
This would subtract the contents of &2000 (low byte) and &2000 (high byte) from 
the contents of &3000 (low byte) and &3001 (high byte) and store the result in 
locations &2004 and &2005. 
 
DEF FNsbc(operand1, operand2,result) 
[OPT pass 
LDA operand1 
SEC 
SBC operand2 
STA result 
LDA operand1+1 
SBC operand2+1 
STA result+1 
] 
=pass 
 
Debugging macro - FNdebug 
 
This can be inserted anywhere in the sources code to provide an indication of which 
path the processor has taken through the program. When executed, the routine will 
make a 'Bleep' sound and wait for a key to be pressed before continuing. All 
registers are preserved. 
 
A typical call would be 
 
OPT FNdebug 
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DEF FNdebug 
[OPT pass 
PHP   Save all registers 
PHA 
TYA 
PHA 
TXA 
PHA 
LDA#7  Make 'Bleep' sound 
JSR oswrch 
LDX#1  Flush keyboard buffer 
LDA#15 
JSR osbyte 
JSR osrdch Wait for a key 
PLA   Restore all registers 
TAX 
PLA 
TAY 
PLA 
PLP 
] 
= pass 
 
16 bit rotation – FNshift 
 
This provides a 16-bit shift instruction. 
 
A typical call might be 
 
OPT FNshift(&2034,TRUE,2) 
 
which would shift locations &2034 and &2035 right twice. 
 
DEF FNshift(addr,right,number) 
LOCAL shift 
FOR shift=1 TO number 
IF right [OPT pass:LSR addr+1:ROR addr:] 
ELSE [OPT pass:ASL addr:ROL addr+1:] 
NEXT shift 
= pass 
 
12.6 BASIC routines for use with assembler  
 
Double height - PROCdouble 
 
The next two routines can be used to produce double height characters in MODEs 
0,1,2,4 and 5. MODEs 3 and 6 (and 7 on the Acorn Electron) have gaps between 
lines which make it impossible to do double height. To centre the string, type 
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PRINT TAB((screenwidth DIV 2)-LEN(A$) DIV 2,VPOS); 
 
after 'LOCAL I%'. Note that 'block' is a global array which should be DIMensioned at 
the start of the program, using, for example, DIM block 9. Note also that 'char' is the 
character to be defined, in this case it is always 224. The routine currently prints out 
the characters as it redefines them, although it is possible to suppress this. 
 
DEFPROCdouble(A$) 
LOCAL I% 
FOR I% = 1 TO LEN(A$) 
PROCchar(ASC(MID$(A$,I%,1)),224) 
NEXT I% 
ENDPROC 
 
DEFPROCchar(C%,char) 
LOCAL A%,X%,Y%,J%,I% 
?block = C% 
A%=10 
X%=FNlo(block) 
Y%=FNhi(block) 
CALL osword    osword is at &FFF1 
FOR J%=0 TO 1 
VDU 23,char 
FOR I%=2 TO 9 
VDU block?(J%*4 + I% DIV 2) 
NEXT I% 
VDU char,10,8 
NEXT J% 
VDU 11,11,9 
ENDPROC 
 
Find string in program - PROCfind 
This next routine will find all occurrences of a specified string in the BASIC program, 
and print out the line numbers in which the string occurs. In its present form, the 
routine will not find BASIC keywords (FOR, REPEAT, PROC, etc). To allow for this 
it will be necessary to store the string as a line of BASIC, which could then be used 
as the target string in the search. So type PROCfind ($(PACE + 4)). This will find 
the string specified in the first line of the program, which should be line 0 to avoid 
the routine searching for the wrong string. The first line of the routine can now be 
changed to 'DEFPROCfind', as the parameter is now in line 0. Note that the first IF 
statement is only needed in BASIC I. 
 
DEFPROCfind(A$) 
LOCAL Z%,A% 
Z% = PAGE 
REPEAT A%=Z%+4 
IF LEN($A%)>=LEN(A$) IF INSTR($A%,A$) 
PRINT Z%?1*256 + Z%?2 ;  Z%=Z%+Z%?3 UNTIL Z%?1>&7F 
ENDPROC 
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13. GRAPHICS 
 
This chapter is all about fast shape drawing. Like everything else, shapes such as 
space invaders are stored as a series of numbers in the computer's memory This 
chapter consists of two main sections. The first contains a routine which is designed 
to be used independent of any other program. It allows a shape to be designed, and 
produces the relevant numbers representing that shape. The second contains two 
routines which are meant to be included as part of an assembler program. While the 
program is running, these routines convert the numbers in the memory back into the 
original shape and plot this shape on the screen at a stated position. These routines 
have been highly optimised for fast animation. 
 
Some knowledge of graphics is assumed, up to User Guide level. Those of you 
without this knowledge are recommended to read the Acornsoft book, Creative 
Graphics, which gives a clear illustration of the graphics facilities available on the 
BBC Microcomputer and Acorn Electron. 
 
13.1 Shape designer – DESIGN 
 
The BASIC program below can be used to design shapes which can be plotted on 
the screen using the routines described later in this chapter. Remember that smaller 
shapes are plotted faster so if you wish to move several shapes on the screen at 
once it is better not to make them too large. The program is only suitable for a BBC 
Model B, or Electron. 
 
The keys used by this program are: 
 
0,1…..  E,F Colours 0 to 15 
V and H Vertical and horizontal reflections 
L and S Load and Save shapes 
Cursor keys For moving the cursor around 
SY%  Height of 'pixels' in large shape. 
shape  Byte vector to hold shape. 
cursor X X co-ordinate of cursor in 'pixels'. 
cursor Y Y co-ordinate of cursor in 'pixels'. 
command$ String containing commands. 
  String containing keys for colours. 
colour$ Colours are specified by pressing key 

corresponding to Hexadecimal digit. 
Note state of CAPS LOCK or SHIFT 
keys is irrelevant. 

key$  Holds key pressed. 
length  Holds length of shape data. 
C%  Zero if command, else holds colour 

key plus one. 
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0 REM Design Program 
10 
--------------------------------------------------------------------------                                  
Top Level. Note that FNinitialise returns the mode 
as MODEs cannot be defined in FNs or PROCs 
-------------------------------------------------------------------------- 
20 MODE FNinitialise 
30 PROCmainloop 
40 
-------------------------------------------------------------------------- 
Set up global variables, especially those that are 
relevant to the screen mode selected. 
-------------------------------------------------------------------------- 
50 DEF FNinitialise 
60 lenshape 300 
70 DIM shape lenshape 
80 REPEAT 
90 INPUT "Mode (0 – 2) ?"mode 
100 UNTIL mode>0 AND mode<=2 
110 RESTORE 230 
120 FOR I%=0 TO mode 
130   READ pixbits 
140 NEXT I% 
150 RESTORE 240 
160 FOR I%=0 TO mode 
170   READ W% 
180 NEXT I% 
190 RESTORE 250 
200 FOR I%=0 TO mode 
210   READ pixelperbyte 
220 NEXT I% 
230 DATA 1, 2, 4 
240 DATA 2, 4, 8 
250 DATA 8, 4, 2 
260 INPUT "Width in X-direction:" NX% 
270 INPUT "Width in Y-direction:" NY% 
280 byteNX%=NX% DlV pixelperbyte 
290 byteNY%=NY%-1 
300 SX%=(1024 DIV NX%) AND &FFF0 
310 SY%=(1024 DIV NY%) AND &FFF8 
320 PROCclear 
330 cursorX=0:cursorY=0 
340 *FX 4 1 
350 command$="VvHhLlSs"+CHR$&88+CHR$&89+CHR$&8A+CHR$&8B 
360 colour$ ="001!2""3#4$5%6&7'8(9)AaBbCcDdEeFf" 
370 Length = NX%*NY%*pixbits DIV 8 
380 = mode 
390 
-------------------------------------------------------------------------- 
Main loop. Get a key, and then test to see if it is legal. If the key is  
legal, then pass it on to the rest of the routine, which then calls the 
relevant routine(s). 
-------------------------------------------------------------------------- 
400 DEF PROCmainloop 
410 PROCcursor 
420 REPEAT 
430   REPEAT 
440      key$ = GETS 
450   UNTILINSTR(colour$,key$) OR INSTR(command$,key$) 
460   C% = (INSTR(colour$,key$)+1)  DIV 2 
470   IF C% THEN PROCcolour(C%-1) ELSE ON 
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INSTR(command$,key$) GOSUB 670, 670, 780, 780, 
630, 630, 650, 650, 510, 540, 570,  600 

480   UNTIL FALSE 
490   ENDPROC 
500 
-------------------------------------------------------------------------- 
Handle cursor control keys, making sure that the cursor does not go off 
the side of the screen. 
-------------------------------------------------------------------------- 
510 IF  cursorX>0 THEN PROCdocursor(-1,0) 
520 RETURN 
530 
540 IF  cursorX<NX%-1 THEN PROCdocursor(1,0) 
550 RETURN 
560 
570 IF cursorY>0 THEN PROCdocursor(0,-1) 
580 RETURN 
590 
600 IF  cursorY<NY%-1 THEN PROCdocursor(0,1) 
610 RETURN 
620 
--------------------------------------------- 
Handle saving/loading of shapes 
--------------------------------------------- 
630  PROCload:VDU 22,mode:PROCshape(FALSE,byteNX%,byteNY%): PROCdisplay  

:RETURN 640 
650  PROCsave:VDU 22,mode:PROCshape(FALSE,byteNX%,byteNY%): PROCdisplay  

:RETURN 
660 
--------------------------------------------------------- 
Reflect the shape in Y-maximum Y/2 
---------------------------------------------------------- 
670 FORI%=0 TO NX%-1 
680 FORJ%=0 TO (NY%-1)DIV2 
690 temp=FNpoint(I%,J%) 
700 PROCplot(I%,J%,FNpoint(I%,NY%-1-J%)) 
710 PROCplot(I%,NY%-1-J%,temp) 
720 NEXT J% 
730 NEXT I% 
740 PROCshape(TRUE,byteNX%,byteNY%) 
750 PROCdisplay 
760 RETURN 
770 
----------------------------------------------------- 
Reflect the shape in X maximum X/2 
------------------------------------------------------ 
780 FORJ%=0 TO NY%-1 
790 FORI%=0 TO (NX%-1)DIV2 
800 temp=FNpoint(I%,J%) 
810 PROCplot(I%,J%,FNpoint(NX%-1-I%,J%)) 
820 PROCplot (NX%-1-I%,J%,temp) 
830 NEXT I% 
840 NEXT J% 
850 PROCshape(TRUE,byteNX%,byteNY%) 
860 PROCdisplay 
870 RETURN 
880 
890  DEF  PROCplot(X,Y,col) 
900  GCOL 0,col 
910  PLOT 69,X*W%+1024,Y*4+640 
920  ENDPROC 
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930 
940  DEF FNpoint(X,Y) 
950 = POINT(X*W%+1024,Y*4+640) 
960 
---------------------------------------------------------------------- 
Plot a large square at the cursor position, looking  
at the final size version at the side of the screen  
to find the color 
---------------------------------------------------------------------- 
970 DEF PROCsq(X,Y) 
980 GCOL 0,FNpoint(X,Y) 
990 MOVE X*SX%, Y*SY% 
1000 PLOT 0,SX%-4,0 
1010 PLOT 81,4–SX%,SY%-4 
1020 PLOT 81,SX%-4,0 
1030 ENDPROC 
1040 
------------------------------------------------------------------- 
Display whole shape 
-------------------------------------------------------------------- 
1050 DEF PROCdisplay 
1060 LOCAL X,Y 
1070 FOR X = 0 TO NX%-1 
1080   FOR Y = 0 TO NY%-1  
1090   PROCsa(X,Y) 
1100  NEXT Y 
1110 NEXT X 
1120 PROCcursor 
1130 ENDPROC 
1140 
------------------------------------------------------------------- 
plot the box cursor at the cursor position 
------------------------------------------------------------------- 
1150 DEF PROCcursor 
1160 VDU 5 
1170 GCOL 3,3 
1180 MOVE SX%*(cursorX+0.25), SY%*(cursorY+0.25) 
1190 PLOT 1,SX% DIV 2 – 4,0 
1200 PLOT 1,0, SY% DIV 2 - 4 
1210 PLOT 1,4-SX% DIV 2,0 
1220 PLOT 1,0, 4-SY% DIV 2 
1230 ENDPROC 
1240  
--------------------------------------------------------------------- 
get a shape from the filing system 
------------------------------------------------------------------ 
1250 DEF PROCload 
1260 LOCAL I%,channel 
1270 PROCshape(TRUE, byteNX%, byte NY%) 
1280 channel = FNopen(TRUE) 
1290 IF channel = FALSE ENDPROC 
1300 PROCclear 
1310 FOR I%=0 TO (byteNX%*NY%)-1 
1320 shape?I%=BGET#channel 
1330 NEXT I% 
1340 CLOSE#channel 
1350 ENDPROC 
1360  
---------------------------------------------------------------- 
write a shape to the filing system 
--------------------------------------------------------------- 
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1370 DEF PROCsave 
1380  LOCAL I%,channel 
1390 PROCshape(TRUE,byteNX%,byteNY%) 
1400 channel=FNopen(FALSE) 
1410 IF channel=FALSE ENDPROC 
1420 FOR I%=0 TO (byteNX%*NY%)-1 
1430 BPUT#channel,shape?I% 
1440 NEXT I% 
1450 CLOSE#channel 
1460 ENDPROC 
1470 
--------------------------------------------------------------------- 
utility used by procload and procsave to open a file 
--------------------------------------------------------------------- 
1480 DEF FNopen(in) 
1490 LOCAL W$ 
1500 VDU 22,7 
1510 INPUT "file name ?"W$ 
1520 IF W$ = "" FALSE 
1530 IF in THEN OPENIN(W$) ELSE OPENOUT(W$) 
1540 
------------------------------------------------------------------------ 
plot point on final size shape and also plot square on main screen 
------------------------------------------------------------------------ 
1550 DEF PROCcolour(colour) 
1560 PROCcursor 
1570 PROCplot(cursorX,cursorY,colour) 
1580 PROCsq(cursorX,cursorY) 
1590 PROCcursor 
1600 ENDPROC 
1610 
---------------------------------------------------------------------- 
Wipe previous cursor from screen update cursor's X and Y coordinates, and 
then plot the cursor at new coordinates 
------------------------------------------------------------------------- 
1620  DEF PROCdocursor(X,Y) 
1630 PROCcursor 
1640 cursorX = cursorX+X 
1650 cursorY = cursorY+Y 
1660 PROCcursor 
1670 ENDPROC 
1680 
-------------------------------------------------------------------------- 
clear the array used to hold the shape 
------------------------------------------------------------------------- 
1690 DEF PROCclear 
1700 LOCAL clear 
1710 FOR clear=0 TO lenshape-4 STEP 4 
1720 clear!shape=0 
1730 NEXT clear 
1740 ENDPROC 
1750 
------------------------------------------------------------------------- 
either write final size shape from shape array or put final size shape 
into shape array 
-------------------------------------------------------------------------- 
1760  DEFPROCshape(flag,X,Y) 
1770  LOCAL I%, J%, tempx, tempy 
1780  FOR I%=0 TO X 
1790 FOR J%=0 TO Y 
1800 tempx=I%+1024 DIV 16 
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1810 tempy=((J%+640 DIV 4)EOR&FF)DIV8 
1820 PROCaccess(flag,(tempy*&280+tempx*8+((J% AND 7)EOR  

7)+&3000),Y+1,J%,I%) 
1830 NEXT J% 
1840 NEXT I% 
1850 ENDPROC 
1860  
-------------------------------------------------------------------------- 
Get/put byte from/to final shape. 
-------------------------------------------------------------------------- 
1870 DEF PROCaccess(flag,addr,Y,J%,I%) 
1880 IF flag THEN shape/(I%*Y+(Y-J%-1))=?addr ELSE 

?addr=shape?(I%*Y+(Y-J%-1)) 
1890   ENDPROC 
 
Variables Used: 
 
 lenshape Maximum length of shape (in bytes). 

mode  Holds graphics modeselected. 
 I%  generral loop control variable. 
 J%  general loop control variable. 
 pixbits  Number of bits per pixel. 
 pixelperbyte holds number of pixels per byte. 
 W%  Width of pixels in graphics co-ordinates 
 NX%  Width of shape 
 NY%  height of shape 
 byteNX% Width of shape (in bytes) 
 byteNY% height of shape (in bytes) 

SX%  Width of pixels in large shape 
 SY%  height of pixels in large shape. 
 shape  Byte vector to hold shape. 
 cursorX X co-ordinate of cursor in pixels. 
 cursorY Y co-ordinate of cursor in 'pixels'. 
 command$ String containing commands. 
 colour$ String containing keys for colours 
 
Colours are specified by pressing key corresponding to Hexadecimal digit. Note 
state of CAPS LOCK or SHIFT keys is irrelevant. 
 

key$  Holds key pressed. 
length  Holds length of shape data. 
C%  Zero if command, else holds colour key plus one. 

 
13.2 Plotting a shape on the screen 
 
To plot a shape on the screen at a specified position it is necessary to have two 
routines; one to convert the X and Y coordinates to a memory location on the 
screen, and another routine to plot a shape at that address. 
 
Two routines are given below which perform these tasks. The method chosen can 
only be used for plotting shapes to a resolution of 80 by 256 in MODEs 0, 1 and 2. 
The routines work by Exclusive ORing the shape onto the screen. This has two 
main advantages over other methods (such as writing the shape on the screen or 
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ORing the shape with the screen memory). The first advantage is that the detail 
under the shape is not lost when the shape is unplotted, the second is that the 
same routine can be used for both plotting and unplotting. 
 
Convert X, Y coordinate to screen address – getaddr 
 
This routine doesn't write anything to the screen, all that it does is generate an 
address where a shape might then be written to the screen, or read from the 
screen. It will generate an address for MODEs 0, 1 and 2, allowing for hardware 
scroll. The algorithm used is given at the end of the listing so that the code can be 
adapted for MODEs 4 and 5. 
 
On entry, X holds the X coordinate (0  79), Y holds the Y coordinate (0 - 255), and A 
is irrelevant. 
 
A typical call might be: 
 
LDX xcoord 
LDY ycoord 
JSR getaddr 
 
On exit, X will be preserved, Y and A will have been corrupted. The resultant 
address is left in 'addr' and 'addr+1' (low byte, high byte) which must be in zero 
page. Other locations used are 'temp' (1 byte) and 'top' (2 bytes). For speed, these 
locations should also be in zero page. 
 
.getaddr 

LDA#&00   set hi byte of address 
STA addr+1  to zero 
TYA  
EOR#&FF   invert Y coordinate 
PHA  
OPT FNrotateacc(3) divide Y coordinate by 8 
TAY    and leave in Y 
LSR A   adjust carry for * &280 
STA temp   save Y/16 in temp 
LDA#&00   set bottom byte of address to 0 
ROR A   put carry into top bit 
ADC top   and add in top of screen 
PHP     save carry flag 
STA addr   store result in addr 
TYA    get y/8 
ASL A   double it for top byte 
ADC temp   of addr, add in Y/16 
PLP    restore carry 
ADC top+1   and add in top of screen 
STA addr+1 
LDA#&00   set temp to zero 
STA temp 
TXA    get x coordinate 
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ASL A   perform two byte multiply 
ROL temp   by 8 because of memory 
ASL A   map 
ROL temp 
ASL A 
ROL temp 
ADC addr   add in rest of result so 
STA addr   far, and store it 
LDA temp 
ADC addr+1 
BPL ok   check for hardware scroll 
SEC    if over 3000 - 8000 boundary 
SBC#&50   then correct address 

.ok 
STA addr+1  And store it 
PLA    Restore inverted Y coord 
AND#&07   Get row number in computed 
ORA addr   column, and add it in 
STA addr 

 RTS    Return 
 
Some words of explanation: 
 
The algorithm used to calculate the screen memory address is: 
 
addr=X*8+((Y EOR &FF)AND 7)+&280*((Y EOR &FF)DIV 8)+top 
 
where X and Y are the coordinates. The reason Y is inverted is so that the bottom 
of the screen is treated as 0, even though the memory map is the other way round. 
There are 640 bytes per character line on the display, which is &280 in hex. The 
variable 'top' is normally set to &3000, except when hardware scroll is taking place. 
In most applications this will be irrelevant, and so 'top' may be set up at the 
beginning of the program and then forgotten about. The Y AND 7 and Y DIV 8 
operations are performed because of the memory map of the screen, DIV 8 is 
performed to get to the start of the current character cell, and AND 7 to get to the 
current byte in the character cell: 
 
top +&00 +&08 +&10 +&18 +&20 +&28 
+0 +------- +------- +------- +------- +------- +-------       
+1 +------- +------- +------- +------- +------- +-------       
+2 +------- +------- +------- +------- +------- +-------       
+3 +------- +------- +------- +------- +------- +-------       
+4 +------- +------- +------- +------- +------- +------- 
+5 +------- +------- +------- +------- +------- +-------       
+6 +------- +------- +------- +------- +------- +-------       
+7 +------- +------- +------- +------- +------- +-------       
+&280 +------- +------- +------- +------- +------- +-------       
+&281 +------- +------- +------- +------- +------- +-------       
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Plotting a shape at a given screen coordinate - doplot 
 
This routine works in conjunction with the above routine for plotting a shape at a 
given X,Y screen coordinate. 
 
On entry, all registers are irrelevant. The parameters passed are: 
 
counter - holds width of shape in bytes 
addr - holds screen address to put shape 
depth - holds height of shape 
shape - start address of shape in memory 
 
('shape' must be in zero page.) 
 
On exit, all registers may have been corrupted, but all parameters will have been 
preserved. 
 
.doplot 
 LDY#&00    set shape offset to zero 
 LDA addr+1   push screen address onto 
 PHA     stack for later use 
 LDA addr 
 PHA 
 LDA depth    get depth of shape 
 STA rowcounter 
 LDA addr    put offset in character 
 AND#&07    cell into Y 
 STA offset 
 LDA addr    adjust address accordingly 
 AND#&F8    goto top of character cell 
 STA addr 
 STY temp 
.innerloop 
 LDY temp 
 LDA (shape),Y   get byte from shape 
 INY 
 STY temp 
 LDY offset 
 EOR (addr),Y 
 STA (addr),Y 
 INY     Y holds offset on screen 
 CPY#&08    bottom of character cell 
 BEQ block    if so then go down a line 
.nobIock 

STY offset 
DEC rowcounter 
BNE innerloop 

.nextblock 
LDA shape 
CLC 
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ADC depth 
STA shape 
BCC nohi 
INC shape+1 

.nohi 
CLC      go to the top of the next 

column 
PLA     by resetting address to top 
ADC#&08    of current column, and 
STA addr    moving to next character 
PLA     cell 
ADC#&00 
BPL nobound1 
SEC 
SBC#&50 

.nobound1 
STA addr+1 
DEC counter   easier to DEC counter in 
BNE doplot   two places and test 
RTS 

.block 
LDY#&00    go down a line 
LDA addr    addr=(addr+&280) 
CLC 
ADC#&80 
STA addr 
LDA addr+1 
ADC#&02 
BPL noboundary   if the contents of addr are 
SEC     greater than &8000 then 
SBC#&50    subtract &5000 

.noboundary 
STA addr+1 
BNE nolock    always jump 

 
Interfacing getaddr and doplot - plotshape 
 
The number of parameters may be cut down by having a 'front end' attached to the 
start of the doplot routine which would make interfacing easier. 
On entry to 'plotshape' A would hold the number of the shape to be plotted and X 
and Y would hold the X and Y coordinates at which the shape is to be plotted. 
 
A typical call to 'plotshape' would be: 
 
 LDY#0   Get  first  shape 

TYA 
PHA    preserve shape number 
LDA xcoord,Y  get x coordinate 
TAX 
LDA ycoord,Y  get y coordinate 
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TAY 
PLA    get shape number back 
JSR plotshape  plot shape 
 

On exit from 'plotshape' all registers may have been corrupted, although all internal 
parameters ('depth', 'counter', etc.) will have been preserved. 
 
.plotshape 

PHA    Save shape number 
JSR getaddr  Get address 
PLA     Restore shape 
TAY 
LDA shapeloaddr,Y Set up parameters 
STA shape   This assumes that 
LDA shapehiaddr,Y the User has set 
STA shape+1  up the relevent  
LDA shapesize,Y tables 
STA counter  (shape loaddr, 
LDA shapedepth,Y shapesize, etc) 
STA depth 

 
 


