
www.circuitcellar.com CIRCUIT CELLAR® Issue 150 January 2003 1

o you remember
your first comput-

er with a hard drive?
What about when 5 MB

was a lot of hard drive space? Have
you ever wanted to put something of
your own on a hard drive without
having to rely on somebody else’s
expensive and proprietary hardware
and driver code? Ever want to read,
write, and control a hard drive with a
microcontroller?

If you answered “yes” to any one
of these questions, then this project
is for you. I’ll show you how to build
an ATA hard drive controller with a
microcontroller and a few common
parts. In addition, you’ll learn
how to write simple code that
will form the basis for deploy-
ing a stand-alone, networkable,
microcontroller-based data
storage system.

Even if you aren’t interested
in communicating with hard
drives, there’s something here
for those of you who don’t need
a microcontroller-driven hard
drive controller. The bonus
track is in the hardware. Do
you need an in-system program-
ming-capable test stand for an

Atmel ATmega128 with RS-232,
Ethernet, and 64-KB of external 16-bit
memory? Well, this project is for you
too. Hard drives or no hard drives,
let’s get started.

THE HARDWARE
Hanging a standard PC or laptop

hard drive from the 40-pin connec-
tor shown in Photo 1 is the reason
why we’re gathered here today. I
wanted the ATA hard drive con-
troller’s electronics to be flexible. So,
in addition to the standard RS-232
port, which is driven by a Sipex
SP233ECT, I added 10-Mbps Ethernet
capabilities with the RTL8019AS/
LF1S022 combination.

The ATmega128 has plenty of
internal SRAM (4 KB), but I thought
adding 64 KB of 16-bit external
SRAM would be nice. Adding the
SRAM is sort of like buying rope:
you can always make the rope short-
er, but it’s a pain to add rope later if
you need it.

The ATmega128 has enough I/O
structure to service the big SRAM
with some help from a couple of
74HCT573 latches. As you can see in
Figure 1, the external SRAM is
attached to the ATmega128 in the
standard manner. This allows those
of you who aren’t interested in plac-
ing bits on a spinning piece of mag-
netically coated aluminum to do
your thing with the big chunk of
SRAM and the raw power of the
ATmega128. With the SRAM in this
configuration, the results of the hard
drive I/O operations can be buffered
by the external SRAM or operated on
by the AVR directly.

Construct an ATA Hard
Drive Controller

d
It’s about time you had
full control of your hard
drive. The controller
you’ve been waiting for
is just one project
away. This month,
Fred shows you how
easy it is to build an
ATA hard drive con-
troller. Amazingly, all
you need is a good
micro and a few every-
day parts.

Fred Eady

APPLIED
PCs

Photo 1—The board is clean and simple. All of the supporting
capacitors and resistors are SMT parts mounted on the oppo-
site side of the board.

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2001 Circuit
Cellar Inc. All rights reserved.

2 Issue 150 January 2003 CIRCUIT CELLAR® www.circuitcellar.com

Whacker code already has hooks to
allow for the easy transmission and
reception of the hard drive data.

The RS-232 port has a dual purpose.
Running at 57.6 kbps, it’s fast enough
to spit out a sector’s worth of ASCII
data to a terminal emulator for debug-
ging. In addition, it can be used effi-
ciently in an application to transfer
data and commands between the
AVR-based hard drive controller and a
peripheral device. The 10-pin header
makes assembling a serial cable easy,
if you use 9- or 25-pin IDC shell con-
nector parts and ribbon cable.

I’ve standardized with 10-pin male
headers for all of the external ports
with the obvious exceptions of the
Ethernet and hard drive I/O ports. As
long as you put the right connector
in the correct header socket, using
the 10-pin headers with the keyed
shrouds eliminates the possibility of
inserting the ISP and serial connec-
tors incorrectly.

The 10-pin arrangement is also
standard for most of the ISP dongles
that support the AVR series of ISP-

The Ethernet interface, shown in
Figure 2, is actually a wire-by-wire
copy of the Packet Whacker micro-
controller NIC. The original Packet

Whacker firmware that was written
for the ATmega series of AVRs is
used in the ATA hard drive con-
troller code, as well. The Packet

Figure 1—No surprises here, either. The craftiness of this design lies in the way the firmware utilizes the hardware resources.

Listing 1—A core set of registers is the gateway to the hard drive platters. Everything needed to access a
particular data point on the hard drive is represented here.

//ATA I/O port functions and address definitions
//Control block registers
// RESET
// |DIOW
// ||DIOR
// |||DA0
// ||||DA1
// |||||DA2
// ||||||CS0
// |||||||CS1
// ||||||||
#define ATA_IO_HIZ 0b11111111
#define ATA_IO_ASTAT 0b11101110
#define ATA_IO_DEVICECNTL 0b11101110
//Command block register addresses
#define ATA_IO_DATA 0b11100001
#define ATA_IO_ERROR 0b11110001
#define ATA_IO_FEATURES 0b11110001
#define ATA_IO_SECTORCNT 0b11101001
#define ATA_IO_SECTORNUM 0b11111001
#define ATA_IO_CYL_L 0b11100101
#define ATA_IO_CYL_H 0b11110101
#define ATA_IO_DEVICE_HEAD 0b11101101
#define ATA_IO_STATUS 0b11111101
#define ATA_IO_CMD 0b11111101

www.circuitcellar.com CIRCUIT CELLAR® Issue 150 January 2003 3

The first spin of the ATA hard drive
controller used a 2-mm header that
mated directly to the 44 I/O pins
found on 2.5″ laptop drives. My expe-
riences with the 2-mm parts were not
good ones. The pins and connectors
are fragile, and I really don’t like
working with the 1-mm ribbon cable.

In the process of attempting to work
at 2 mm, I purchased a gaggle of new
surplus 2.5″ Hitachi 540-MB drives.
That purchase, as it turns out, was a
good thing. After junking the 2-mm
idea, I purchased some surplus 850-MB,
3.5″ drives that turned out to be most-
ly junk. I never really had any inclina-
tion to put real data on them, so it’s
not a total loss. At less than $10 per
drive, what did I expect?

When I bought the laptop drives, I
also purchased some 2-mm to 0.1″ (or
2.5″ to 3.5″) converter boards. The
idea was to be able to attach the lap-

top drives to a PC for the debugging
and verification of the ATA drive con-
troller’s firmware and hardware.

The moral of the 2-mm hard drive
story is that, thanks to my foresight,
you’ll see how I brought the ATA hard
drive controller to life with the 2.5″
Hitachi drives and converter boards.
This may sound funny, but when I
was formatting the 3.5″ 850-MB
drives, I was hoping that a few of
them would show some errors. I want-
ed to verify that the hard drive con-
troller could detect them, and then
show you what they looked like. I
really didn’t expect them to be trashed
so badly. So, the drive error examples
will come from the 3.5″ drives, and
the good data examples will feature
the smaller Hitachi drives.

The ATA hard drive controller
requires a single 5-VDC power source.
Also, the Hitachi drives require only

capable microcontrollers. I used a
Kanda AVR ISP dongle and a version
of the company’s ISP software to pro-
gram the hard drive controller’s
ATmega128. Because the dongle
interface is dedicated to certain pins
on the AVR and power isn’t trans-
ferred within the programming cable,
I was able to keep the dongle
attached to the hard drive controller
throughout the programming and
debugging process.

The ATmega128 is clocked at
14.746 MHz to keep the data rate
error percentage at a minimum for
the 57.6-kbps serial port. For this
project, the ATmega128 I used was a
5-V part that can run at 16 MHz.
The 14.746 MHz is the closest stan-
dard crystal to the maximum clock
speed that will clock the big AVR
with the least amount of serial data
bit error rate.

Figure 2—If this looks familiar, it’s because it’s actually a Packet Whacker that’s been melded into the ATA controller design. The Packet Whacker code was reused, as well; it
can be found wound into the ATA controller source.

4 Issue 150 January 2003 CIRCUIT CELLAR® www.circuitcellar.com

5 VDC. However, the larger 3.5″ drives
need 12 VDC in addition to the 5 VDC.
The original spin of the hard drive con-
troller used a 2-mm, 44-pin hard drive
I/O attachment point. The extra four
pins on the 2-mm connector provided
5 VDC and ground for the 2.5″ drives
right at the hard drive I/O connector. In
this spin, the 44-pin, 2-mm pin set is
replaced with the standard 40-pin 0.1″
pin set, and there isn’t a power supply
outlet at the hard drive I/O connector.

The hard drive controller is equipped
with a standard 4-pin floppy drive
power plug. As you might have fig-
ured out, the inclusion of a standard
PC power connector on the hard
drive controller allows you to power
the 3.5″ drive and the hard drive con-
troller’s electronics from a common
off-the-shelf PC power supply.

If the 2.5″ drives are used, you’ll
have to provide an attachment to sup-
ply power to the extra I/O-based power
pins on the drive. That’s where the
2.5″ to 3.5″ drive I/O adapters come in.
The adapters I purchased have a 3.5″
drive power connector that has only
the 5-VDC lines tapped into the 44-pin,
2-mm drive connector. The drive con-
verter board allows you to use the
smaller 2.5″ drives with the standard
40-pin 0.1″ cables and a PC power
supply. Although using a commodity
power supply is the easiest way to go,
any other suitable power supply
method will work just as well. Photo
2 is a shot of an Hitachi 2.5″ drive and
its associated converter board attached
to the ATA hard drive controller.

THE FIRMWARE
I wanted the ATA hard drive con-

troller to be capable of interfacing to
any standard ATA device. With that
design requirement mind, I wrote the
hard drive controller’s AVR firmware
with ImageCraft’s ICCAVR C compil-
er and guidance from the ATA-3 speci-
fication. What I ended up with was a
basic set of routines that allows you
to exercise the standard ATA com-
mand set, query the hard drive register
set, and exchange data with the
attached ATA hard drive.

As soon as I had access to the hard
drive’s register set and data, I set out
to write code to move the data that

Listing 2—Because the routines are identical, with exception to the status bit that’s checked, I took some
liberties and squashed all three ready, busy, and error routines into a single function to save some
space. The unsigned int ata_bsy(void) function includes the if(ata_byte_read &
ATA_STAT_BSY) line and the other two functions follow the same logic.

#define recalibrate ata_send_cmd(CMD_RECALIBRATE)
#define CMD_RECALIBRATE 0x10
#define PORT_ATA_IO_CNTL PORTF
#define ATA_DIOR 0x20
#define PORT_ATA_DATA_L_IN PINA
#define ATA_STAT_BSY 0x80 //ATA busy
#define ATA_STAT_RDY 0x40 //ATA ready
#define ATA_STAT_ERR 0x01 //ATA error
#define busy ata_bsy()
#define drq ata_drq()
#define error ata_err()
#define ready ata_rdy()
#define hard_reset ata_hard_reset()
#define select_device_0 ata_select_device(0x00)
#define select_device_1 ata_select_device(0x01)
#define recalibrate ata_send_cmd(CMD_RECALIBRATE)
#define identify_device ata_send_cmd(CMD_IDENTIFY_DEVICE)

Initialize drive. This routine assumes drive 0 is the only drive
that is attached.

void init_ata(void)
{
while(!ready & busy);
hard_reset;
delay_ms(10);
while(!ready & busy);
select_device_0;
while(!ready & busy);
recalibrate;
while(busy);
if(error)

printf("ERROR!");
printf("\r\nDrive is READY!\r\n");

//Functions are squashed for space savings
unsigned int ata_bsy(void)
unsigned int ata_rdy(void)
unsigned int ata_err(void)
{

unsigned char ata_byte_read;
avr_databus_in;
delay_us(1);
PORT_ATA_IO_CNTL = ATA_IO_STATUS;
PORT_ATA_IO_CNTL &= ~ATA_DIOR;
delay_us(1);
ata_byte_read = PORT_ATA_DATA_L_IN;
PORT_ATA_IO_CNTL |= ATA_DIOR;
PORT_ATA_IO_CNTL = ATA_IO_HIZ;
if(ata_byte_read & ATA_STAT_BSY)
if(ata_byte_read & ATA_STAT_RDY)
if(ata_byte_read & ATA_STAT_ERR)

return 1;
else
return 0;

} //End of squashed functions

void ata_hard_reset(void)
{

avr_databus_in;
PORT_ATA_IO_CNTL = ATA_IO_HIZ;
PORT_ATA_IO_CNTL &= ~ATA_RESET; (Continued)

www.circuitcellar.com CIRCUIT CELLAR® Issue 150 January 2003 5

Listing 1, you’ll notice that the
basic components (in register form)
of addressing data on a hard drive
are represented. Cylinder head sec-
tor (CHS) addressing is implied in
the control block register names;
however, in the ATA hard drive
controller firmware, I’ll use these

was harvested from the hard drive to
the outside world. The first logical
choice of data transport was a serial
port. After thinking it over, I decided
that an Ethernet interface would be an
excellent way to move data in and out
of the hard drive controller. The
Ethernet port would allow the hard
drive controller to be networked and
provide a high-speed data connection
for transfer rates beyond the capabili-
ties of a serial port. In either case (seri-
al or Ethernet), you could use any of
the Visual (e.g., Visual Basic, Visual C)
or Borland compilers to build an
embedded or PC interface to the ATA
hard drive controller.

The first order of business as I start-
ed to develop the AVR firmware was
to define all of the functions that
would run against the hard drive.
With respect to the software, a hard
drive looks like an 8- or 16-bit I/O
port that leads to an internal register
set. Register I/O is normally
achieved in 8-bit mode, while data
transfers are typically performed in
16-bit operations.

If you review Figure 1, you’ll see
that a 16-bit data bus is pinned out on
the 40-pin hard drive I/O connector.
The data bus signals are supported by
a set of I/O read and write signals.
Access to the internal hard drive regis-
ter set is accomplished using the I/O
read/write signals and data bus signals
in conjunction with the address and

select signals found on the 40-pin
hard drive I/O connector. The control
block is the core set of hard drive
internal registers. Listing 1 is my def-
inition of how the control block reg-
isters are addressed.

If you take a close look at the con-
trol block register definitions in

delay_ms(10);
PORT_ATA_IO_CNTL |= ATA_RESET;

}

void ata_select_device(unsigned char device)
{

PORT_ATA_IO_CNTL = ATA_IO_DEVICE_HEAD;
switch (device)
{

case 0x00:
ata_write_byte(ATA_DH_DEV0);
break;

case 0x01:
ata_write_byte(ATA_DH_DEV1);
break;

default:
ata_write_byte(ATA_DH_DEV0);
break;

}
}

void ata_send_cmd(unsigned char atacmd)
{

PORT_ATA_IO_CNTL = ATA_IO_CMD;
avr_databus_out;
PORT_ATA_DATA_L_OUT = atacmd;
ata_write_pulse;
PORT_ATA_IO_CNTL = ATA_IO_HIZ;
avr_databus_in;

}

Listing 2—Continued

Word F/V Identify device information

0 General configuration of bit-significant information:
F 15 0 = ATA device 1 = ATAPI device
F 14 Obsolete
F 13 Obsolete
F 12 Obsolete
F 11 Obsolete
F 10 Obsolete
F 9 Obsolete
F 8 Obsolete
F 7 1 = Removable media device
F 6 1 = Not removable controller and/or device
F 5 Obsolete
F 4 Obsolete
F 3 Obsolete
F 2 Obsolete
F 1 Obsolete
F 0 Reserved

Table 1—If you like to write code that parses data, then writing ATA hard drive code will keep you happy (and busy) for days. The data in Photo 3 was culled from this table of
words spoken by the little Hitachi DK211A-54. F represents a fixed value, V represents a variable value, X represents a vendor-specific value, and R represents a reserved value.

Word F/V Identify device information

1 F Number of logical cylinders
2 R Reserved
3 F Number of logical heads
4 X Obsolete
5 X Obsolete
6 F Number of logical sectors per logical track
7–9 X Vendor specific
10–19 F Serial number (20 ASCII characters)
20 X Obsolete
21 X Obsolete
22 F Number of vendor-specific bytes available on read/write long commands
23–26 F Firmware revision (eight ASCII characters)
27–46 F Model number (40 ASCII characters)
47 X 15–8 Vendor specific

R 7–0 00h = Reserved
F 01h–FFh = Maximum number of sectors that can be transferred

per interrupt on read/write multiple commands
48 R Reserved

6 Issue 150 January 2003 CIRCUIT CELLAR® www.circuitcellar.com

same CHS-based registers to per-
form logical block address (LBA)
mode addressing operations. LBA
mode is a means set forth by the
ATA standards to allow for the lin-
ear addressing of sectors. LBA
addressing is derived from the CHS
addressing format as follows:

LBA = ((cylinder × heads_per_cylinder +
heads) × sectors_per_track) + sector – 1

For instance, cylinder 0, head 0, sec-
tor 1 is LBA address 0. Therefore, for
LBA mode to function, the hard drive
must support LBA mode internally,
and that’s the case for the 540-MB
laptop drives as well as the larger
850-MB 3.5″ drives.

The ultimate goal is to use LBA
mode to read and write to sectors on
the hard drive. To do this, you must
first be able to read and write to the
hard drive’s register set. A good place
to start with the firmware descrip-
tion of this process is with the hard
drive initialization routine, whose
source code is included in Listing 2.

The first register access occurs
when the while(!ready & busy)
statement executes. Note that ready
and busy are macros that call the
ata_rdy(void) and ata_busy(void)
functions. The ata_rdy(void) and
ata_busy(void) functions are iden-
tical with the exception of the status
bit they check. In both cases the AVR
data bus pins are put in Input mode,
the status register is addressed, the
I/O read pin is toggled, and the status
register data is read (8 bits).
Additionally, the hard drive I/O port
is put into a high-impedance state, the
status condition is determined, and a

return code is generated. Note that
the external buffer SRAM is not used
by these functions.

After the hard drive has done its
own power-on reset, the ready bit will
show that the hard drive is ready for a
command, and the busy bit will indi-
cate a “not busy” status. At this
point, a hard reset is toggled using the
RESET pin on the hard drive I/O bus,
and time is marked to allow the phys-
ical and electrical hard drive reset
process to finish. Because I was
attaching a single hard drive that’s
strapped as master drive 0, I selected
drive 0 in LBA mode using the

Photo 2—The 540-MB
drive formats quickly and
is easy to handle even
with the converter boards
attached. This made for
quick turnarounds in the
initial development
stages when I was exper-
imenting, debugging, and
doing a lot of hard drive
formatting.

www.circuitcellar.com CIRCUIT CELLAR® Issue 150 January 2003 7

select_drive_0 macro. The
next step was to issue a recali-
brate command and check the
error status register. In
instances like this, a “drive
ready” banner is sent to the
serial port if all is well.

At that point, I wasn’t ready
to start reading hard drive sec-
tors, because I needed to make
sure I
could
address
and
com-
mand
the hard
drive
interface
accurately. The easiest way to verify
this was to execute an ATA Identify
Device command.

Basically, the Identify Device com-
mand instructs the hard drive to
divulge its factory-loaded identifiers,
and 255 words are returned. All I had
to do was pick up the words from the
hard drive I/O port, parse them, and

send the results to the serial
port. All 255 words weren’t
needed. As you can see in
Table 1, the first 46 words tell
you if things are working cor-
rectly. Photo 3 is a

HyperTerminal shot showing you
what the little Hitachi drive had to
say about itself.

Now that you know how to get data
from the hard drive, I’ll show you how
to read a sector. Before the code is test-
ed, however, there’s work to be done
on the hard drive, and you’ll need a
way to verify your results.

Because I plan to develop AVR
firmware to manipulate FAT32
formatted drives, it would be logi-
cal to format the hard drives that
will be used with MSDOS by
way of Windows 98. Formatting
in this way puts master boot
records, partition tables, and data
in predictable places on the
drive. Two drives should be for-
matted: one is used on the ATA
hard drive controller, and the
other is used on a PC for verifica-

tion and as an aid in debugging.
The verification program for the PC

is called WinHex. Normally, WinHex
is used to inspect and repair files on
PC hard drives. This program does it
all as far as hard drives are concerned;
it understands FAT12, FAT16, FAT32,
NTFS, and CDFS. In addition, WinHex
includes a disk editor that allows you
to become a dangerous hard drive
technician. You can also use WinHex
to create templates that automatically
parse known data areas of the hard
drive.

Photo 4 is a screen shot of an actual

Photo 3—Things are good when the numbers in this
photo match the numbers written on the hard drive.Fred Eady has more than 20 years of

experience as a systems engineer. He
has worked with computers and com-
munication systems large and small,
simple and complex. His forte is
embedded-systems design and com-
munications. Fred may be reached at
fred@edtp.com.

8 Issue 150 January 2003 CIRCUIT CELLAR® www.circuitcellar.com

WinHex panel that’s aimed at the 2.5″
Hitachi drive attached to the PC. I’ve
dialed in the MBR master boot record
(MBR), which resides at cylinder 0,
head 0, and sector 1 or LBA 0. If all goes
well with the sector read on the hard
drive controller, the data in the Hyper-
Terminal window should be identical
to the bytes found in the WinHex win-
dow.

The HyperTerminal readout in
Photo 5 matches the numbers picked
up by WinHex from the clone drive in
Photo 4. As Spock would say, “Random
chance seems to have operated in our
favor.” The ata_read_sector()
function shown in Listing 3 works as
designed. Reading a sector in LBA mode
entails loading the Device/Head register
with the LBA mode bit set, loading the
cylinder High/Low and Sector registers,
and issuing the Read Sectors command.

Here’s where that big chunk of
external 16-bit SRAM is handy.
Instead of pulling the data directly
into the AVR, I used the AVR to gen-
erate address information for the
SRAM and manipulate the SRAM’s
write enable and chip select lines to
store the incoming data in the exter-
nal 64 KB of SRAM.

I divided the SRAM into logical
pages of 256 words each and wrote
routines to read and write these
pages. Each page of external SRAM
holds one sector of hard drive data,
allowing up to 256 sectors to be
buffered. That pretty much takes
care of verifying the ATA hard drive
controller’s read functionality.

Writing to the hard drive is a simi-
lar process. The external SRAM is
filled with a sector’s worth of data
(256 words), and then that particular
SRAM page is written to the hard
drive I/O port’s data bus. Instead of
performing an ATA I/O read, an ATA
I/O write is performed when the data is
presented on the external SRAM data
pins. I tested the write sector code
successfully on random sectors of the
hard drive attached to the ATA hard
drive controller. Additionally, I veri-
fied the writes by moving the hard
drive to the PC and reading the sectors
I wrote using WinHex.

GETTING FAT
All of the reading and writ-

ing up to this point was com-
pleted with simple C rou-
tines that were teamed
together to perform a much
larger and more complex
task. Believe it or not,

Photo 4—There isn’t much about a hard
drive you will want to know that WinHex
won’t tell you.

www.circuitcellar.com CIRCUIT CELLAR® Issue 150 January 2003 9

designing the ATA hard drive
controller hardware and finish-
ing the C coding for the con-
troller I/O functions was the
easy part. The Ethernet code
was just as easy, because I
copied AVR code that was
already written for the Packet
Whacker microcontroller NIC.
The next step in the process of
assembling a microcontroller-
based networkable mass storage
system was a bit more demand-
ing.

I completed a tremendous
amount of research in prepara-
tion for writing AVR code to
implement Microsoft’s FAT32 file sys-
tem. Thanks to a series of Circuit
Cellar articles written by our own
Jeff Bachiochi (Circuit Cellar
143–146), I had a good idea about the
roads I will travel and battles I will
fight.

The journey starts with the bytes in
Photo 4, the master boot record.
Because I’m not executing instructions
on a legacy x86 machine and using a

PC BIOS or MSDOS, I’ll have to inter-
pret the data and adapt it to the AVR.
For instance, there’s executable code in
the MBR that I don’t care about. The
problem is that I have to navigate
through it to find markers that either
give me information about where FAT-
related constants and parameters reside
or point me to places where I can read
and write my data.

In the case of the MBR, I’m inter-

ested only in the last 66 bytes,
because that’s where the parti-
tion table resides. The fun
starts at offset 0x1BE in the
MBR, which is the first parti-
tion entry. Because the drives I
formatted were secondary
drives, the FDISK program
couldn’t make their partitions
active. So, the first byte at off-
set 0x1BE was 0x00 (inactive)
on my drives.

Other interesting information
resides at offset 0x1C6 in the
MBR. This is the number of
sectors between the MBR and
the first sector of the first parti-

tion. As you can see in Photo 4,
WinHex shows that number as 0x3F. I
used the WinHex program to dial in
0x3F sectors beyond the MBR and, lo
and behold, there was the FAT32 boot
sector with additional fields of infor-
mation to parse. The plan is to col-
lect documentation and use WinHex
to obtain the actual visuals concern-
ing how data and control areas on a
FAT32 hard disk are defined and laid

Photo 5—The format of the data may not be pretty, but the data itself is
beautiful because it matches the clone drive’s MBR data read by WinHex.

10 Issue 150 January 2003 CIRCUIT CELLAR® www.circuitcellar.com

that you’ll be able to share the fruits
of my labor, because I will make the
ATA hard drive controller hardware

out.
So, you see that I have my work

cut out for me. The good news is

Listing 3—There aren’t any tricks in this code. It’s all simple read and write I/O between the hard disk and
the SRAM. The routine reads an LBA-addressed sector into an SRAM page.

Read a sector. device = 0x00 or 0x01

unsigned char ata_read_sector(unsigned char device, unsigned
long lbasector \ ,unsigned int page)
{
unsigned int i,ram_address;
lbasector &= 0x0FFFFFFF;
ata_set_io_addr(ATA_IO_DEVICE_HEAD);
switch (device)
{
case 0x00:

ata_write_byte(lbasector >> 24 | 0xE0);
break;

case 0x01:
ata_write_byte(lbasector >> 24 | 0xF0);
break;

default:
ata_write_byte(lbasector >> 24 | 0xE0);
break;

}
while(busy);
ata_set_io_addr(ATA_IO_CYL_H);
ata_write_byte(lbasector >> 16);
while(busy);
ata_set_io_addr(ATA_IO_CYL_L);
ata_write_byte(lbasector >> 8);
while(busy);
ata_set_io_addr(ATA_IO_SECTORNUM);
ata_write_byte(lbasector);
while(busy);
ata_set_io_addr(ATA_IO_SECTORCNT);
ata_write_byte(0x01);
while(busy);
ata_send_cmd(CMD_READ_SECTORS);
while(busy);
while(!drq);

ram_address = page * 0x100;
for(i=0;i<256;++i)
{
avr_databus_out;
PORT_ATA_DATA_H_OUT = ram_address >> 8;
PORT_ATA_DATA_L_OUT = ram_address;
latch_ram_addr;
avr_databus_in;
ram_on;
while(busy);
PORT_ATA_IO_CNTL = ATA_IO_DATA;
PORT_ATA_IO_CNTL &= ~ATA_DIOR;
delay_us(1);
ram_write_pulse;
delay_us(1);
PORT_ATA_IO_CNTL |= ATA_DIOR;
PORT_ATA_IO_CNTL = ATA_IO_HIZ;
while(busy);
ram_off;
++ram_address;

}
return (error);

}

Fred Eady has more than 20 years of
experience as a systems engineer. He
has worked with computers and com-
munication systems large and small,
simple and complex. His forte is
embedded-systems design and com-
munications. Fred may be reached at
fred@edtp.com.

PROJECT FILES
To download the code, go to
ftp.circuitcellar.com/pub/Circuit_
Cellar/2003/150/.

SOURCES
ATmega128 Microcontroller
Atmel Corp.
(408) 441-0311
www.atmel.com

DK211A-54 2.5” Disk drives
Hitachi, Ltd.
(800) 448-2244
www.hitachi.com

ICCAVR C compiler
ImageCraft Creations, Inc.
(650) 493-9326
www.imagecraft.com

AVR ISP Dongle and ISP software
Kanda Systems
+44 (0) 870 744 6807
www.kanda.com

MAX233
Maxim Integrated Products, Inc.
(408) 737-7600
www.maxim-ic.com

74HCT573 Octal D-type trans-
parent latch
Philips Semiconductor
www.semiconductors.philips.com

RTL8019AS Ethernet controller
Realtek Semiconductor Corp.
+886 (0) 3 578 0211
www.realtek.com.tw

SP233ECT RS-232 Line drivers/
receivers
Sipex Corp.
(978) 667-8700
www.sipex.com

WinHex
X-Ways Software Technology AG
www.x-ways.com

