
The Acorn DFS Osword commands - by - Gordon Horsington
--

Module 0. Introduction

+--+
| All the DFS modules in this series use programs which |
| experiment with the format and contents of discs. These |
| experiments may have disasterous effects if you use any |
| of the programs on discs which store programs or data |
| which you cannot afford to lose. You should first try |
| out the programs using discs that have either been |
| duplicated or, better still, have not been used at all. |
+--+

There are eight modules in this part of the Opcodes series. The modules
are in files named T/DFS00 to T/DFS07. The following topics will be
covered in these series modules.

Module 0. This module. Introduction.
Programs: IDSDUMP, VERIFY

Module 1. The DFS Osword commands (Part 1).
Programs: CYCLES, HOWMANY,STATUS, OUTPUT

Module 2. The DFS Osword commands (Part 2).
Programs: FORM10, NOTFORM,WRITE10, READ10

Module 3. Formatting single density discs.
Program: OFFSET, IDSDUMP, VERIFY

Module 4. Converting 40 track discs to run on 80 track disc drives.
Program: CONVERT

Module 5. Creating discs compatible with both 40 and 80 track drives.
Program: DUALDFS, OFFSET

Module 6. Creating copy-protected single density discs.
Programs: SECTOR5, ENCODE, DECODE, IDSDUMP, VERIFY

Module 7. Duplicating copy-protected single density discs.
Programs: COPYDFS, COPYALL, DEFORM, IDSDUMP, VERIFY

The later modules develop the ideas and techniques described in the
earlier modules and for this reason the series needs to be worked through
from beginning to end rather than used as a reference guide.

Introduction to single density discs

There are three levels at which data can be written to and read from
single density discs. The highest level, with which all disc users should
be familiar, is through using the DFS star commands, filenames and the
range of BGET, BPUT and other filing system commands. This level has a
large ammount of filing system independence so that, for example, the same
*SAVE command syntax can be used with both tape and disc. When this high
level access to the DFS is used, both the programmer and the program user
are tied to the restrictions of the particular DFS ROMso that, for
example, non-standard disc formats are not available.

A lower level of access to the DFS ROMis provided by the DFS Osword
commands. Oswords &7D to &7F are used by the DFS and Oswords &70 to &73
are used by the ADFS.

The ADFS is only available on BBC computers which use the Western Digital
1770 (or 1772) disc controller. The BBC B DFS was designed to use the
Intel 8271 disc controller and cannot support the ADFS without a 1770
upgrade. The 1770 disc controller is fitted as standard to the BBC B+ and
Master series computers. The 1770 disc controller can support both single
density and double density disc formats but the 8271 can only support the
single density format. All disc based BBC computers are capable of using

Oswords &7D to &7F but only those with the ADFS can use Oswords &70 to
&73. Only Oswords &7D to &7F will be considered in detail in this series.

The lowest level of access to discs can be achieved by programing the disc
contoller directly.

The hardware which makes up a BBC microcomputer system is memory mapped.
This means that the usable registers of all the hardware devices available
to the I/O processor are mapped onto the main memory address space used by
the 6502 CPU. Page &FE, ie. memory from &FE00 to &FEFF, is known as Sheila
and this page is reserved for the hardware on the I/O processor's circuit
board.

Sheila addresses &80 to &9F are available to the floppy disc controller.
Five of the BBC B's 8271 registers are mapped onto the Sheila addresses
from &FE80 to &FE82. Three of the five registers can only be written into
and the other two can only be read from. For this reason only three Sheila
addresses need to be used to access the five registers. These three
addresses can be used to communicate with the 8271 and to instruct it to
execute a wide range of functions. Sheila address &FE84 is used to pass
data to, and to read data from, the disc controller. The mapping of the
8271 registers onto Sheila addresses is shown in figure 1.

+-----------+---------+---------+
| 8271 | Sheila | read or |
| register | address | write |
+-----------+---------+---------+
status	&FE80	read
result	&FE81	read
command	&FE80	write
parameter	&FE81	write
reset	&FE82	write
+-----------+---------+---------+

Figure 1. The 8271 registers mapped onto Sheila addresses

The 8271 has twelve other registers, known as the Special Registers, which
are not mapped onto the Sheila addresses. Access to these registers can be
achieved indirectly using the 8271 Read Special Register command or the
8271 Write Special Register command, both of which can be sent to the disc
controller using the registers in figure 1. The Sheila addresses can be
peeked or poked using the indirection operator but to produce Tube-
compatible code it is necessary to use Osbyte &96 to read the Sheila
addresses and Osbyte &97 to write to them.

Using Osbytes &96 and &97 will ensure that the code is Tube-compatible but
it not the easiest or the best way to program the disc controller. Osword
&7F executes a single 8271 command through all its phases and relieves the
programmer of the problems associated with techniques such as non-maskable
interupt handling which must be used when programming the 8271. Osword &7F
uses the Sheila addresses from &FE80 to &FE84 but the programmer does not
have to be concerned with, or even be aware of, the detailed use of these
addresses. Osword &7F provides a standard interface on the disc controller
and is the method of accessing the disc hardware used in this series.

Before looking at the single density Oswords in detail it is necessary to
understand the format used by single density discs.

The BBC computer is capable of using 3 1/2 inch, 5 1/4 inch and 8 inch
discs, although 8 inch discs are something of a rarity these days. Because
8 inch discs are so uncommon they will not be discussed in this series.
Both 3 1/2 inch and 5 1/4 inch discs use the same format and are available
in both single and double sided versions with either 40 or 80 tracks per
side.

Each track is subdivided into a number of sectors each of which has an
identification field (usually called an ID field) and a data field.

There are a number of gaps associated with each track. The gaps are a
variable number of bytes between the ID and data fields and are used to
space out the fields to prevent the sectors overwriting each other when
the disc speed varies.

Physical tracks and sectors are identified by their physical position on a

disc. Physical track 0 is the outermost track and physical sector 0 is the
first sector on a track after the index pulse hole. Every sector is given
a one-byte logical track number and a one-byte logical sector number. The
physical track numbers and logical track numbers are the same on discs
formatted for the Acorn DFS but the physical and logical sector numbers do
not have to be the same. One of the many ways of copy-protecting discs is
to make the physical and logical track numbers different, this effectivly
disables the DFS *BACKUP command.

The number of sectors, the size of the data fields, and the gap sizes are
determined when the disc is formatted. In module 3 you will have the
opportunity to vary these parameters but, whatever the format, each single
density track has the layout shown in figure 2 below.

+------------+-----------+------+----------+
| Sync bytes | Data mark | data | data CRC |
+------------+-----------+------+----------+

\ /
Index \ Data / End of
mark \ field / track
+-----+----+-----+------+-----+----+-----+------+-----+ +-----+-----+
| Gap | ID | Gap | Data | Gap | ID | Gap | Data | Gap | ... | Gap | Gap |
| 1 | | 2 | 0 | 3 | | 2 | 1 | 3 | | 4 | 5 |
+-----+----+-----+------+-----+----+-----+------+-----+ +-----+-----+

/ ID \
/ field \

/ \
+-------+------+---------+--------+---------+-----------+--------+
| Sync | ID | Logical | Head | Logical | Data size | Sector |
| bytes | mark | track | number | sector | code | ID CRC |
+-------+------+---------+--------+---------+-----------+--------+

Figure 2. The layout of a DFS track.

Figure 2 illustrates a complete track with one of the data fields expanded
above the centre line and one of the ID fields expanded below. If figure 2
is taken as an illustration of a 10 sector track, then sectors 2 - 9 have
been left out.

The index mark at the beginning of the track has its position determined
by the physical index pulse hole in the disc. This mark is followed by
Gap 1. Gap 1 occurs once per track between the index mark and the start of
physical sector 0. It should always be 16 (&10) bytes long.

Gap 1 is followed by the ID field for physical sector 0. The ID field
starts with 6 sync bytes. These sync bytes synchronise the controller to
the rotational speed of the disc. The sync bytes are followed by a sector
ID mark, which simply marks the start of the sector. This in turn is
followed by the logical track number. The logical track number is normally
the same as the physical track number but, on non-standard discs, it does
not have to be the same. If you use the demonstration progran IDSDUMP on a
copy-protected disc you may find that the physical track numbers and the
logical track numbers of the protected tracks are different.

The logical track number is followed by the head number. This should be
&00 for drives 0 and 1 (which use the under side of the disc), and &01 for
drives 2 and 3 (which use the top side of the disc) but most formatting
programs use a head number of &00 for all disc surfaces. A head number of
&00 seems to be ignored by the disc controller.

Next comes the logical sector number. The logical sector number does not
have to be the same as the physical sector number and, as will be
demonstrated in module 3, there can be a small advantage to be gained by
not using the same logical and physical sector numbers.

The data size code follows the logical sector number and it indicates the
number of data bytes in the data field (see figure 3 below). This is
followed by a two byte cyclic redundancy check (CRC). The CRC is used to
check for errors in the data stored within the ID field.

The ID field is followed by Gap 2. Gap 2 should always be 11 (&0B) bytes
long and it is positioned between the ID field and the data field of each
sector on the track. Each data field is followed by Gap3. The Gap 3 after
the last data field is followed by Gap 4 which in turn is followed by Gap

5. The relationship between the sector sizes and the gap sizes for 3 1/2
inch and 5 1/4 inch discs is shown in figure 3. All the numbers in figure
3 are in decimal.

+-------------+-----------+--------+------+------+------+------+------+
| No. Sectors | Size code | Length | Gap1 | Gap2 | Gap3 | Gap4 | Gap5 |
+-------------+-----------+--------+------+------+------+------+------+
18	0	128	16	11	11	24	0
10	1	256	16	11	21	30	0
5	2	512	16	11	74	88	0
2	3	1024	16	11	255	740	0
1	4	2048	16	11	0	1028	0
+-------------+-----------+--------+------+------+------+------+------+

Figure 3. The relationship between sector size code, length and gap size.

The data field for each sector starts with 6 sync bytes which are used to
synchronise the disc controller with the rotational speed of the disc.
The sync bytes are followed by the data mark which identifies the start of
the data and also indicates if the data are marked as "deleted". Deleted
data are not physically deleted from the disc, they are simply marked as
deleted. This type of data marking will be used in module 6 to help
produce copy-protected discs. The data follow the data mark and are
terminated with two data CRC bytes.

The program IDSDUMP can be used to print the ID field for every sector on
a single density disc. I will not explain how the program works because it
uses techniques that will be covered in the next two modules. The program
is commented so that you can come back to it after reading modules 1 and 2
when you should be able to understand how it works.

10 REM: IDSDUMP
20 zeropage=&70
30 osasci=&FFE3
40 osnewl=&FFE7
50 osword=&FFF1
60 osbyte=&FFF4
70 DIM buffer &50
80 DIM mcode &200
90 FOR pass=0 TO 2 STEP 2

100 P%=mcode
110 [OPT pass
120 LDA #14 \ paged mode
130 JSR osasci
140 .mainloop
150 JSR escape \ check escape flag
160 JSR firstsector \ read sector id first sector
170 BNE notformatted \ if error, track not formatted
180 JSR tracknumber \ print track number
190 JSR sectorids \ read all sector ids
200 .notformatted
210 INC physical \ increment physical track number
220 LDA physical \ load physical track number
230 CMP last \ all done?
240 BNE mainloop \ if not copy next track
250 JSR osnewl
260 RTS \ return to BASIC
270 .escape
280 LDA &FF \ escape flag
290 BMI pressed \ bit 7 set if pressed
300 RTS
310 .pressed
320 LDA #&7E
330 JSR osbyte \ acknowledge Escape
340 BRK
350 BRK
360 EQUS "Escape"
370 BRK
380 .firstsector
390 LDA physical \ physical track number
400 STA idsblock+7 \ store physical track
410 LDA #1 \ one sector
420 STA idsblock+9 \ number of ids

430 LDA #&7F
440 LDX #idsblock MOD256
450 LDY #idsblock DIV 256
460 JSR osword
470 LDA idsblock+10 \ result
480 AND #&1E \ = 0 if formatted
490 RTS
500 .sectorids
510 LDX buffer+3 \ load data size code
520 LDA sizes,X \ load number of sectors
530 STA idsblock+9 \ store number of sectors
540 ASL A \ *2
550 ASL A \ *4
560 STA sectornumber \ store index on sectors
570 LDA #&7F
580 LDX #idsblock MOD256
590 LDY #idsblock DIV 256
600 JSR osword
610 LDA idsblock+10 \ result
620 AND #&1E
630 BNE idserror \ = 0 if OK
640 LDX #0
650 .next
660 LDY #0
670 .printloop
680 LDA buffer,X
690 JSR printbyte \ print every byte of sector table
700 INX
710 INY
720 CPY #4 \ 4 bytes per line
730 BNE printloop
740 JSR osnewl
750 CPX sectornumber \ last byte?
760 BCC next \ go back for more
770 RTS
780 .idserror
790 BRK
800 BRK
810 EQUS "Sector ID Error"
820 BRK
830 .tracknumber
840 JSR osnewl
850 LDX #title MOD256
860 LDY #title DIV 256
870 JSR printtext \ print "Track &"
880 LDA physical \ load physical track number
890 JSR printbyte \ print track number
900 LDX #header MOD256
910 LDY #header DIV 256
920 JMP printtext \ print "LT HN LS DS"
930 .printtext
940 STX zeropage
950 STY zeropage+1
960 LDY #0
970 .textloop
980 LDA (zeropage),Y
990 BEQ endtext

1000 JSR osasci
1010 INY
1020 BNE textloop
1030 .endtext
1040 RTS
1050 .printbyte
1060 PHA
1070 LSR A
1080 LSR A
1090 LSR A
1100 LSR A
1110 JSR nybble \ print MS nybble
1120 PLA
1130 JSR nybble \ print LS nybble
1140 LDA #ASC(" ")
1150 JSR osasci \ print space
1160 JMP osasci \ print space
1170 .nybble
1180 AND #&0F
1190 SED

1200 CLC
1210 ADC #&90
1220 ADC #&40
1230 CLD
1240 JMP osasci \ print nybble and return
1250 .idsblock
1260 EQUB &FF \ current drive
1270 EQUDbuffer \ address of buffer
1280 EQUD&00005B03 \ read sector ids
1290 EQUW0
1300 .sizes
1310 EQUB 18
1320 EQUB 10
1330 EQUB 5
1340 EQUB 2
1350 EQUB 1
1360 .title
1370 EQUS " Track &"
1380 BRK
1390 .header
1400 EQUB &0D
1410 EQUS " ----------"
1420 EQUB &0D
1430 EQUS "LT HN LS DS"
1440 EQUB &0D
1450 EQUS "--------------"
1460 EQUB &0D
1470 BRK
1480 .physical
1490 EQUB &00
1500 .sectornumber
1510 EQUB &00
1520 .last
1530 EQUB &00
1540]
1550 NEXT
1560 INPUT'"Number of tracks (40/80) "tracks$
1570 IF tracks$="40" ?last = 40 ELSE ?last = 80
1580 PRINT'"Insert ";?last;" track disc into current drive"
1590 PRINT"and press Spacebar to print sector IDs"
1600 REPEAT
1610 UNTIL GET=32
1620 PRINT'"Press Shift to scroll"
1630 CALL mcode

Chain the program IDSDUMP and, when prompted, put a suitable disc in the
current drive. Then press the spacebar to print the sector IDs for every
track on the disc. The track number is displayed and the logical track
(LT), head number (HN), logical sector (LS) and data size code (DS) are
printed for every physical sector on each track, starting with physical
sector 0.

It is quite interesting to use this program with a copy-protected disc.
You will almost certainly find that some of the physical and logical track
numbers are different and you may also find some unexpected logical sector
numbers. Figure 4 is a part of the output I produced with the 40 track
single density disc version of the game "Grand Prix Construction Set".

Track &0A

LT HN LS DS

14 00 00 01
14 00 01 01
14 00 02 01
14 00 03 01
14 00 04 01
14 00 05 01
14 00 06 01
14 00 07 01
14 00 08 01
14 00 09 01

Figure 4. Part of the output from the program IDSDUMP

You should notice that physical track &0A uses logical track number &14
but the physical sector numbers, indicated by the order of the sectors,
are the same as the logical sector numbers. This use of different physical
and logical track numbers is sufficient to prevent the *BACKUP command
duplicating the disc. As if to make sure it can't be copied, the disc also
uses deleted data to re-inforce the same effect. Deleted data markers
cannot be displayed with the program IDSDUMP and so I have provided a
program called VERIFY which will verify copy-protected discs and indicate
which tracks use deleted data.

The deleted data mark is a part of the data field and can be read using
the verify command. This will also be explained in detail in a later
module but, for now, you should find it interesting to use the program
VERIFY to find the deleted data on a copy-protected disc.

10 REM: VERIFY
20 REM: for copy-protected discs
30 osnewl=&FFE7
40 oswrch=&FFEE
50 osword=&FFF1
60 osbyte=&FFF4
70 DIM buffer &50
80 DIM mcode &500
90 FOR pass=0 TO 2 STEP 2

100 P%=mcode
110 [OPT pass
120 JSR osnewl
130 .mainloop
140 JSR escape \ check escape flag
150 JSR seek \ seek physical tracks 0 - 40
160 JSR firstsector \ read sector id first sector
170 BNE notverify \ if error track not formatted
180 JSR sectorids \ read all sector ids
190 JSR verify \ verify all sectors
200 .notverify
210 JSR printbyte \ print track number
220 INC physical \ increment physical track number
230 LDA physical \ load physical track number
240 CMP last \ all done?
250 BNE mainloop \ if not copy next track
260 JSR osnewl
270 RTS \ return to BASIC
280 .escape
290 LDA &FF \ escape flag
300 BMI pressed \ bit 7 set if pressed
310 RTS
320 .pressed
330 LDA #&7E
340 JSR osbyte \ acknowledge Escape
350 BRK
360 BRK
370 EQUS "Escape"
380 BRK
390 .seek
400 LDA physical \ physical track number
410 STA seekblock+7
420 LDA #&7F
430 LDX #seekblock MOD256
440 LDY #seekblock DIV 256
450 JSR osword
460 LDA seekblock+8 \ result
470 BNE seekerror \ = 0 if OK
480 RTS
490 .seekerror
500 BRK
510 BRK
520 EQUS "Seek error"
530 BRK
540 .firstsector
550 LDA physical \ physical track number
560 STA idsblock+7 \ store physical track
570 LDA #1 \ one sector
580 STA idsblock+9 \ number of ids

590 LDA #&7F
600 LDX #idsblock MOD256
610 LDY #idsblock DIV 256
620 JSR osword
630 LDA idsblock+10 \ = 0 if formatted
640 RTS
650 .sectorids
660 LDX buffer+3 \ load data size code
670 LDA sizes,X \ load number of sectors
680 STA idsblock+9 \ store number of sectors
690 ASL A \ *2
700 ASL A \ *4
710 SEC
720 SBC #4 \ sectors*4-4
730 STA sectornumber \ store index on sectors
740 TXA \ transfer data size code
750 ASL A \ *2
760 ASL A \ *4
770 ASL A \ *8
780 ASL A \ *16
790 ASL A \ *32
800 ORA idsblock+9 \ add number of sectors
810 STA verblock+9 \ store for verify
820 LDA #&7F
830 LDX #idsblock MOD256
840 LDY #idsblock DIV 256
850 JSR osword
860 LDA idsblock+10 \ result
870 BNE idserror \ = 0 if OK
880 RTS
890 .idserror
900 BRK
910 BRK
920 EQUS "Sector ID Error"
930 BRK
940 .verify
950 LDX sectornumber \ load index on table
960 LDA buffer+2,X \ load logical sector number
970 STA verblock+8 \ store for verify
980 .lowest
990 DEX

1000 DEX
1010 DEX
1020 DEX
1030 BMI finished
1040 LDA buffer+2,X \ load logical sector number
1050 CMP verblock+8 \ is it lower than the last one?
1060 BCS lowest \ branch if not lowest sector
1070 STA verblock+8 \ store if it is lower
1080 BCC lowest \ look for lower sector number
1090 .finished
1100 LDA buffer \ load logical track number
1110 STA verblock+7 \ and store for verify
1120 JSR register \ write track register
1130 LDA #&7F
1140 LDX #verblock MOD256
1150 LDY #verblock DIV 256
1160 JSR osword
1170 LDA physical \ physical track number
1180 JSR register \ write track register
1190 LDA verblock+10
1200 AND #&1E \ isolate error bits
1210 BNE vererror
1220 RTS
1230 .vererror
1240 BRK
1250 BRK
1260 EQUS "Verify error"
1270 BRK
1280 .register
1290 STA regblock+8 \ value to put in register
1300 LDA #&7F
1310 LDX #regblock MOD256
1320 LDY #regblock DIV 256
1330 JSR osword
1340 LDA regblock+9
1350 BNE regerror

1360 RTS
1370 .regerror
1380 BRK
1390 BRK
1400 EQUS "Special register error"
1410 BRK
1420 .printbyte
1430 LDA physical \ print physical track number
1440 PHA
1450 LSR A
1460 LSR A
1470 LSR A
1480 LSR A
1490 JSR nybble \ print MS nybble
1500 PLA
1510 JSR nybble \ print LS nybble
1520 LDA #ASC(" ")
1530 LDX verblock+10 \ load deleted data flag
1540 BEQ space \ if =0 not deleted
1550 LDA #ASC("d") \ deleted data mark
1560 .space
1570 JSR oswrch \ print space or "d"
1580 LDA #ASC(" ")
1590 JMP oswrch \ print space
1600 .nybble
1610 AND #&0F
1620 SED
1630 CLC
1640 ADC #&90
1650 ADC #&40
1660 CLD
1670 JMP oswrch \ print nybble and return
1680 .seekblock
1690 EQUB &FF \ current drive
1700 EQUD&00 \ does not matter
1710 EQUD&00006901 \ seek, 1 parameter
1720 .idsblock
1730 EQUB &FF \ current drive
1740 EQUDbuffer \ address of buffer
1750 EQUD&00005B03 \ read sector ids
1760 EQUW&00
1770 .verblock
1780 EQUB &FF \ current drive
1790 EQUD&00 \ does not matter
1800 EQUD&00005F03 \ verify multi sector
1810 EQUW&00
1820 .regblock
1830 EQUB &FF \ current drive
1840 EQUD&00 \ does not matter
1850 EQUD&00127A02
1860 EQUB &00 \ result
1870 .sizes
1880 EQUB 18
1890 EQUB 10
1900 EQUB 5
1910 EQUB 2
1920 EQUB 1
1930 .physical
1940 EQUB &00
1950 .sectornumber
1960 EQUB &00
1970 .last
1980 EQUB &00
1990]
2000 NEXT
2010 INPUT'"Number of tracks (40/80) "tracks$
2020 IF tracks$="40" ?last = 40 ELSE ?last = 80
2030 PRINT"Insert ";?last;" track disc into current drive"
2040 PRINT"and press the Spacebar to verify"
2050 REPEAT
2060 UNTIL GET=32
2070 CALL mcode

The program is commented to explain how it works and you might like to
come back to it after reading module 2. When the program VERIFY was used
on the "Grand Prix Construction Set" disc the output shown in figure 5 was

produced.

>LO."VERIFY"
>RUN

Number of tracks (40/80) 40
Insert 40 track disc into current drive
and press the Spacebar to verify

00 01 02 03 04 05 06 07 08 09
0A 0B 0C 0Dd 0Ed 0Fd 10d 11d 12 13
14 15 16 17 18 19d 1Ad 1Bd 1Cd 1Dd
1Ed 1Fd 20d 21d 22d 23 24 25 26 27

>

Figure 5. The output from the program VERIFY
--

The lower case letter d following tracks &0D to &11 and tracks &19 to &22
indicates that these tracks have deleted data stored on them. The game on
this disc loads in two parts and I would not be at all surprised to find
that the two parts are stored on the tracks with deleted data. If the
program VERIFY is used with a standard DFS disc it will not produce a
lower case d to indicate the use of the deleted data marker.

The Acorn DFS Osword commands - by - Gordon Horsington
--

Module 1. The DFS Osword commands (part 1)
--

+--+
| All the DFS modules in this series use programs which |
| experiment with the format and contents of discs. These |
| experiments may have disasterous effects if you use any |
| of the programs on discs which store programs or data |
| which you cannot afford to lose. You should first try |
| out the programs using discs that have either been |
| duplicated or, better still, have not been used at all. |
+--+

The DFS ROMintercepts and recognises three Osword calls. Osword &7D reads
the number of times a disk has been written, Osword &7E reads the number
of sectors on a disc, and Osword &7F executes the 8271 disc controller
commands.

Osword &7D

Osword &7D reads the catalogue for the current default disc, as specified
by the most recent *DRIVE command, and extracts the number of disc cycles
from the catalogue. The number of disc cycles is a BCD number in the range
from 0 to 99. This number gives some indication of how many times the disc
has been written. Because The disc cycle number restarts at 0 after
reaching 99 this is not a reliable count.

The catalogue is read by Osword &7D and stored in the first two pages of
the paged ROMabsolute workspace (pages &0E and &0F with OS 1.2). The
result is stored in a one byte parameter block specified by X and Y
registers on entry. The program CYCLES demonstrates how Osword &7D can be
used to read the disc cycles.

10 REM: CYCLES
20 osword=&FFF1
30 DIM mcode &100
40 FOR pass = 0 TO 2 STEP 2
50 P%=mcode
60 [OPT pass
70 LDA #&7D
80 LDX #result MOD256
90 LDY #result DIV 256

100 JSR osword
110 RTS
120 .result
130 EQUB &00
140]
150 NEXT
160 CALL mcode
170 PRINT"Disc cycles = ";~?result

Osword &7E

Osword &7E reads the catalogue for the current default disc, as specified
by the most recent *DRIVE command, and extracts the number of sectors
available on the disc. There are 800 (&320) sectors on an 80 track Acorn
DFS disc and 400 (&190) sectors on a 40 track Acorn DFS disc. Non-standard
and copy-protected discs may have different numbers of available sectors.

The catalogue is read by Osword &7E and stored in the first two pages of
the paged ROMabsolute workspace (pages &0E and &0F with OS 1.2). The
result is stored in a four byte parameter block specified by the X and Y
registers on entry. The program HOWMANYdemonstrates how Osword &7E can be
used to read the number of available sectors on a DFS disc. The least
significant byte of the number of sectors will be in byte &01 of the
result and the most significant byte in byte &02 of the result. Bytes &00
and &03 of the result should always be zero.

10 REM: HOWMANY
20 osword=&FFF1
30 DIM mcode &100
40 FOR pass = 0 TO 2 STEP 2
50 P%=mcode
60 [OPT pass
70 LDA #&7E
80 LDX #result MOD256
90 LDY #result DIV 256

100 JSR osword
110 RTS
120 .result
130 EQUD&00
140]
150 NEXT
160 CALL mcode
170 PRINT"&";~result?2;~result?1;" Sectors"

Osword &7F

Osword &7F executes the 8271 disc controller commands. If the disc
interface uses a 1770 disc controller then Osword &7F emulates the 8271
command set using the 1770. The complete command set executed by Osword
&7F is shown in figure 1. Not all the 8271 commands can be emulated by the
1770 and the Osword &7F commands from &6C to &7D are not fully implemented
with the Acorn 1770 disc interface.

When you write software which uses the Osword &7F commands from &6C to &7D
you should take care to ensure that your programs will work with the 1770
disc controller as well as with the 8271 interface. Some of the example
programs used in this module use these partly implemented Osword &7F
commands and may not work as expected with all 1770 disc interfaces. The
programs used to illustrate the other Osword &7F commands all work with
the Acorn 1770 DFS.

+---------+--------+------+---+
| Command | Param- | 1770 | Action |
| number | eters | | |
+---------+--------+------+---+
&4A	2	Yes	Write data 128 bytes
&4B	3	Yes	Write data multi-sector
&4E	2	Yes	Write deleted data 128 bytes
&4F	3	Yes	Write deleted data multi-sector
&52	2	Yes	Read data 128 bytes
&53	3	Yes	Read data multi-sector
&56	2	Yes	Read data and deleted data 128 bytes
&57	3	Yes	Read data and deleted data multi-sector
&5B	3	Yes	Read sector ids
&5E	2	Yes	Verify data and deleted data 128 bytes
&5F	3	Yes	Verify data and deleted data multi-sector
&63	5	Yes	Format track
&69	1	Yes	Seek
+---------+--------+------+---+			
&6C	0	Part	Read drive status
&75	4	Part	Initialise 8271
&75	4	Part	Load bad tracks
&7A	2	Part	Write special register
&7D	1	Part	Read special register
+---------+--------+------+---+

Figure 1. The Osword &7F command set

Osword &7F uses a variable length parameter block the address of which is
specified by the X and Y registers on entry.

Byte &00 of the parameter block is used to store the number of the disc
drive to be used with the command. If a negative drive number is used (&80
to &FF) then Osword &7F uses the currently selected drive as specified by
the most recent *DRIVE command.

Bytes &01 to &04 of the parameter block store the address of a buffer area
into which any data to be read will be placed, or from which any data to
be written will be taken. A buffer is not needed by all the commands but
bytes &01 to &04 of the parameter block are always assigned to a buffer
address even if a buffer is not used.

Column 2 of figure 1 shows that the Osword &7F commands use from 0 to 5
parameters. The number of parameters used by a call is stored in byte &05
of its parameter block. Byte &06 of the parameter block stores the command
number (column 1, figure 1), and byte &07 onwards the parameters required
by the command. The last byte of the parameter block is a result byte.
Unless it is used to read the 8271 registers, Osword &7F will normally
return the number zero in the result byte when a command has been executed
sucessfully but it returns the number &20 (ie. bit 5 set) if deleted data
have been sucessfully written to, read from, or verified on a disc.

The result is returned in byte &07 of the parameter block for Osword &7F
command number &6C, which uses no parameters. It is returned in byte &08
of the parameter block for command numbers &69 and &7D, which use one
parameter, and so on up to byte &0C of the parameter block for command
number &63 which uses 5 parameters.

Errors are reported in bits 1 to 4 of the result byte. The error codes can
be isolated by ANDing the result byte with #&1E and the error codes can be
interpreted as shown in figure 2.

+--------+----------------------------+
| Result | Interpretation |
+--------+----------------------------+
&02	Scan met equal **
&04	Scan met not equal **
&08	Clock error
&0A	Late DMA **
&0C	Sector ID CRC error
&0E	Data CRC error
&10	Drive not ready
&12	Disc write protected
&14	Physical track 0 not found
&16	Write fault
&18	Sector not found
+--------+----------------------------+	
Errors marked ** should not occur	
+-------------------------------------+

Figure 2. The error codes returned in the result byte

When designing software which uses Osword &7F you can test the result byte
for specific errors after ANDing the result with #&1E to isolate the error
bits. ANDing with #&1E excludes the deleted data bit which is not really
an error at all. Testing for specific errors is not essential because all
the above errors are fatal and any error should be used to halt your
program. Testing for specific errors can always give some useful extra
information when a routine fails to work as expected.

In the rest of this module and whole of the next module I will discuss the
commands executed by Osword &7F and give short examples of the some of
them. Later in the series these commands will be used to show you how to
create disc utility programs.

The order in which the commands will be discussed is not the order in
which they are listed in figure 1. I will cover the Osword &7F command
numbers &69 to &7D in this module. With the exception of the Seek command,
these commands are not fuly implemented with the 1770 disc interface but
they are effectivly incorporated in other commands such as Write Data,
Read Data, and Verify. The Osword &7F command numbers &4A to &63 will be
covered in the next module.

Osword &7F Read Drive Status

The Osword &7F Read Drive Status command copies the 8271 drive control

input register to the parameter block result byte. To use this command set
up the following parameter block.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &00 (no command parameters)
Parameter block &06 = &6C (read drive status command)
Parameter block &07 = result byte

Each bit of the result byte has the following meaning:

bit 7 = unused
bit 6 = READY1
bit 5 = FAULT
bit 4 = INDEX
bit 3 = WR PROTECT
bit 2 = READY0
bit 1 = TRK0
bit 0 = COUNT/OP1

These results are only really useful for tracking down hardware errors.
You can use the demonstration program STATUS with both write protected and
write enabled discs to see the effect that write protection has on the
bits of the result register. You could use this command to test for a
write protection tab on a disc but the only unique use for the Osword &7F
Read Drive Status command is to clear a "not ready" signal. It is used by
the DFS for this purpose. This is not one of the most useful commands and
you will probably not need to use it in any of your programs.

10 REM: STATUS
20 oswrch=&FFEE
30 osword=&FFF1
40 DIM mcode &100
50 FOR pass = 0 TO 2 STEP 2
60 P%=mcode
70 [OPT pass
80 LDA #&7F
90 LDX #block MOD256

100 LDY #block DIV 256
110 JSR osword
120 RTS
130 .block
140 EQUB &FF \ current drive
150 EQUD&00 \ does not matter
160 EQUB &00 \ 0 parameters
170 EQUB &6C \ read status command
180 .result
190 EQUB &00 \ result byte
200 .binary
210 LDX #8
220 .loop
230 LDA #ASC("0")
240 ASL result
250 ADC #&00
260 JSR oswrch
270 DEX
280 BNE loop
290 RTS
300]
310 NEXT
320 CALL mcode
330 PRINT"Result = &";~?result;", %";
340 CALL binary
350 PRINT

Osword &7F Initialise 8271

Osword &7F Initialise 8271 is not fully implemented with the 1770 disc
interface. For this reason you should avoid using it and use the
equivalent Osbyte &FF which is available from the operating system of all
BBC microcomputers.

The hardware default setting is equivalent to *FX 255,0,255 and this gives
access to the slowest disc drives. The Osbyte calls in figure 3 can be
used to give access to faster drives but, if you are writing software to
be used on unknown drives, it may be a good idea to select the slowest
time.

Osbyte &FF passes the values of the drive step time, settlement time, and
head load time to the disc controller on soft break and they will remain
in force until a hard break.

+-----------+-------------+-----------+---------------+
| Step time | Settle time | Load time | Osbyte &FF |
+-----------+-------------+-----------+---------------+
4	16	0	*FX 255,0,207
6	16	0	*FX 255,0,223
6	50	32	*FX 255,0,239
24	20	64	*FX 255,0,255
+-----------+-------------+-----------+---------------+

Figure 3. Disc access timings

If you need to use the Osword &7F Initialise 8271 command then the
following parameter block must be used.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &04 (4 command parameters)
Parameter block &06 = &75 (initialise 8271 command)
Parameter block &07 = &0D (init 8271 marker)
Parameter block &08 = drive step time (milliseconds / 2)
Parameter block &09 = head settlement time (miliseconds / 2)
Parameter block &0A = head unload/load time (two 4 bit numbers)
Parameter block &0B = result byte

The drive step time should be in the range from &01 to &FF, representing 2
to 510 milliseconds in 2 millisecond steps. A drive step time of zero
indicates that the drive will provide its own step pulses.

The head settlement time should be in the range &00 to &FF representing a
delay of 0 to 512 miliseconds in 2 millisecond steps.

The four most significant bits of the head unload/load time should be in
the range %0000 to %1110 (0-14) representing the number of complete disc
revolutions before the head is unloaded. %1111 specifies that the head
should not be unloaded at all. The four least significant bits of the head
unload/load time specify the time taken to load the head in 8 milisecond
intervals. This is a number in the range %0000 to %1111 (0-15)
representing head load times of 0 to 120 milliseconds.

The following code could be used to initialise the 8271.

LDA #&7F
LDX #block MOD256
LDY #block DIV 256
JSR &FFF1
RTS

.block
EQUB &FF \ current drive
EQUD&00 \ buffer address (not used)
EQUB &04 \ 4 parameters
EQUB &75 \ init 8271 command
EQUB 12 \ 24 milliseconds step time
EQUB 10 \ 20 milliseconds settle time
EQUB &C8 \ Unload = 12 revs, load =64 milliseconds
EQUB &00 \ result byte

Osword &7F Seek

The Osword &7F Seek command uses the appropriate track register as a base
from which to seek a specified physical track. Register number &12 is used
for drive 0/2 and register number &1A is used for drive 1/3. This command
does not load the head and does not check the sector IDs. If track 0 is
specified the seek command steps the head outwards until it trips the
track 0 switch. If the TRK0 signal is missing after 255 attempts to find
it, the command reports error &14 in the result byte. Error &14 is
physical track zero not found (see figure 2).

Seek track 0 can be used to find a base from which to seek any other
physical track. This can be useful if the track register contains an
unknown or incorrect physical track number.

The following parameter block is used to seek a physical track.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &01 (1 command parameter)
Parameter block &06 = &69 (seek command)
Parameter block &07 = physical track number
Parameter block &08 = result byte

The Osword &7F Seek command is useful if, for example, you want to write
data onto a copy-protected disc which uses different physical and logical
track numbers. You would use it to seek the physical track number and then
use the Osword &7F Write Special Register command to write the logical
track number into the appropriate track register. After writing to the
disc you should then either rewrite the physical track number into the
appropriate track register or seek track 0.

The following code could be used to seek track 0 on the current drive.

LDA #&7F
LDX #block MOD256
LDY #block DIV 256
JSR &FFF1
RTS

.block
EQUB &FF \ current drive
EQUD&00 \ buffer address (not used)
EQUB &01 \ 1 parameter
EQUB &69 \ seek command
EQUB &00 \ track 0
EQUB &00 \ result byte

Osword &7F Load Bad Tracks

This command is used to tell the 8271 that there are one or two "bad
tracks" on a disc. This command is not fully implemented in the 1770 disc
interface and is not used by either DFS. Because it is not used by the DFS
it can be used for copy-protecting discs when the DFS *BACKUP command will
give the "disc fault" error. Copy-protection will be covered in detail in
module 6.

Two bad track registers are available for each disc surface and they are
used to specify which tracks are to be totally ignored by the 8271. For
example, if track 1 is bad the 8271 will use track 3 when track 2 is
specified. As far as the disc controller is concerned physical track 3 is
seen as physical track 2, physical track 4 is seen as physical track 3,
and so on.

When bad tracks are used their track number IDs should be set to &FF when
the disc is formatted. Track 0 must not be set as a bad track. The command
lasts until a hard reset.

The following parameter block is used by Osword &7F Load Bad Tracks.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &04 (4 command parameters)
Parameter block &06 = &75 (load bad tracks command)
Parameter block &07 = drive pair (&10 = drive 0/2, &18 = drive 1/3)

Parameter block &08 = bad track number 1
Parameter block &09 = bad track number 2
Parameter block &0A = current physical track
Parameter block &0B = result byte

The following code could be used to load bad tracks 1 and 2. Osword &7F
Seek command is used to position the head over a known physical track, in
this case track zero.

JSR seekzero \ seek track zero
LDA #&7F
LDX #block MOD256
LDY #block DIV 256
JSR &FFF1
RTS

.block
EQUB &00 \ drive 0
EQUD&00 \ buffer address (not used)
EQUB &04 \ 4 parameters
EQUB &75 \ load bad tracks command
EQUB &10 \ drive 0/2
EQUB &01 \ track 1
EQUB &02 \ track 2
EQUB &00 \ current track
EQUB &00 \ result byte

Osword &7F Write Special Register

The internal registers of the 8271 can be overwritten using the Osword &7F
Write Special Register command. The contents of all the registers in
figure 4 can be altered but you are advised to limit yourself to altering
the track registers, numbers &12 and &1A. The bad track registers have
their own Osword &7F Load Bad Tracks command described above but they can
also be altered with the Osword &7F Write Special Register command. If you
decide to alter any other registers the results are likely to be
disasterous - you have been warned!

+--------------+---------------------------------+
| Register no. | Register |
+--------------+---------------------------------+
&06	Scan sector register
&10	Bad track register 1, drive 0/2
&11	Bad track register 2, drive 0/2
&12	Track register, drive 0/2
&13	Scan count register (LSB)
&14	Scan count register (MSB)
&17	DMA mode register
&18	Bad track register 1, drive 1/3
&19	Bad track register 2, drive 1/3
&1A	Track register, drive 1/3
&22	Drive control input register
&23	Drive control output register
+--------------+---------------------------------+

Figure 4. The 8271 registers

The following parameter block must be used with the Osword &7F Write
Special Register command.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &02 (2 command parameters)
Parameter block &06 = &7A (write special register command)
Parameter block &07 = register number (from figure 4)
Parameter block &08 = value to put in register
Parameter block &09 = result byte

The track registers &12 (drive 0/2) and &1A (drive 1/3) are used by the

disc controller to identify its current track position. These registers
contain the number of the physical track. If the logical track number
stored in the sector ID is not the same as the physical track number you
should always use the write special register command to store the logical
track number in the track register before attempting to read from or write
to the disc. You must always reset the track register to its original
value after reading or writing. As you have seen in the module 0, using
different logical and physical track numbers is yet another technique for
copy-protecting discs.

The following code could be used to seek track 0 and then load the track
register for drive 0/2 with the number 1. Track zero will then be seen as
physical track 1.

JSR seekzero \ seek track zero
LDA #&7F
LDX #block MOD256
LDY #block DIV 256
JSR &FFF1
RTS

.block
EQUB &00 \ drive 0
EQUD&00 \ buffer address (not used)
EQUB &02 \ 2 parameters
EQUB &7A \ write special register command
EQUB &12 \ track register drive 0/2
EQUB &01 \ track 1
EQUB &00 \ result byte

Osword &7F Read Special Register

The internal registers of the 8271 can be read using Osword &7F Read
Special Register. The contents of all the registers in figure 4 can be
read but not all the registers give useful results. The drive control
input register can be read using Osword &7F Read Drive Status command but
the drive control output register, and all the other registers, have to be
read with the Osword &7F Read Special Register command.

The following parameter block must be used with the Osword &7F Read Special
Register command.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &01 (1 command parameter)
Parameter block &06 = &7D (read special register command)
Parameter block &07 = register number (from figure 4)
Parameter block &08 = result byte

The program OUTPUTdemonstrates how to read the contents of the drive
control output register for the current drive. The result is printed in
hexadecimal and binary. Each bit of the result has the following meaning:

bit 7 = SELECT 1
bit 6 = SELECT 0
bit 5 = FAULT RESET?OP0
bit 4 = LOWCURRENT
bit 3 = LOAD HEAD
bit 2 = DIRECTION
bit 1 = SEEK/STEP
bit 0 = WR ENABLE

It is interesting to run the program OUTPUTwith drive 0 selected (using
*DRIVE 0) and then select drive 1 (with *DRIVE 1) and run the program
again to see the difference it makes to the result. If you want to read
any other register change the value &23 in line 180 for another register
number taken from figure 4.

10 REM: OUTPUT
20 oswrch=&FFEE
30 osword=&FFF1

40 DIM mcode &100
50 FOR pass = 0 TO 2 STEP 2
60 P%=mcode
70 [OPT pass
80 LDA #&7F
90 LDX #block MOD256

100 LDY #block DIV 256
110 JSR osword
120 RTS
130 .block
140 EQUB &FF \ current drive
150 EQUD&00 \ does not matter
160 EQUB &01 \ 1 parameter
170 EQUB &7D \ read special register command
180 EQUB &23 \ drive control output register
190 .result
200 EQUB &00 \ result byte
210 .binary
220 LDX #8
230 .loop
240 LDA #ASC("0")
250 ASL result
260 ADC #&00
270 JSR oswrch
280 DEX
290 BNE loop
300 RTS
310]
320 NEXT
330 CALL mcode
340 PRINT"Result = &";~?result;", %";
350 CALL binary
360 PRINT

The Acorn DFS Osword commands - by - Gordon Horsington
--

Module 2. The DFS Osword commands (part 2)
--

+--+
| All the DFS modules in this series use programs which |
| experiment with the format and contents of discs. These |
| experiments may have disasterous effects if you use any |
| of the programs on discs which store programs or data |
| which you cannot afford to lose. You should first try |
| out the programs using discs that have either been |
| duplicated or, better still, have not been used at all. |
+--+

Osword &7F

Osword &7F executes the 8271 disc controller commands. If the disc
interface uses a 1770 disc controller then Osword &7F emulates the 8271
command set using the 1770. The complete command set executed by Osword
&7F is shown in figure 1. Osword &7F commands from &69 to &7D were covered
in module 1. In this module I will explain how to use the Osword &7F
command numbers &4A to &63.

+---------+--------+------+---+
| Command | Param- | 1770 | Action |
| number | eters | | |
+---------+--------+------+---+
&4A	2	Yes	Write data 128 bytes
&4B	3	Yes	Write data multi-sector
&4E	2	Yes	Write deleted data 128 bytes
&4F	3	Yes	Write deleted data multi-sector
&52	2	Yes	Read data 128 bytes
&53	3	Yes	Read data multi-sector
&56	2	Yes	Read data and deleted data 128 bytes
&57	3	Yes	Read data and deleted data multi-sector
&5B	3	Yes	Read sector ids
&5E	2	Yes	Verify data and deleted data 128 bytes
&5F	3	Yes	Verify data and deleted data multi-sector
&63	5	Yes	Format track
&69	1	Yes	Seek
+---------+--------+------+---+			
&6C	0	Part	Read drive status
&75	4	Part	Initialise 8271
&75	4	Part	Load bad tracks
&7A	2	Part	Write special register
&7D	1	Part	Read special register
+---------+--------+------+---+

Figure 1. The Osword &7F commands

Osword &7F Read Sector IDs

Before using this command you should ensure that the appropriate track
register contains the current physical track number or use the Osword &7F
Seek command to seek track 0. Osword &7F Read Sector IDs uses the
appropriate track register as a base from which to seek a specified
physical track. It then reads the required number of sector IDs and stores
them in the buffer area specified in the parameter block. Sector IDs are
transfered into the buffer area in physical sector order. The command
returns four bytes For each sector ID that it reads.

byte 0 = logical track number
byte 1 = head number
byte 2 = logical sector number
byte 3 = data size code (0=128, 1=256, ... 4=2048)

The following parameter block is used by Osword &7F read sector IDs:

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address for sector IDs
Parameter block &05 = &03 (3 command parameters)
Parameter block &06 = &5B (read sector IDs command)
Parameter block &07 = physical track number
Parameter block &08 = &00
Parameter block &09 = number of IDs to be read
Parameter block &0A = result byte

One of many possible uses for this command is to check if a disc has been
formatted. If Osword &7F Read Sector IDs fails to find at least one sector
on track zero the most probable reason is that the disc has not been
formatted and this will be reported as error number &18, sector not found
(see figure 2). The program NOTFORMuses this idea to see if a disc in the
current drive has been formatted.

+--------+----------------------------+
| Result | Interpretation |
+--------+----------------------------+
&02	Scan met equal **
&04	Scan met not equal **
&08	Clock error
&0A	Late DMA **
&0C	Sector ID CRC error
&0E	Data CRC error
&10	Drive not ready
&12	Disc write protected
&14	Physical track 0 not found
&16	Write fault
&18	Sector not found
+--------+----------------------------+	
Errors marked ** should not occur	
+-------------------------------------+

Figure 2. The error codes returned in the result byte

10 REM: NOTFORM
20 osword=&FFF1
30 DIM mcode &100
40 FOR pass = 0 TO 2 STEP 2
50 P%=mcode
60 [OPT pass
70 LDA #&7F
80 LDX #block MOD256
90 LDY #block DIV 256

100 JSR osword
110 RTS
120 .block
130 EQUB &FF \ current drive
140 EQUDbuffer \ buffer address
150 EQUB &03 \ 3 parameters
160 EQUB &5B \ read sector IDs
170 EQUB &00 \ track 0
180 EQUB &00
190 EQUB &01 \ read 1 sector
200 .result
210 EQUB &00 \ result byte
220 .buffer
230 EQUD&00
240]
250 NEXT
260 CALL mcode
270 IF ?result=&18 PRINT"Disc not formatted" ELSE PRINT"Disc formatted"

The Osword &7F Read Sector IDs command was used in the program IDSDUMP
used in module 0. After working through this module you might like to go
back to module 0 and look again at the example programs.

Osword &7F Format Track

The Osword &7F Format Track command uses a sector table stored in the
buffer specified in the parameter block. This table contains four bytes
for every ID field on the track. For each sector to be on the disc the
following bytes must be stored in the buffer:

byte 0 = logical track number (&00-&FF)
byte 1 = head number (use &00)
byte 2 = logical sector number (&00-&FF)
byte 3 = data size code (0=128, 1=256, ... 4=2048)

The following parameter block is used with the Osbyte &7F Format Track
command:

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address for sector IDs
Parameter block &05 = &05 (5 command parameters)
Parameter block &06 = &63 (format track command)
Parameter block &07 = physical track number
Parameter block &08 = gap 3 size (see figure 2)
Parameter block &09 = sector size/number of sectors
Parameter block &0A = gap 5 size (always use &00)
Parameter block &0B = gap 1 size (always use &10)
Parameter block &0C = result byte

The gap 3 size can be taken from figure 3 (all numbers in figure 3 are in
decimal).

The most significant 3 bits of the number stored in parameter block &09
contain the sector size code (column 2 of figure 3). The least significant
5 bits contain the number of sectors per track. To calculate the number to
be stored in parameter block &09 multiply the size code by 32 and add the
number of sectors. For example, if you want to format a track with five
sectors of 512 bytes then parameter block &09 will contain 2*32+5 = 69 =
&45.

+-------------+-----------+--------+------+------+------+------+------+
| No. Sectors | Size code | Length | Gap1 | Gap2 | Gap3 | Gap4 | Gap5 |
+-------------+-----------+--------+------+------+------+------+------+
18	0	128	16	11	11	24	0
10	1	256	16	11	21	30	0
5	2	512	16	11	74	88	0
2	3	1024	16	11	255	740	0
1	4	2048	16	11	0	1028	0
+-------------+-----------+--------+------+------+------+------+------+

Figure 3. The relationship between sector size code, length and gap size.

The Osword &7F Format Track command uses the appropriate track register as
a base from which to seek the specified physical track. It then uses the
sector IDs stored in the buffer to create the ID fields for each sector.
It calculates and writes the ID field CRC bytes, creates the correct gap
sizes, fills the data fields with bytes of &E5, and calculates and writes
the data field CRC bytes.

The program FORM10 can be used to format physical track &27 of the disc in
the current drive with 10 sectors of 256 bytes. This program will destroy
all the data stored on track &27 - you have been warned!

The buffer used in the program FORM10 stores 4 bytes for each sector.
Taking physical sector &00 in line 240 as an example, The bytes &27, &00,
&00 and &01 are stored (the order of the bytes is reversed with the EQUD
command). These four bytes represent the logical track number, the head
number, the logical sector number and the data size code. You can alter
the logical track and sector numbers and use the IDSDUMP program from
module 0 to see the effect this has on the format of the disc. If you
alter the logical track number you will be unable to *BACKUP the disc.

10 REM: FORM10
20 DIM mcode &100

30 osword=&FFF1
40 FORpass=0 TO 2 STEP 2
50 P%=mcode
60 [OPT pass
70 LDA #&7F
80 LDX #block MOD256
90 LDY #block DIV 256

100 JSR osword
110 RTS
120 .block
130 EQUB &FF \ current drive
140 EQUDbuffer \ address of sector table
150 EQUB &05 \ 5 parameters
160 EQUB &63 \ format track command
170 EQUB &27 \ physical track &27
180 EQUB 21 \ gap 3 (from figure 2)
190 EQUB &2A \ 10 sectors of 256 bytes
200 EQUB &00 \ gap 5 (always &00)
210 EQUB &10 \ gap 1 (always &10)
220 EQUB 0 \ result byte
230 .buffer
240 EQUD&01000027
250 EQUD&01010027
260 EQUD&01020027
270 EQUD&01030027
280 EQUD&01040027
290 EQUD&01050027
300 EQUD&01060027
310 EQUD&01070027
320 EQUD&01080027
330 EQUD&01090027
340]
350 NEXT
360 CALL mcode

There is more to formatting a disc than just formatting all the tracks. It
is also necessary to create an empty catalogue on track 0 of the disc.
Formatting discs will be covered in more detail in module 3.

--
Osword &7F Verify Data and Deleted Data multi-sector
--

Osword &7F Verify Data and Deleted Data multi-sector uses the appropriate
track register as a base from which to seek the track and sector specified
in the parameter block. It attempts to verify the sector and returns &00
in the result byte if it is successful. It returns &20 in the result byte
if deleted data have been successfully verified. If more than one sector
is specified this procedure repeats until either all the sectors have been
verified or an error occurs.

The following parameter block is used with the Osbyte &7F Verify Data and
Deleted Data multi-sector command:

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &03 (3 command parameters)
Parameter block &06 = &5F (verify multi-sector command)
Parameter block &07 = logical track number
Parameter block &08 = logical sector number
Parameter block &09 = sector size/number of sectors
Parameter block &0A = result byte

The most significant 3 bits of the number stored in parameter block &09
contain the sector size code (column 2 of figure 3). The least significant
5 bits contain the number of sectors per track. To calculate the number to
be stored in parameter block &09 multiply the size code by 32 and add the
number of sectors. For example, if you want to verify a track with ten
sectors of 256 bytes then parameter block &09 will contain 1*32+10 = 42 =
&2A.

If you want to verify discs that use different physical and logical track
numbers it is necessary to use the Osword &7F Seek command to find the
appropriate track, Osword &7F Read Sector IDs to read the logical track

and sector number, and Osword &7F Write Special Register to write the
logical track number into the appropriate track register before using
Osword &7F Verify Data and Deleted Data multi-sector. After verifying the
sector(s) it is then necessary to use Osword &7F Write Special Register to
write the physical track number back into the appropriate track register.
This procedure was used in the program VERIFY in module 0.

The following code could be used to verify track &27 of the disc formatted
with the program FORM10

LDA #&7F
LDX #block MOD256
LDY #block DIV 256
JSR &FFF1
RTS

.block
EQUB &FF \ current drive
EQUD&00 \ buffer address (not used)
EQUB &03 \ 3 parameters
EQUB &5F \ verify command
EQUB &27 \ logical track &27
EQUB &00 \ start with logical sector &00
EQUB &2A \ 10 sectors of 256 bytes
EQUB &00 \ result byte

Osword &7F Verify Data and Deleted Data 128 bytes

If you need to verify just one sector of 128 bytes you can use the Osword
&7F Verify Data and Deleted Data 128 bytes command. This command uses the
following parameter block.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &02 (2 command parameters)
Parameter block &06 = &5E (verify 128 bytes command)
Parameter block &07 = logical track number
Parameter block &08 = logical sector number
Parameter block &09 = result byte

Although using this command saves you the trouble of calculating the
sector size/number of sectors parameter, I cannot recommend using it when
the multi-sector command is so much more versitile.

Osword &7F Write Data multi-sector

Osword &7F Write Data multi-sector uses the appropriate track register as
a base from which to seek the track and sector specified in the parameter
block. If it cannot find the track and sector it returns the sector not
found error (&18) in the result byte. If it finds the required track and
sector it writes a data mark at the start of the data field and copies the
first sector of data from the buffer to the specified sector. If more than
one sector is specified this procedure repeats until either all the
sectors have been written or an error occurs.

The following parameter block is used with the Osword &7F Write Data
multi-sector command.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address
Parameter block &05 = &03 (3 command parameters)
Parameter block &06 = &4B (write data multi-sector command)
Parameter block &07 = logical track number
Parameter block &08 = logical sector number
Parameter block &09 = sector size/number of sectors
Parameter block &0A = result byte

The most significant 3 bits of the number stored in parameter block &09
contain the sector size code (column 2 of figure 3). The least significant

5 bits contain the number of sectors per track. To calculate the number to
be stored in parameter block &09 multiply the size code by 32 and add the
number of sectors. For example, if you want to verify a track with ten
sectors of 256 bytes then parameter block &09 will contain 1*32+10 = 42 =
&2A.

The program WRITE10 can be used to demonstrate this command. This program
will destroy all the data stored on track &01 of the disc it uses - you
have been warned!

WRITE10 uses an normally formatted DFS disc and stores 2.5k of data on
track &01. The buffer starts at PAGE (line 240) and so the program could
be used to store a small BASIC program on a disc. The data are stored
without an entry in the DFS catalogue and cannot be read using any of the
DFS star commands. If you use the DFS commands to store any other data on
the disk, the data stored with WRITE10 could be overwritten. The data can
be read from the disc using the Osword &7F Read Data and Deleted Data
command which is explained later in this module.

10 REM: WRITE10
20 mcode = &0A00
30 osword=&FFF1
40 page = PAGE
50 FORpass=0 TO 2 STEP 2
60 P%=mcode
70 [OPT pass
80 LDA #&7F
90 LDX #block MOD256

100 LDY #block DIV 256
110 JSR osword
120 LDA result
130 BEQ ok
140 BRK
150 BRK
160 EQUS "Write error"
170 .ok
180 BRK
190 EQUS "Write sucessful"
200 BRK
210 BRK
220 .block
230 EQUB &FF \ current drive
240 EQUDpage \ start at PAGE
250 EQUB &03 \ 3 parameters
260 EQUB &4B \ write data multi-sector
270 EQUB &01 \ logical track 1
280 EQUB &00 \ start logical sector 0
290 EQUB &2A \ 10 sectors of 256 bytes
300 .result
310 EQUB &00 \ result byte
320]
330 NEXT
340 PRINT''"Type: CALL &";~mcode;" to save 10 sectors"'

Osword &7F Write Data 128 bytes

If you need to write just one sector of 128 bytes you can use the Osword
&7F Write Data 128 bytes command. This command uses the following
parameter block.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address
Parameter block &05 = &02 (2 command parameters)
Parameter block &06 = &4A (write data 128 bytes command)
Parameter block &07 = logical track number
Parameter block &08 = logical sector number
Parameter block &09 = result byte

Although using this command saves you the trouble of calculating the
sector size/number of sectors parameter, I cannot recommend using it when
the multi-sector command is so much more versitile.

--
Osword &7F Write Deleted Data multi-sector
--

Osword &7F Write Deleted Data multi-sector uses the appropriate track
register as a base from which to seek the track and sector specified in
the parameter block. If it cannot find the track and sector it returns the
sector not found error (&18) in the result byte. If it finds the required
track and sector it writes a deleted data mark at the start of the data
field and copies the first sector of data from the buffer to the specified
sector. If more than one sector is specified this procedure repeats until
either all the sectors have been written or an error occurs.

The following parameter block is used with the Osword &7F Write Deleted
Data multi-sector command.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address
Parameter block &05 = &03 (3 command parameters)
Parameter block &06 = &4F (write deleted data multi-sector command)
Parameter block &07 = logical track number
Parameter block &08 = logical sector number
Parameter block &09 = sector size/number of sectors
Parameter block &0A = result byte

The most significant 3 bits of the number stored in parameter block &09
contain the sector size code (column 2 of figure 3). The least significant
5 bits contain the number of sectors per track. To calculate the number to
be stored in parameter block &09 multiply the size code by 32 and add the
number of sectors. For example, if you want to verify a track with ten
sectors of 256 bytes then parameter block &09 will contain 1*32+10 = 42 =
&2A.

The program WRITE10 can be modified to demonstrate this command. Alter
line 260 from EQUB &4B to EQUB &4F. Using deleted data will effectivly
disable the *BACKUP command. Don't forget that this program will destroy
all the data stored on track &01 of the disc it uses - you have been
warned!

Osword &7F Write Deleted Data 128 bytes

If you need to write just one sector of 128 bytes of deleted data you can
use the Osword &7F Write Deleted Data 128 bytes command. This command uses
the following parameter block.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &02 (2 command parameters)
Parameter block &06 = &4F (write deleted data 128 bytes command)
Parameter block &07 = logical track number
Parameter block &08 = logical sector number
Parameter block &09 = result byte

Although using this command saves you the trouble of calculating the
sector size/number of sectors parameter, I cannot recommend using it
when the multi-sector command is so much more versitile.

--
Osword &7F Read Data and Deleted Data multi-sector
--

Osword &7F Read Data and Deleted Data multi-sector uses the appropriate
track register as a base from which to seek the track and sector specified
in the parameter block. If it cannot find the track and sector it returns
the sector not found error (&18) in the result byte. If it finds the
required track and sector it copies the first sector of data into the
buffer specified in the parameter block. If more than one sector is
specified this procedure repeats until either all the sectors have been
read or an error occurs.

The following parameter block is used with the Osword &7F Write Deleted
Data multi-sector command.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address
Parameter block &05 = &03 (3 command parameters)
Parameter block &06 = &57 (read data and deleted data multi-sector)
Parameter block &07 = logical track number
Parameter block &08 = logical sector number
Parameter block &09 = sector size/number of sectors
Parameter block &0A = result byte

The most significant 3 bits of the number stored in parameter block &09
contain the sector size code (column 2 of figure 3). The least significant
5 bits contain the number of sectors per track. To calculate the number to
be stored in parameter block &09 multiply the size code by 32 and add the
number of sectors. For example, if you want to verify a track with ten
sectors of 256 bytes then parameter block &09 will contain 1*32+10 = 42 =
&2A.

The program READ10 can be used to demonstrate this command. This program
reads the data written onto a disc by the program WRITE10, which was used
to illustrate the Osword &7F Write Data multi-sector command.

READ10 uses an normally formatted DFS disc and reads 2.5k of data from
track &01. The buffer starts at PAGE (line 240) and so the program could
be used to read a small BASIC program from a disc. The programs WRITE10,
with the Osword &7F write deleted data command, and READ10 could be used
to create a copy-protected disc. I will return to copy-protection in later
modules of this series.

10 REM: READ10
20 mcode = &0A00
30 osword=&FFF1
40 page = PAGE
50 FORpass=0 TO 2 STEP 2
60 P%=mcode
70 [OPT pass
80 LDA #&7F
90 LDX #block MOD256

100 LDY #block DIV 256
110 JSR osword
120 LDA result
130 BEQ ok
140 BRK
150 BRK
160 EQUS "Read error"
170 .ok
180 BRK
190 EQUS "Read sucessful"
200 BRK
210 BRK
220 .block
230 EQUB &FF \ current drive
240 EQUDpage \ start at PAGE
250 EQUB &03 \ 3 parameters
260 EQUB &57 \ read data and deleted data
270 EQUB &01 \ logical track 1
280 EQUB &00 \ start logical sector 0
290 EQUB &2A \ 10 sectors of 256 bytes
300 .result
310 EQUB &00 \ result byte
320]
330 NEXT
340 PRINT''"Type: CALL &";~mcode;" to read 10 sectors"'

Osword &7F Read Data and Deleted Data 128 bytes

If you need to read just one sector of 128 bytes you can use the Osword
&7F Read Data and Deleted Data 128 bytes command. This command uses the
following parameter block.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &02 (2 command parameters)
Parameter block &06 = &56 (read data and deleted data 128 bytes)
Parameter block &07 = logical track number
Parameter block &08 = logical sector number
Parameter block &09 = result byte

Although using this command saves you the trouble of calculating the
sector size/number of sectors parameter, I can not recommend using it when
the multi-sector command is so much more versitile.

Osword &7F Read Data multi-sector

If you need to read data which is not marked as deleted data then you can
use the Osword &7F Read Data multi-sector command. This command uses the
following parameter block.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &02 (2 command parameters)
Parameter block &06 = &53 (read data multi sector command)
Parameter block &07 = logical track number
Parameter block &08 = logical sector number
Parameter block &09 = sector size/number of sectors
Parameter block &0A = result byte

This command can be used in exactly the same way as the Osword &7F Read
Data and Deleted Data command but it cannot read deleted data. There is no
need to use this command when the Osword &7F Read Data and Deleted Data
command is more versitile.

Osword &7F Read Data 128 bytes

If you need to read just one sector of 128 bytes of data which is not
marked as deleted data then you can use the Osword &7F Read Data 128 bytes
command. This command uses the following parameter block.

Parameter block &00 = drive number (&00-&03 or &FF)
Parameter block &01 - &04 = buffer address (not used)
Parameter block &05 = &02 (2 command parameters)
Parameter block &06 = &52 (read data 128 bytes command)
Parameter block &07 = logical track number
Parameter block &08 = logical sector number
Parameter block &09 = result byte

Although using this command saves you the trouble of calculating the
sector size/number of sectors parameter, I can not recommend using it when
the multi-sector command is so much more versitile.

The Acorn DFS Osword commands - by - Gordon Horsington
--

Module 3. Formatting single density discs

+--+
| All the DFS modules in this series use programs which |
| experiment with the format and contents of discs. These |
| experiments may have disasterous effects if you use any |
| of the programs on discs which store programs or data |
| which you cannot afford to lose. You should first try |
| out the programs using discs that have either been |
| duplicated or, better still, have not been used at all. |
+--+

Writing your own disc formatting program can be quite a useful exercise
because it will give you the opportunity to optimise the speed at which
data can be written to and read from a disc. You might think that all disc
formatting programs are the same but, if you do, then you are quite wrong.

The time taken to write to and read from a disc is affected by the
settings on the keyboard DIL switches and the logical sector offsets
created during formatting. If you have a DIL switch block on your keyboard
you might like to experiment with the settings to increase the performance
of your disc drives.

Figure 1 shows the effect of switching links 3 and 4 on the keyboard DIL
switch block, but do remember that some disc drive manuals specify the
settings to be used and these should not be altered. If you do not have a
switch block fitted on you keyboard the effect of using these switches can
be simulated using Osbyte &FF. Osbyte &FF takes effect after a soft Break
and remains active until a hard Break. All but the slowest disc drives can
be operated with link 3 open (off) and link 4 closed (on) and many modern
disc drives can be used with both links 3 and 4 closed (on). If the
settings for links 3 and 4 have not been specified for your disc drive you
should experiment and use the fastest reliable speed.

+---+---+-----------+-------------+-----------+---------------+---------+
| 3 | 4 | Step time | Settle time | Load time | Osbyte &FF | Speed |
+---+---+-----------+-------------+-----------+---------------+---------+
on	on	4	16	0	*FX 255,0,207	Fastest
on	off	6	16	0	*FX 255,0,223	Faster
off	on	6	50	32	*FX 255,0,239	Fast
off	off	24	20	64	*FX 255,0,255	Slow
+---+---+-----------+-------------+-----------+---------------+---------+

Figure 1. The effect of keyboard switches 3 and 4 on disc access times
--

The Acorn DFS uses discs with either 40 or 80 tracks and with 10 sectors
of 256 bytes per track. The physical and logical track numbers must be the
same so that, for example, the ten ID fields on track &01 must all use
logical track number &01. The 10 sectors on each track must use the
logical sector numbers &00 to &09 but the logical and physical sector
numbers do not have to be the same.

Logical sectors &00 and &01 on physical track &00 store the disc
catalogue. The catalogue uses the structure shown in figure 2 and an empty
catalogue must be created by the disc formatting program.

Sector &00 Track &00

&00 - &07 First 8 bytes of the 12 byte disc title.
&08 - &0E First file name.
&0F Directory of first file name.
&10 - &16 Second file name.
&17 Directory of second file name.
&18 - &FF and so on for the 31 files.

Sector &01 Track &00

&00 - &03 Last 4 bytes of the 12 byte disc title.
&04 Disc cycles (BCD number 0-99).
&05 8 * (Number of catalogue entries).
&06 (bits 0 and 1) Most significant two bits of the number of

sectors on the disc.
(bits 4 and 5) The boot up option set using *OPT4,n.

&07 The least significant 8 bits of the (10 bit) number of sectors
on the disc. The most significant bits are in bits 0 and 1 of
byte &06.

&08 - &09 Load address of first file, least significant 16 bits.
&0A - &0B Execution address of first file, least significant 16 bits.
&0C - &0D Length of first file, least significant 16 bits.
&0E (bits 0 and 1) Startsector of first file, most sig. 2 bits.

(bits 2 and 3) Load address of first file, most sig. 2 bits.
(bits 4 and 5) Length of first file, most sig. 2 bits.
(bits 6 and 7) Execution address of first file, most sig. bits.

&0F Start sector of first file, least significant 8 bits.
&10 - &FF Load address, execution address, file length, and sector number

for every other file on the disc (8 bytes per file). This is
the information given by the *INFO call.

Figure 2. The structure of the DFS catalogue
--

Although there is a lot of information stored in a disc catalogue nearly
all this information is written by the DFS when the disc is being used. An
Acorn single density formatting program must fill the catalogue with null
bytes (&00) with the exception of bytes &06 and &07 of sector &01. These
bytes must store the number of sectors made available on the disc by the
formatting program.

When a single density formatter is used with an eighty track disc drive it
will create &320 sectors on a disc. Bits 0 and 1 of byte &06 on logical
sector &01 must store the number &03 (%11), and byte &07 of logical sector
&01 must store the number &20. When the program is used with a fourty
track disc drive it will create &190 sectors. Bits 0 and 1 of byte &06 on
logical sector &01 must then store the number &01 (%01), and byte &07 of
logical sector &01 must store the number &90. Figure 3 shows a part of a
sector dump made with a newly formatted eighty track disc. The only
information stored in the empty catalogue is the number of available
sectors on the disc.

Track: 00 Logical Sector: 00

0 1 2 3 4 5 6 7

00 0 0 0 0 0 0 0 0
08 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
20 ...

Track: 00 Logical Sector: 01

0 1 2 3 4 5 6 7

00 0 0 0 0 0 0 3 20
08 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
20 ...

Figure 3. Part of the catalogue of a newly formatted 80 track disc
--

The most efficient operation of an Acorn single density disc occurs if
physical sector &00 does not store logical sector &00 on every track. The
optimum distribution of logical sectors with respect to physical sectors
for most disc drives is shown in figure 4. Figure 4 shows that, on track
&00, the physical and logical sector numbers are the same. On track &01,
physical sector &00 stores logical sector &07, physical sector &01 stores

logical sector &08, and so on. This is known as a logical sector offset.

Physical sector numbers

| 00 01 02 03 04 05 06 07 08 09
---+------------------------------

T 00 | 00 01 02 03 04 05 06 07 08 09
r 01 | 07 08 09 00 01 02 03 04 05 06 Logical
a 02 | 04 05 06 07 08 09 00 01 02 03 sector
c 03 | 01 02 03 04 05 06 07 08 09 00 numbers
k 04 | 08 09 00 01 02 03 04 05 06 07
s 05 | 05 06 ...

Figure 4. The logical sectors numbers for optimum speed

The logical sector numbers are offset because the disc drive head takes a
predictable amount of time to step from one track to the next when writing
to or reading from a disc.

Consider what will happen if you use the *LOAD command to read a file
which is stored in 10 sectors starting with sector &02 on track &00. This
hypothetical file will be stored on logical sectors &02 to &09 on track
&00, and on logical sectors &00 and &01 on track &01. The sectors on track
&00 will be loaded from sector &02 to sector &09 and then the head will
step in to track &01. This step will take a predictable amount of time
which is long enough for most disc drives to miss logical sector &00 if it
is stored on physical sector &00. The disc would then have to make a
complete revolution before sector &00 reappears. Using the offset
illustrated in figure 4 would ensure that, for most disc drives, sector
&00 on track &01 would become immeadiatly available as the head steps in
from track &00 to &01. All the tracks in figure 4 use the same sector
offset with respect to each other to give an optimum distribution of
logical sectors.

Not all disc drives take the same amount of time to step the head from one
track to another and for this reason the amount of offset used to produce
an optimally formated disc will vary from one disc drive to another. The
distribution of logical sectors shown in figure 4 uses an offset of 3
sectors. That is, sector &00 is offset 3 sectors with respect to sector
&09 on the preceding track. A modern fast disc drive might only require an
offset of 2 sectors so that the physical logical sector &00 on track &01
will be logical sector &08. An old disc drive liberated from the local
junk shop might require an offset of 4 or even 5 sectors.

The program OFFSET can be used to experiment with the amount of offset
given to the logical sector numbers. It can format both 40 and 80 track
discs with any offset from 0 to 9 sectors.

To find the amount of offset needed with a particular disc drive you
should create a set of 10 discs with the offset varying from 0 to 9
sectors. Each disc should be used to measure the time taken to store a
very large file a large number of times within a program loop. It is a
good idea to store the same large file 20 or 30 times and to use a stop
watch rather than the computer to measure the time taken. If you start
with an offset of 9 sectors and work down to zero offset you should find
that the time decreases with each disc until, with one disc, there is an
increase in the time taken to store the files. If, for example, the
increase is with a disc using an offset of 2 sectors then an optimum
offset of 3 sectors is needed for your disc drive. Most disc drives need
an offset of 3 sectors.

10 REM: OFFSET
20 DIM mcode &400
30 oswrch=&FFEE
40 osnewl=&FFE7
50 osword=&FFF1
60 osbyte=&FFF4
70 FORpass=0 TO 2 STEP 2
80 P%=mcode
90 [OPT pass

100 JSR osnewl
110 .loop
120 LDA &FF \ poll escape flag

130 BPL noescape \ bit 7 set if Escape pressed
140 .escape
150 LDA #&7E
160 JSR osbyte \ acknowledge Escape
170 BRK
180 BRK
190 EQUS "Escape"
200 BRK
210 .noescape
220 LDA track \ load physical track number
230 STA block+7 \ store physical track number
240 BEQ endoffset \ don't offset track zero
250 LDX #36 \ logical track index
260 LDY #38 \ logical sector index
270 .inloop
280 LDA track \ load physical track number
290 STA table,X \ store logical track number
300 LDA shear \ load logical sector offset
310 BEQ zero \ branch if no offset
320 STA temp \ temporary store
330 .offsetloop
340 SEC
350 LDA table,Y \ load logical sector number
360 SBC #1 \ subtract 1
370 BPL positive
380 LDA #9
390 .positive
400 STA table,Y \ store logical sector number - 1
410 DEC temp \ decrement sector offset
420 BNE offsetloop \ offset again
430 .zero
440 DEX
450 DEX
460 TXA
470 TAY \ subtract 4 from Y register
480 DEX
490 DEX \ subtract 4 from X register
500 BPL inloop \ branch if less than 10 sectors
510 .endoffset
520 LDA #&7F
530 LDX #block MOD256
540 LDY #block DIV 256
550 JSR osword \ format track
560 LDA block+12 \ load result byte
570 BNE error \ format OK if result = 0
580 JSR printtrack \ print track number
590 INC track \ increment track number
600 LDA track \ load track number
610 CMP finish \ is that the last track?
620 BCC loop \ branch if more tracks to format
630 LDA #&7F
640 LDX #catblock MOD256
650 LDY #catblock DIV 256
660 JSR osword \ store empty catalogue
670 LDA catblock+10 \ check result byte
680 BNE error \ branch if not saved
690 RTS \ return to BASIC
700 .error
710 BRK
720 BRK
730 EQUS "Format error"
740 BRK
750 .printtrack
760 LDA track \ load track number
770 LSR A
780 LSR A
790 LSR A
800 LSR A \ isolate MS nybble
810 JSR nybble \ print MS nybble
820 LDA track \ load track number
830 JSR nybble \ print LS nybble
840 LDA #ASC(" ")
850 JSR oswrch \ print space
860 JMP oswrch \ print space
870 .nybble
880 AND #&0F
890 SED

900 CLC
910 ADC #&90
920 ADC #&40
930 CLD
940 JMP oswrch \ print nybble and return
950 .block
960 EQUB &00 \ drive number 0-3
970 EQUDtable \ sector table
980 EQUB &05 \ 5 parameters
990 EQUB &63 \ format track

1000 EQUB &00 \ physical track number 0-79
1010 EQUB &15 \ gap 3
1020 EQUB &2A \ 10 sectors of 256 bytes
1030 EQUB &00 \ gap 5
1040 EQUB &10 \ gap 1
1050 EQUB &00 \ result byte
1060 .table
1070 EQUD&01000000
1080 EQUD&01010000
1090 EQUD&01020000
1100 EQUD&01030000
1110 EQUD&01040000
1120 EQUD&01050000
1130 EQUD&01060000
1140 EQUD&01070000
1150 EQUD&01080000
1160 EQUD&01090000
1170 .catalogue
1180 OPT FNfill(262)
1190 \ store 262 zeros
1200 .sectors
1210 EQUW&2003 \ &320 sectors (80 tracks)
1220 OPT FNfill(248)
1230 \ store 248 zeros
1240 .catblock
1250 EQUB &00 \ drive number 0 - 3
1260 EQUDcatalogue \ address of buffer
1270 EQUB &03 \ number of parameters
1280 EQUB &4B \ write data multi-sector
1290 EQUB &00 \ logical track
1300 EQUB &00 \ start logical sector
1310 EQUB &22 \ 2 sectors of 256 bytes
1320 EQUB &00 \ result byte
1330 .track
1340 EQUB &00 \ physical track number
1350 .finish
1360 EQUB &00 \ number of tracks
1370 .shear
1380 EQUB &00 \ sector offset
1390 .temp
1400 EQUB &00 \ sector offset
1410]
1420 NEXT
1430 REPEAT
1440 INPUT"Drive number (0-3) "D%
1450 UNTIL D%>-1 AND D%<4
1460 ?block=D%
1470 ?catblock=D%
1480 REPEAT
1490 INPUT"Number of tracks (40/80) "T%
1500 UNTIL T%=40 OR T%=80
1510 ?finish=T%
1520 IF T%=40 THEN ?sectors=&01 : sectors?1=&90
1530 REPEAT
1540 INPUT"Logical sector offset (0-9) "L%
1550 UNTIL L%>-1 AND L%<10
1560 ?shear=L%
1570 INPUT"Ready to format? (Y/N) "yes$
1580 IF LEFT$(yes$,1)="Y" THEN CALL mcode
1590 INPUT'"Another disc? (Y/N) "yes$
1600 IF LEFT$(yes$,1)="Y" THEN RUN
1610 END
1620 DEF FNfill(size)
1630 FOR count = 1 TO size
1640 ?P%=0
1650 P%=P%+1
1660 NEXT

1670 =pass

The logical sector offsets produced by the program OFFSET can be
demonstrated by using the program IDSDUMP introduced in module 0. The
formatted discs it produces can be verified using any DFS verification
program including the program VERIFY, also intorduced in module 0.

The Acorn DFS Osword commands - by - Gordon Horsington
--

Module 4. Converting 40 track discs for 80 track drives

+--+
| All the DFS modules in this series use programs which |
| experiment with the format and contents of discs. These |
| experiments may have disasterous effects if you use any |
| of the programs on discs which store programs or data |
| which you cannot afford to lose. You should first try |
| out the programs using discs that have either been |
| duplicated or, better still, have not been used at all. |
+--+

In this module I will examine the problem of modifying forty track discs
so that they work properly on eighty track disc drives.

There are a number of possible solutions to the problem of using forty
track discs on an eighty track disc drive. If you have a 40/80 track
switchable disc drive it is possible to use *BACKUP 0 0 and switch the
track density selector from forty to eighty before inserting an eighty
track disc and then switch back to forty for the forty track disc. If you
use dual switchable drives this can be a less error prone method because
you would not have to remember to switch the drives between reading and
writing. One problem with this method is that, although it will produce a
disc which can be used on an eighty track disc drive, it will only use
forty of the eighty tracks. This could be overcome by using the *COPY
command and switching the track density selector appropriately. A
philosophical problem with using either of these methods to make the
conversion is that the conversion itself is pointless if you have
switchable disc drives.

The real problem exists for disc users who have a forty track disc and
only one eighty track disc drive. In these circumstances it is necessary
to modify the disc itself so that it becomes an eighty track disc. In this
module I will demonstrate how to use the Osword &7F commands to modify a
forty track disc on an eighty track disc drive so that the forty track
disc becomes an eighty track disc.

Forty track discs have a track density exactly one half of that used by
eighty track discs. Track &00 of both forty and eighty track discs share
the same physical position as the outer track on the disc. Track &01 on a
forty track disc is in the same physical position as track &02 on an
eighty track disc, track &02 is in the same position as track &04, and so
on. The relative position of the physical tracks on forty and eighty track
discs is shown in figure 1.

40T> 00 01 ... 09 0A 0B ... 13 14 15 ... 25 26 27
80T> 00 01 02 ... 12 13 14 15 16 ... 26 27 28 29 2A ... 4A 4B 4C 4D 4E 4F

Figure 1. The relative position of tracks on 40 and 80 track discs
--

All the numbers in figure 1 are in hexadecimal and I am using the term
track density to refer to the physical proximity of the tracks (which are
closer together on 80 track discs). Because the track density of an eighty
track disc is twice that of a forty track disc, an eighty track disc is
sometimes refered to as double density even if it uses the single density
format. I will not refer to 80 track discs as double density because this
can be confused with the double density ADFS, which can use 80 track discs
in a double density format.

If you look at figure 1 you should be able to work out what needs to be
done to make forty track discs work on an eighty track disc drive. Because
track &00 is in the same physical position with both forty and eighty
track discs, any data on track &00 can be accessed with either type of
disc drive. All the other tracks on a forty track disc are in the wrong
physical position to be read on an eighty track disc drive. Assuming that
you have an Acorn DFS forty track disc in an eighty track disc drive, you
will need to copy physical track &02 (logical track &01) onto physical
track &01, copy physical track &04 (logical track &02) onto physical track
&02 and so on until physical track &4E (logical track &27) is copied onto

physical track &27. This copying is summarised in figure 2.

Read physical track -> Format and write physical track

&00 -> &00
&02 -> &01
&04 -> &02
&06 -> &03

.

.

.
&4B -> &25
&4C -> &26
&4E -> &27

Figure 2. The required copying of physical tracks

You should note that figure 2 refers to the physical tracks and not the
logical tracks. This is important because, with Acorn DFS forty track
discs in an eighty track disc drive, physical track &02 will contain
logical track &01, physical track &04 will contain logical track &02, and
so on. It will be necessary to re-format each physical track after reading
and before writing the data back onto the disc. This is because the odd
numbered tracks will be unformatted and the even numbered tracks will have
the wrong logical track numbers in their ID fields.

When all forty tracks have been copied you can then go on to format the
tracks from &28 to &4F to make the disc an eighty track disc. In order
that the DFS can access all eighty tracks it is necessary to modify the
catalogue to indicate that 800 (&320) sectors are available. The number of
sectors is stored in bytes &06 (MSB) and &07 (LSB) of track &00, sector
&00. Note that it is not LSB and MSB as you might expect.

The following algorithm can be used to implement this idea.

1) Start with current track number = &00

2) Seek current track * 2 (ie. for logical track &01 seek &02, and so on)

3) Write the current track number into the track register (number &12).
The head is now positioned above the appropriate track for reading the
data and the track register also contains the logical track number.

4) Read the entire track into a buffer.

5) Write the current track number * 2 into the track register.

6) Format the physical track indicated by the current track number.

7) Write the contents of the buffer onto the newly formatted track.

8) Increment the current track number. If the current track number is less
than &28 go back to 2) to copy the next track.

9) All forty tracks have been converted. Now format tracks &28 to &4F to
create an eighty track disc.

10) Read the contents of track &00, sector &01 into a buffer.

11) OR the contents of buffer+&06 with the number &03, and store the
number &20 in buffer+&07 to indicate that &320 (800) sectors are
available on the disc.

12) Write the contents of the buffer back onto track &00, sector &01.

This algorithm has been implemented in the program CONVERT. You can use
the program CONVERTwith an eighty track drive &00 to convert an Acorn
formatted 40 track single density disc into an eighty track single density
disc. The program will not work with copy-protected discs and you should
only use it if you have a duplicate of the disc you intend to convert.

If you use CONVERTand press the Escape key before it has finished the

conversion you will probably destroy some or all the data on the disc. Do
not use the program with a forty track disc drive. You have been warned to
be careful with all the programs used to illustrate this series. This
program can easily destroy all the data on your disc if you fail to use it
with care.

If you want to modify the program to make it more idiot proof you could
delete line 130 to take out the routine which polls the Escape flag. This
would make the program safer for ham-fisted or inexperienced users because
pressing Escape would not halt the program before it had finished.

Whatever modifications you make to this or any other of the programs used
to ilustrate the DFS modules of the series, don't ignore the warning about
the potentially disasterous effects these programs can have on your discs.

10 REM: CONVERT
20 osnewl=&FFE7
30 oswrch=&FFEE
40 osword=&FFF1
50 osbyte=&FFF4
60 DIM mcode &500
70 DIM buffer &1000
80 FOR pass=0 TO 2 STEP 2
90 P%=mcode

100 [OPT pass
110 JSR osnewl
120 .mainloop
130 JSR escape \ check escape flag
140 JSR seektwo \ seek track * 2
150 LDA track \ load logical track number
160 JSR register \ write track register
170 JSR read \ read logical track
180 LDA track \ load logical track number
190 ASL A \ *2 = physical track
200 JSR register \ write track register
210 JSR format \ format physical track
220 JSR write \ write data onto disc
230 JSR printbyte \ print track number
240 INC track \ get ready for next track
250 LDA track \ load logical track number
260 CMP #40 \ is it track 40?
270 BNE mainloop \ if not read next track
280 .formloop
290 JSR escape \ check escape flag
300 JSR format \ format tracks 40 - 79
310 JSR printbyte \ print track number
320 INC track \ increment track number
330 LDA track \ load track number
340 CMP #80 \ is it 80?
350 BNE formloop \ if not format next track
360 LDA #0 \ go back to track 0
370 STA track
380 STA copyblock+7
390 LDA #1 \ sector 1
400 STA copyblock+8
410 LDA #&21 \ 1 sector of 256 bytes
420 STA copyblock+9
430 JSR read \ read track 0 sector 1
440 LDA #&03 \ 800 sectors DIV 256
450 ORA buffer+6 \ keep old *OPT4,n option
460 STA buffer+6 \ MSB number of sectors
470 LDA #&20 \ 800 sectors MOD256
480 STA buffer+7 \ LSB number of sectors
490 JSR write \ store track 0 sector 1
500 JSR osnewl
510 RTS \ return to BASIC
520 .escape
530 LDA &FF \ escape flag
540 BMI pressed \ bit 7 set if pressed
550 RTS
560 .pressed
570 LDA #&7E
580 JSR osbyte \ acknowledge Escape
590 BRK
600 BRK
610 EQUS "Escape"

620 BRK
630 .seektwo
640 LDA track \ source track number
650 ASL A \ *2
660 STA seekblock+7 \ physical track number
670 LDA #&7F
680 LDX #seekblock MOD256
690 LDY #seekblock DIV 256
700 JSR osword
710 LDA seekblock+8 \ result
720 BNE seekerror \ = 0 if OK
730 RTS
740 .seekerror
750 BRK
760 BRK
770 EQUS "Seek error"
780 BRK
790 .format
800 LDA track \ source track number
810 STA formblock+7 \ store physical track
820 LDX #36
830 .tableloop
840 STA table,X \ store logical track number in ID table
850 DEX
860 DEX
870 DEX
880 DEX
890 BPL tableloop
900 LDA #&7F
910 LDX #formblock MOD256
920 LDY #formblock DIV 256
930 JSR osword
940 LDA formblock+12 \ result
950 BNE formerror \ = 0 if OK
960 RTS
970 .formerror
980 BRK
990 BRK

1000 EQUS "Format error"
1010 BRK
1020 .register
1030 STA regblock+8 \ value to put in register
1040 LDA #&7F
1050 LDX #regblock MOD256
1060 LDY #regblock DIV 256
1070 JSR osword
1080 LDA regblock+9 \ result
1090 BNE regerror \ = 0 if OK
1100 RTS
1110 .regerror
1120 BRK
1130 BRK
1140 EQUS "Special register error"
1150 BRK
1160 .read
1170 LDA track \ source track number
1180 STA copyblock+7 \ logical track number
1190 LDA #&53 \ read data multi-sector
1200 STA copyblock+6
1210 LDA #&7F
1220 LDX #copyblock MOD256
1230 LDY #copyblock DIV 256
1240 JSR osword
1250 LDA copyblock+10
1260 BNE readerror
1270 RTS
1280 .readerror
1290 BRK
1300 BRK
1310 EQUS "Read error"
1320 BRK
1330 .write
1340 LDA #&4B \ write data multi-sector
1350 STA copyblock+6
1360 LDA #&7F
1370 LDX #copyblock MOD256
1380 LDY #copyblock DIV 256

1390 JSR osword
1400 LDA copyblock+10 \ result
1410 BNE writeerror \ = 0 if OK
1420 RTS
1430 .writeerror
1440 BRK
1450 BRK
1460 EQUS "Write error"
1470 BRK
1480 .printbyte
1490 LDA track \ print source track number
1500 PHA
1510 LSR A
1520 LSR A
1530 LSR A
1540 LSR A
1550 JSR nybble \ print MS nybble
1560 PLA
1570 JSR nybble \ print LS nybble
1580 LDA #ASC(" ")
1590 JSR oswrch \ print space
1600 JMP oswrch \ print space
1610 .nybble
1620 AND #&0F
1630 SED
1640 CLC
1650 ADC #&90
1660 ADC #&40
1670 CLD
1680 JMP oswrch \ print nybble and return
1690 .seekblock
1700 EQUB &00 \ drive 0
1710 EQUD&00 \ does not matter
1720 EQUB &01 \ 1 parameter
1730 EQUB &69 \ seek command
1740 EQUB &00 \ physical track
1750 EQUB &00 \ result byte
1760 .regblock
1770 EQUB &00 \ drive 0
1780 EQUD&00 \ does not matter
1790 EQUD&00127A02 \ write special register
1800 EQUB &00 \ result byte
1810 .copyblock
1820 EQUB &00 \ drive 0
1830 EQUDbuffer \ address of buffer
1840 EQUB &03 \ 3 parameters
1850 EQUB &57 \ read data multi-sector
1860 EQUB &00 \ logical track number
1870 EQUB &00 \ logical sector number
1880 EQUB &2A \ 10 sectors of 256 bytes
1890 EQUB &00 \ result byte
1900 .formblock
1910 EQUB &00 \ drive 0
1920 EQUDtable \ address of sector table
1930 EQUB &05 \ 5 parameters
1940 EQUB &63 \ format command
1950 EQUB &00 \ physical track number
1960 EQUB &15 \ gap 3 size
1970 EQUB &2A \ 10 sectors of 256 bytes
1980 EQUB &00 \ gap 5 size
1990 EQUB &10 \ gap 1 size
2000 EQUB &00 \ result byte
2010 .table
2020 EQUD&01000000
2030 EQUD&01010000
2040 EQUD&01020000
2050 EQUD&01030000
2060 EQUD&01040000
2070 EQUD&01050000
2080 EQUD&01060000
2090 EQUD&01070000
2100 EQUD&01080000
2110 EQUD&01090000
2120 .track
2130 EQUB &00 \ logical track number
2140]
2150 NEXT

2160 PRINT'"Place 40 track disc in 80 track drive 0"
2170 PRINT"Press Spacebar to convert to 80 tracks"
2180 REPEAT
2190 UNTIL GET = 32
2200 CALL mcode

The Acorn DFS Osword commands - by - Gordon Horsington
--

Module 5. Creating discs compatible with both 40 and 80 track drives
--

+--+
| All the DFS modules in this series use programs which |
| experiment with the format and contents of discs. These |
| experiments may have disasterous effects if you use any |
| of the programs on discs which store programs or data |
| which you cannot afford to lose. You should first try |
| out the programs using discs that have either been |
| duplicated or, better still, have not been used at all. |
+--+

In this module I will examine the problem of modifying eighty track discs
so that they work properly on both forty and eighty track disc drives. I
will demonstrate how this can be done on an unswitched eighty track disc
drive using an Osword &7F based program and a disc formatting program. I
will then describe how the same dual format disc can be created with only
a disc formatting program if a 40/80 track switchable disc drive is
available.

Forty track discs have a track density exactly one half of that used by
eighty track discs. Track &00 of both forty and eighty track discs share
the same physical position as the outer track on the disc. Track &01 on a
forty track disc is in the same physical position as track &02 on an
eighty track disc, track &02 is in the same position as track &04, and so
on. The relative position of the physical tracks on forty and eighty track
discs is shown in figure 1.

40T> 00 01 ... 09 0A 0B ... 13 14 15 ... 25 26 27
80T> 00 01 02 ... 12 13 14 15 16 ... 26 27 28 29 2A ... 4A 4B 4C 4D 4E 4F

Figure 1. The relative position of tracks on 40 and 80 track discs
--

All the numbers in figures 1 and 2 are in hexadecimal and I have used the
term track density refers to the physical proximity of the tracks (which
are closer together on 80 track discs). Because the track density of an
eighty track disc is twice that of a forty track disc, an eighty track
disc is sometimes refered to as double density even if it uses a single
density format. I will not refer to 80 track discs as double density
because this can be confused with the double density ADFS, which can use
80 track discs in a double density format.

Figure 2 illustrates one method of formatting a single density disc so
that the same disc can be used with either a forty or an eighty track
disc drive.

00 01 02 ... 12 13 14 15 16 ... 26 27 14 15 16 ... 25 26 27
| \-------------/ \----------------/ \-------------------------------/
| &01-&13 unused &14-&27 &14-&27
| 80 track density 80 track density 40 track density
|
Track &00, common to both track densities

Figure 2. The format for 40/80 track discs
--

The disc can be divided into four regions.

1) Track &00, which is common to both forty and eighty track densities.
2) Tracks &01 to &13 (1 to 19 decimal) in eighty track density are unused.
3) Tracks &14 to &27 (20 to 39 decimal) used in eighty track density.
4) Tracks &14 to &27 (20 to 39 decimal) used in forty track density.

The data stored on this type of dual format disc are stored on track &00
and tracks &14 to &27. The data on tracks &14 to &27 are stored twice,
once in forty track density and once in eighty track density. Sectors &00

and &01 of track &00 are used to store the catalogue for the disc. The
remaining sectors on track &00 give a total of 2k available for data.
Tracks &14 to &27 have 50k available for data. This dual format disc makes
52k available for programs and data.

This type of disc can be created on an eighty track disc drive by using a
forty track disc formatting program to format the first forty tracks on a
disc in an eighty track disc drive. You can use the program OFFSET
introduced in module 3 if you want to optimise the logical sector offset.
Store a 2k (&800 bytes) dummy !BOOT file to fill track &00 and a large
(47.5k), locked dummy file to fill tracks &01 to &13. These files can be
created with the following commands:

*SAVE :0.$.!BOOT 1900+400
*SAVE :0.D.DUMMY 1900+BE00
*ACCESS :0.D.DUMMY L

Up to 50k of data can then be stored on tracks &14 to &27 using the DFS
star commands. Do not use the filenames $.!BOOT or D.DUMMY. When all the
data, except the real !BOOT file, are stored on the disc then the dummy
!BOOT file can be deleted and the real !BOOT file (which must not be
longer than 2k) can be stored. Do not delete the dummy file D.DUMMY
because this file is making sure that tracks &01 to &13 inclusive remain
unused (see figure 2).

When all the programs and data have been copied onto the disc then logical
tracks &14 to &27 should be copied from the eighty track density physical
tracks to the forty track density physical tracks. Physical track &14
(eighty track density) will be copied onto physical track &28 (eighty
track density), physical track &15 will be copied onto physical track &2A
and so on as shown in figure 3.

Read physical track -> Format and write physical track

&14 -> &28
&15 -> &2A
&16 -> &2C
&17 -> &2E

.

.

.
&25 -> &4B
&26 -> &4C
&27 -> &4E

Figure 3. The required copying of physical tracks

This copying will produce the format shown in figure 2. The following
algorithm can be used to implement this idea using a disc which has had
the first forty tracks formatted in an eighty track disc drive. It is
important to format only the first forty tracks so that the DFS
recognises the disc as a forty track disc even though it is used in an
eighty track disc drive. Use *FORMAT 40 0 (or whatever is appropriate with
your system). Do not use *FORMAT 80 0 and press Escape after forty tracks
have been formatted because, if you do, the DFS will still recognise the
disc as an eighty track disc even though only the first forty tracks have
been formatted.

1) Start with physical track number &14 (decimal 20).

2) Read the sector IDs on the current physical track. These will be used
to create the sector data for formatting the forty track copy.

3) Read all the data on the current track into a buffer.

4) Seek the current physical track * 2. This will be where the forty
track copy will be written.

5) Write the physical track number (&14-&27) into the track register
(number &12). This will allow the eighty track disc drive to write the
data onto a track in the position it would use on a forty track disc

drive.

6) Format the track found in step 4) using the sector data from step 2).

7) Write the contents of the buffer onto the newly formatted track.

8) Write the physical track number * 2 (&28-&4E) into the track register
(number &12). This takes the disc controller back to the eighty track
status.

9) Increment the track number. If it is less than &28 (decimal 40) then go
back to 2) to duplicate the next track.

This algorithm has been implemented in the program DUALDFS. You must use
the program DUALDFS with an eighty track disc drive (drive &00) to convert
a disc formatted as described above into a 40/80 track disc. The program
will not work with copy-protected discs and you should only use it after
you have made a backup copy of all the files on the disc you intend to
convert.

If you use DUALDFS and press the Escape key before it has finished the
conversion you will only be able to use the disc on an eighty track disc
drive. Do not attempt to use the program to make the conversion using a
forty track disc drive. You have been warned to be careful with all the
programs used to illustrate this series. Whatever modifications you make
to this or any other of the programs used to ilustrate the DFS modules of
the series, don't ignore the warning about the potentially disasterous
effects these programs can have on your discs.

After using DUALDFS to create a dual format disc you must not use the
command *COMPACTwith the disc. It is a good idea stick a write-protect
tab on all dual format discs.

10 REM: DUALDFS
20 osnewl=&FFE7
30 oswrch=&FFEE
40 osword=&FFF1
50 osbyte=&FFF4
60 DIM table &50
70 DIM mcode &500
80 DIM buffer &1000
90 FOR pass=0 TO 2 STEP 2

100 P%=mcode
110 [OPT pass
120 JSR osnewl
130 .mainloop
140 JSR escape \ check escape flag
150 JSR sectorids \ read all sector ids
160 JSR read \ read all sectors
170 JSR seektwo \ seek source track * 2
180 LDA track \ source track number
190 JSR register \ write track register
200 JSR format \ format 2 * source track
210 JSR write \ write all sectors
220 LDA track \ load source track
230 ASL A \ *2 = physical track number
240 JSR register \ write track register
250 JSR printbyte \ print track number
260 INC track \ increment source track number
270 LDA track \ load source track number
280 CMP #40 \ all done?
290 BNE mainloop \ if not read next track
300 JSR osnewl
310 RTS \ return to BASIC
320 .escape
330 LDA &FF \ escape flag
340 BMI pressed \ bit 7 set if pressed
350 RTS
360 .pressed
370 LDA #&7E
380 JSR osbyte \ acknowledge Escape
390 BRK
400 BRK
410 EQUS "Escape"
420 BRK

430 .seektwo
440 LDA track \ source track number
450 ASL A \ *2
460 STA seekblock+7 \ physical track number
470 LDA #&7F
480 LDX #seekblock MOD256
490 LDY #seekblock DIV 256
500 JSR osword
510 LDA seekblock+8 \ result
520 BNE seekerror \ = 0 if OK
530 RTS
540 .seekerror
550 BRK
560 BRK
570 EQUS "Seek error"
580 BRK
590 .format
600 LDA track \ source track number
610 STA formblock+7 \ store physical track
620 JSR register \ write track register
630 LDA #&7F
640 LDX #formblock MOD256
650 LDY #formblock DIV 256
660 JSR osword
670 LDA formblock+12 \ result
680 BNE formerror \ = 0 if OK
690 RTS
700 .formerror
710 BRK
720 BRK
730 EQUS "Format error"
740 BRK
750 .register
760 STA regblock+8 \ value to put in register
770 LDA #&7F
780 LDX #regblock MOD256
790 LDY #regblock DIV 256
800 JSR osword
810 LDA regblock+9 \ result
820 BNE regerror \ = 0 if OK
830 RTS
840 .regerror
850 BRK
860 BRK
870 EQUS "Special register error"
880 BRK
890 .sectorids
900 LDA track \ source track number
910 STA idsblock+7 \ store physical track
920 LDA #&7F
930 LDX #idsblock MOD256
940 LDY #idsblock DIV 256
950 JSR osword
960 LDA idsblock+10 \ result
970 BNE idserror \ = 0 if OK
980 RTS
990 .idserror

1000 BRK
1010 BRK
1020 EQUS "Sector ID Error"
1030 BRK
1040 .read
1050 LDA track \ source track number
1060 STA copyblock+7 \ logical track number
1070 LDA #&53 \ read data multi-sector
1080 STA copyblock+6
1090 LDA #&7F
1100 LDX #copyblock MOD256
1110 LDY #copyblock DIV 256
1120 JSR osword
1130 LDA copyblock+10
1140 BNE readerror
1150 RTS
1160 .readerror
1170 BRK
1180 BRK
1190 EQUS "Read error"

1200 BRK
1210 .write
1220 LDA #&4B \ write data multi-sector
1230 STA copyblock+6
1240 LDA #&7F
1250 LDX #copyblock MOD256
1260 LDY #copyblock DIV 256
1270 JSR osword
1280 LDA copyblock+10 \ result
1290 BNE writeerror \ = 0 if OK
1300 RTS
1310 .writeerror
1320 BRK
1330 BRK
1340 EQUS "Write error"
1350 BRK
1360 .printbyte
1370 LDA track \ print source track number
1380 PHA
1390 LSR A
1400 LSR A
1410 LSR A
1420 LSR A
1430 JSR nybble \ print MS nybble
1440 PLA
1450 JSR nybble \ print LS nybble
1460 LDA #ASC(" ")
1470 JSR oswrch \ print space
1480 JMP oswrch \ print space
1490 .nybble
1500 AND #&0F
1510 SED
1520 CLC
1530 ADC #&90
1540 ADC #&40
1550 CLD
1560 JMP oswrch \ print nybble and return
1570 .seekblock
1580 EQUB &00 \ drive 0
1590 EQUD&00 \ does not matter
1600 EQUB &01 \ 1 parameter
1601 EQUB &69 \ seek command
1602 EQUB &00 \ physical track number
1603 EQUB &00 \ result
1610 .regblock
1620 EQUB &00 \ drive 0
1630 EQUD&00 \ does not matter
1640 EQUB &02 \ 2 parameters
1641 EQUB &7A \ write special register
1642 EQUB &12 \ track register, drive 0/2
1643 EQUB &00 \ value to be put in register
1650 EQUB &00 \ result
1660 .idsblock
1670 EQUB &00 \ drive 0
1680 EQUDtable \ address of buffer
1690 EQUB &03 \ 3 parameters
1691 EQUB &5B \ read sector IDs command
1692 EQUB &00 \ physical track number
1693 EQUB &00
1700 EQUB &0A \ number of IDs
1701 EQUB &00 \ result
1710 .copyblock
1720 EQUB &00 \ drive 0
1730 EQUDbuffer \ address of buffer
1740 EQUB &03 \ 3 parameters
1741 EQUB &57 \ read data multi-sector
1742 EQUB &00 \ logical track number
1743 EQUB &00 \ start logical sector number
1750 EQUB &2A \ 10 sectors of 256 bytes
1751 EQUB &00 \ result
1760 .formblock
1770 EQUB &00 \ drive 0
1780 EQUDtable \ address of sector table
1790 EQUB &05 \ 5 parameters
1791 EQUB &63 \ format command
1792 EQUB &00 \ physical track number
1793 EQUB &15 \ gap 3 size

1800 EQUB &2A \ 10 sectors of 256 bytes
1801 EQUB &00 \ gap 5 size
1802 EQUB &10 \ gap 1 size
1803 EQUB &00 \ result
1810 .track
1820 EQUB 20 \ use tracks 20-39
1830]
1840 NEXT
1850 PRINT'"Place 40 track formatted 80 track disc"
1860 PRINT"in drive 0, and press Spacebar"
1870 REPEAT
1880 UNTIL GET = 32
1890 CALL mcode

If you have a switched 40/80 track disc drive it is quite easy to produce
dual format discs without using a conversion program such as DUALDFS. To
produce a dual format disc you need to use a forty track formatter and to
be very careful about the order in which files are saved on the dual
format disc. The following algorith will produce dual formatted discs.

1) Switch the disc drive to 40 track mode.

2) Format a disc using a forty track formatter.

3) Switch the disc drive to 80 track mode.

4) Format the same disc again using the same forty track formatter.

5) Fill track &00 with a dummy !BOOT file using

*SAVE !BOOT 1900+800

6) Fill tracks &01 to &13 with a locked dummy file. use the commands:

*SAVE D.DUMMY1900+BE00
*ACESS D.DUMMYL

7) Copy up to 50k of programs onto the disc. Don't use the filenames
$.!BOOT or D.DUMMY.

8) Switch the disc drive to 40 track mode.

9) Copy the same files copied in step 7) onto the disc in exactly the same
order. It is important that the order should be exactly the same.

10) Delete the dummy !BOOT file and store the real !BOOT file on the disc.
The !BOOT file must not be longer than 2k.

This method will produce exactly the same dual format disc as that
produced by the program DUALDFS but it does require the use of a switched
disc drive and a great deal of care in storing the files in the same order
on both formats.

The Acorn DFS Osword commands - by - Gordon Horsington
--

Module 6. Creating copy-protected single density discs
--

+--+
| All the DFS modules in this series use programs which |
| experiment with the format and contents of discs. These |
| experiments may have disasterous effects if you use any |
| of the programs on discs which store programs or data |
| which you cannot afford to lose. You should first try |
| out the programs using discs that have either been |
| duplicated or, better still, have not been used at all. |
+--+

In this module I will describe in detail one method of producing copy-
protected single density discs. This type of disc is designed to prevent
other people seeing how your programs work and to stop them duplicating
the disc. Meeting the first objective is relatively easy. Meeting the
second objective is virtually impossible. It is easy to prevent amateur
piracy using duplicating programs but you will never be able to stop a
determined hacker undoing all your efforts to prevent duplication. I have
not yet found a commercially produced copy-protected disc for the BBC
range of computers which can not have all the protection removed so that
the disc can be duplicated with the *BACKUP command.

If you choose to copy-protect your discs you will at least indicate to the
users of your software that you are unwilling to have the disc duplicated.
To stand the best chance of defeating a hacker you should use the method
described in this module as a starting point for developing your own ideas
about protection. Remember that everyone reading this module will know how
to undo the protection by just reversing the steps in the procedure. You
should at least aim to produce a disc which cannot be duplicated by either
of the two disc duplicators described in the next module. This will not be
easy but all the information you need to do it has been or will be
presented in this series. You might like to consider using Bad Tracks,
Unusual logical sector numbers and logical track numbers in unexpected
combinations, encrypted machine code programs and multiple files which use
unusual methods of writing to and reading from the disc. What you do is up
to you but you must try to think like a hacker if you want to prevent your
software being hacked.

The method used to introduce copy-protection will use a single density
disc formatted with 5 sectors per track instead of the usual 10 sectors
per track. The data will be stored on the disc using the Write Deleted
Data command as an extra protection.

A disc cannot be formatted with 5 sectors per track using the DFS
formatter and so the first step in this procedure will be to write a
special disc formatting program. The program SECTOR5can be used to
produce an object code file which, in turn, can be used to produce a
single density disc with a standard track &00 and the rest of the disc
formatted with 5 sectors on every track. Each of the non-standard tracks
is capable of storing 2.5k of data in 5 sectors, ie. 512 bytes per sector.
The object code file produced by SECTOR5is exactly 1k long and can be
stored in two of the 512 byte sectors. I will use this object code file as
an example for producing the required copy-protected disc.

Run the program SECTOR5and, when prompted, give a suitable filename for
the object code file. In the rest of this module I will refer to the
object code file produced by SECTOR5as FORM5.

10 REM: SECTOR5
20 DIM mcode &500
30 zeropage=&70
40 oswrch=&FFEE
50 osword=&FFF1
60 osbyte=&FFF4
70 osnewl=&FFE7
80 oswrch=&FFEE
90 osrdch=&FFE0

100 osasci=&FFE3
110 FORpass=4 TO 6 STEP 2
120 O%=mcode

The Acorn DFS Osword commands - by - Gordon Horsington
--

Module 7. Duplicating copy-protected single density discs

+--+
| All the DFS modules in this series use programs which |
| experiment with the format and contents of discs. These |
| experiments may have disasterous effects if you use any |
| of the programs on discs which store programs or data |
| which you cannot afford to lose. You should first try |
| out the programs using discs that have either been |
| duplicated or, better still, have not been used at all. |
+--+

This module deals with duplicating copy-protected single density discs. As
with the previous module, which dealt with producing this type of disc,
you should use the information in this module as a starting point for your
own program designs. The two disc duplication programs used to illustrate
this module will copy most, but not all, single density discs. They have
been designed simply to illustrate the techniques used to achieve this
objective and, for that reason, they are not the fastest disc duplication
programs available. The program COPYDFSis quite slow because it reads and
writes a track at a time, but the program COPYALL is even slower because
it reads and writes a sector at a time. Both programs require either 40 or
80 track dual disc drives because they copy from drive 0 to drive 1.

One of the many techniques used to copy-protect single density discs is to
include unformatted tracks on the disc. The programs which use this type
of disc then look at a particular physical track and, if they find that
the track has been formatted, they reject the disc as an illegal copy. If
formatted discs are to be used for duplicating protected software it may
be necessary to be able to de-format some tracks on the disc. This means
that when an attempt is made to read from or write to the disc a 'Sector
not found' error should be produced.

This error will be generated if an attempt is made to read from or write
to a track formatted with one sector of 2048 bytes. The program DEFORMcan
be used to demonstrate this idea. DEFORMmust be used with great care
because it removes track &00 from the disc in the current drive. Again,
you have been warned!

10 REM: DEFORM
20 osword=&FFF1
30 DIM mcode &100
40 FORpass=0TO3STEP3
50 P%=mcode
60 [OPT pass
70 LDA #&7F
80 LDX #block MOD256
90 LDY #block DIV 256

100 JSR osword
110 LDA result
120 BNE error
130 RTS
140 .error
150 BRK
160 BRK
170 EQUS "De-format error"
180 BRK
190 .block
200 EQUB &FF \ current drive
210 EQUDbuffer \ sector table
220 EQUB &05 \ 5 parameters
230 EQUB &63 \ format command
240 EQUB &00 \ physical track
250 EQUB &00 \ gap 3
260 EQUB &C1 \ sectors/size
270 EQUB &00 \ gap 5
280 EQUB &10 \ gap 1
290 .result
300 EQUB &00 \ result byte
310 .buffer
320 EQUD&04000000

330]
340 NEXT
350 CALL mcode

The de-formatting technique illustrated in the program DEFORMis used in
both COPYDFSand COPYALL to ensure that any unformatted tracks on the
source disc are unformatted on the destination disc even if the
destination disc has been previously formatted.

Both the copy programs use a similar algorithm to duplicate copy-protected
discs. These programs have been written to make them as easy to understand
as possible. They are both well structured and well commented and you
should make every effort to understand how they work. It is only when you
fully understand how disc duplicators work that you can design a disc
format which will defeat disc duplication programs.

The program COPYDFSuses the following algorithm to duplicate each track:

1) Seek the physical track on the source disc.

2) Read one sector ID from the physical track. If a 'Sector not Found'
error is generated the track has not been formatted and the destination
track should be de-formatted.

3) If the source track has been formatted, extract the number of sectors
on the track from the data read in step 2) and read all the sector IDs
on the track.

4) Format the destination disc using the sector ID data from step 3).

5) Read every sector on the source track using the Read Data and Deleted
Data command and the sector ID data from step 3). Check for deleted
data on the track.

6) If deleted data is used on the source track then use the Write Deleted
Data command to write the data onto the destination track, otherwise
use the Write Data command to write the data onto the destination
track.

This simple algorithm will, somewhat surprisingly, duplicate many
commercially protected discs but it is reletively easy to design a disc
format which cannot be copied using this method. You might like to
consider what would happen if, for example, you use a mixture of deleted
and normal sectors on one track and use a !BOOT program which uses the
appropriate command to read individual sectors rather than simply use the
Read Data and Deleted Data command for all sectors. If you design a !BOOT
program which does this on a copy-protected disc, then that disc could not
be copied successfully using this algorithm. If you intend to take a
serious interest in copy-protection then your first task should be to
design a disc format which can not be copied by COPYDFS.

10 REM: COPYDFS
20 osnewl=&FFE7
30 oswrch=&FFEE
40 osword=&FFF1
50 osbyte=&FFF4
60 DIM table &50
70 DIM mcode &500
80 DIM buffer &1000
90 FOR pass=0 TO 2 STEP 2

100 P%=mcode
110 [OPT pass
120 JSR osnewl
130 .mainloop
140 JSR escape \ check escape flag
150 JSR seek \ seek physical tracks 0 - 40
160 JSR firstsector \ read sector id first sector
170 BNE notformatted \ if error then track not formatted
180 JSR sectorids \ read all sector ids
190 JSR format \ format sector on drive 1
200 JSR copytrack \ read and write sector
210 JMP output
220 .notformatted

230 JSR deform \ de-format this track
240 .output
250 JSR printbyte \ print track number
260 INC physical \ increment physical track number
270 LDA physical \ load physical track number
280 CMP last \ all done?
290 BNE mainloop \ if not copy next track
300 JSR osnewl
310 RTS \ return to BASIC
320 .escape
330 LDA &FF \ escape flag
340 BMI pressed \ bit 7 set if pressed
350 RTS
360 .pressed
370 LDA #&7E
380 JSR osbyte \ acknowledge Escape
390 BRK
400 BRK
410 EQUS "Escape"
420 BRK
430 .seek
440 LDA physical \ physical track number
450 STA seekblock+7
460 LDA #&00 \ drive 0
470 STA seekblock \ store drive number
480 LDA #&7F
490 LDX #seekblock MOD256
500 LDY #seekblock DIV 256
510 JSR osword
520 LDA seekblock+8 \ result
530 BNE seekerror \ = 0 if OK
540 LDA #&01 \ drive 1
550 STA seekblock \ store drive number
560 LDA #&7F
570 LDX #seekblock MOD256
580 LDY #seekblock DIV 256
590 JSR osword
600 LDA seekblock+8 \ result
610 BNE seekerror \ = 0 if OK
620 RTS
630 .seekerror
640 BRK
650 BRK
660 EQUS "Seek error"
670 BRK
680 .format
690 LDA physical \ physical track number
700 STA formblock+7 \ store physical track
710 LDX table+3 \ data size code
720 LDA gap,X \ load gap 3 for these sectors
730 STA formblock+8 \ store for formatting
740 LDA #&7F
750 LDX #formblock MOD256
760 LDY #formblock DIV 256
770 JSR osword
780 LDA formblock+12 \ result
790 BNE formerror \ = 0 if OK
800 RTS
810 .formerror
820 BRK
830 BRK
840 EQUS "Format error"
850 BRK
860 .deform
870 LDA physical \ load physical track number
880 STA deblock+7 \ store physical track
890 LDA #&7F
900 LDX #deblock MOD256
910 LDY #deblock DIV 256
920 JSR osword \ de-format track
930 LDA deblock+12 \ result
940 BNE deerror \ = 0 if OK
950 RTS
960 .deerror
970 BRK
980 BRK
990 EQUS "De-format error"

1000 BRK
1010 .register
1020 STA regblock+8 \ value to put in register
1030 LDA #&00 \ drive 0
1040 STA regblock
1050 LDA #&12 \ write track register 0/2
1060 STA regblock+7 \ register number
1070 LDA #&7F
1080 LDX #regblock MOD256
1090 LDY #regblock DIV 256
1100 JSR osword
1110 LDA regblock+9 \ result
1120 BNE regerror \ = 0 if OK
1130 LDA #&01 \ drive 1
1140 STA regblock
1150 LDA #&1A \ write track register 1/3
1160 STA regblock+7 \ register number
1170 LDA #&7F
1180 LDX #regblock MOD256
1190 LDY #regblock DIV 256
1200 JSR osword
1210 LDA regblock+9 \ result
1220 BNE regerror \ = 0 if OK
1230 RTS
1240 .regerror
1250 BRK
1260 BRK
1270 EQUS "Special register error"
1280 BRK
1290 .firstsector
1300 LDA physical \ physical track number
1310 STA idsblock+7 \ store physical track
1320 LDA #&01 \ one sector
1330 STA idsblock+9 \ number of ids
1340 LDA #&7F
1350 LDX #idsblock MOD256
1360 LDY #idsblock DIV 256
1370 JSR osword
1380 LDA idsblock+10 \ result
1390 AND #&1E \ = 0 if formatted
1400 RTS
1410 .sectorids
1420 LDX table+3 \ load data size code
1430 LDA sizes,X \ load number of sectors
1440 STA idsblock+9 \ store number of sectors
1450 ASL A \ *2
1460 ASL A \ *4
1470 SEC
1480 SBC #&04 \ sectors*4-4
1490 STA sectornumber \ store index on sectors
1500 TXA \ transfer data size code
1510 ASL A \ *2
1520 ASL A \ *4
1530 ASL A \ *8
1540 ASL A \ *16
1550 ASL A \ *32
1560 ORA idsblock+9 \ add number of sectors
1570 STA copyblock+9 \ sector size/number
1580 STA formblock+9 \ sector size/number
1590 LDA #&7F
1600 LDX #idsblock MOD256
1610 LDY #idsblock DIV 256
1620 JSR osword
1630 LDA idsblock+10 \ result
1640 AND #&1E
1650 BNE idserror \ = 0 if OK
1660 RTS
1670 .idserror
1680 BRK
1690 BRK
1700 EQUS "Sector ID Error"
1710 BRK
1720 .copytrack
1730 LDX sectornumber \ load index on table
1740 LDA table+2,X \ load logical sector number
1750 STA copyblock+8 \ store for read sector
1760 .lowest

1770 DEX
1780 DEX
1790 DEX
1800 DEX
1810 BMI finished
1820 LDA table+2,X \ load logical sector number
1830 CMP copyblock+8 \ is it lower than the last one?
1840 BCS lowest \ branch if not lowest sector
1850 STA copyblock+8 \ store if it is lower
1860 BCC lowest \ look for lower sector number
1870 .finished
1880 LDA table \ load logical track number
1890 STA copyblock+7 \ and store for read
1900 JSR register \ write track register
1910 LDA #&00 \ drive 0
1920 STA copyblock
1930 LDA #&57 \ read sector command
1940 STA copyblock+6
1950 LDA #&7F
1960 LDX #copyblock MOD256
1970 LDY #copyblock DIV 256
1980 JSR osword
1990 LDA copyblock+10 \ result
2000 BEQ notdel \ not deleted data
2010 CMP #&20 \ deleted data result
2020 BNE readerror \ error if not &20
2030 LDA #&4F \ write deleted data command
2040 BNE savecom
2050 .notdel
2060 LDA #&4B \ write data command
2070 .savecom
2080 STA copyblock+6
2090 LDA #&01 \ drive 1
2100 STA copyblock
2110 LDA #&7F
2120 LDX #copyblock MOD256
2130 LDY #copyblock DIV 256
2140 JSR osword
2150 LDA copyblock+10 \ result
2160 BNE writeerror \ = 0 if OK
2170 LDA physical
2180 JSR register \ write track register
2190 RTS
2200 .readerror
2210 LDA physical
2220 JSR register
2230 BRK
2240 BRK
2250 EQUS "Read error"
2260 BRK
2270 .writeerror
2280 LDA physical
2290 JSR register
2300 BRK
2310 BRK
2320 EQUS "Write error"
2330 BRK
2340 .printbyte
2350 LDA physical \ print physical track number
2360 PHA
2370 LSR A
2380 LSR A
2390 LSR A
2400 LSR A
2410 JSR nybble \ print MS nybble
2420 PLA
2430 JSR nybble \ print LS nybble
2440 LDA #ASC(" ")
2450 JSR oswrch \ print space
2460 JMP oswrch \ print space and return
2470 .nybble
2480 AND #&0F
2490 SED
2500 CLC
2510 ADC #&90
2520 ADC #&40
2530 CLD

2540 JMP oswrch \ print nybble and return
2550 .seekblock
2560 EQUB &00 \ drive 0/1
2570 EQUD&00 \ does not matter
2580 EQUB &01 \ 1 parameter
2590 EQUB &69 \ seek command
2600 EQUB &00 \ physical track number
2610 EQUB &00 \ result byte
2620 .regblock
2630 EQUB &00 \ drive 0/1
2640 EQUD&00 \ does not matter
2650 EQUB &02 \ 2 parameters
2660 EQUB &7A \ write special register
2670 EQUB &00 \ register number
2680 EQUB &00 \ value to put in register
2690 EQUB &00 \ result byte
2700 .idsblock
2710 EQUB &00 \ drive 0
2720 EQUDtable \ address of buffer
2730 EQUB &03 \ 3 parameters
2740 EQUB &5B \ read sector IDs command
2750 EQUB &00 \ physical track number
2760 EQUB &00 \ always &00
2770 EQUB &00 \ number of IDs to be read
2780 EQUB &00 \ result byte
2790 .copyblock
2800 EQUB &00 \ drive 0/1
2810 EQUDbuffer \ address of buffer
2820 EQUB &03 \ 3 parameters
2830 EQUB &57 \ read data and deleted data
2840 EQUB &00 \ logical track number
2850 EQUB &00 \ logical sector number
2860 EQUB &00 \ sector size/number
2870 EQUB &00 \ result byte
2880 .formblock
2890 EQUB &01 \ drive 1
2900 EQUDtable \ sector table
2910 EQUB &05 \ 5 parameters
2920 EQUB &63 \ format track command
2930 EQUB &00 \ physical track number
2940 EQUB &00 \ gap 3 size
2950 EQUB &00 \ sector size/number
2960 EQUB &00 \ gap 5 size
2970 EQUB &10 \ gap 1 size
2980 EQUB &00 \ result byte
2990 .deblock
3000 EQUB &01 \ drive 1
3010 EQUDdetable \ sector table
3020 EQUB &05 \ 5 parameters
3030 EQUB &63 \ format track command
3040 EQUB &00 \ physical track number
3050 EQUB &00 \ gap 3 size
3060 EQUB &C1 \ sector size/number
3070 EQUB &00 \ gap 5 size
3080 EQUB &10 \ gap 1 size
3090 EQUB &00 \ result byte
3100 .detable
3110 EQUD&04000000
3120 .gap
3130 EQUB 11 \ Gap 3, 18 sectors
3140 EQUB 21 \ Gap 3, 10 sectors
3150 EQUB 74 \ Gap 3, 5 sectors
3160 EQUB 255 \ Gap 3, 2 sectors
3170 EQUB 0 \ Gap 3, 1 sector
3180 .sizes
3190 EQUB 18
3200 EQUB 10
3210 EQUB 5
3220 EQUB 2
3230 EQUB 1
3240 .physical
3250 EQUB &00
3260 .sectornumber
3270 EQUB &00
3280 .last
3290 EQUB &00
3300]

3310 NEXT
3320 INPUT'"Number of tracks (40/80) "tracks$
3330 IF tracks$="40" ?last=40 ELSE ?last=80
3340 PRINT'"Insert ";?last;" track source disc in :0"
3350 PRINT"Insert ";?last;" track destination disc in :1"
3360 PRINT'"Press Spacebar to copy from :0 to :1"
3370 REPEAT
3380 UNTIL GET=32
3390 CALL mcode

When you have designed a disc format and a data storage and retrievel
system which cannot be copied with COPYDFSyou should attempt to copy the
disc using COPYALL. This program uses a similar algorithm to that used by
COPYDFSbut, instead of copying a track at a time, it attempts to copy the
disc a sector at a time. This method of copying takes much longer but it
does allow the program to check if deleted data is being used on an
individual sector rather than on a track as a whole. This will give a
better copy of the original disc but it is not a fool-proof method of
duplicating 'difficult' discs.

When you start to think about designing a disc format which can not be
copied by COPYALL I suggest that you should think carefully about using
unusual logical track and sector combinations in unusual or unexpected
ways. I cannot tell you what to do because everyone else who reads this
module will then know what you have done. You can not make a disc
unhackable (if there is such a word) but it is possible to make a disc
uncopyable by either of these programs or any of the commercial disc
duplication programs available at the time of writing (November 1987). All
the information you need to do it has been presented in these DFS modules.
You will have to look carefully at the information provided and think hard
about what a program would need to do to duplicate your disc.

10 REM: COPYALL
20 osnewl=&FFE7
30 oswrch=&FFEE
40 osword=&FFF1
50 osbyte=&FFF4
60 DIM table &50
70 DIM mcode &500
80 DIM buffer &1000
90 FOR pass=0 TO 2 STEP 2

100 P%=mcode
110 [OPT pass
120 JSR osnewl
130 .mainloop
140 JSR escape \ check escape flag
150 JSR seek \ seek physical tracks 0 - 40
160 JSR firstsector \ read sector id first sector
170 BNE notformatted \ if error then track not formatted
180 JSR sectorids \ read all sector ids
190 JSR format \ format sector on drive 1
200 .loopsector
210 JSR escape \ check escape flag
220 JSR copysector \ read and write sector
230 BPL loopsector \ copy next sector
240 LDA physical \ physical track number
250 JSR register \ write track register
260 JMP output
270 .notformatted
280 JSR deform \ de-format this track
290 .output
300 JSR printbyte \ print track number
310 INC physical \ increment physical track number
320 LDA physical \ load physical track number
330 CMP last \ all done?
340 BNE mainloop \ if not copy next track
350 JSR osnewl
360 RTS \ return to BASIC
370 .escape
380 LDA &FF \ escape flag
390 BMI pressed \ bit 7 set if pressed
400 RTS
410 .pressed
420 LDA #&7E
430 JSR osbyte \ acknowledge Escape

440 BRK
450 BRK
460 EQUS "Escape"
470 BRK
480 .seek
490 LDA physical \ physical track number
500 STA seekblock+7
510 LDA #&00 \ drive 0
520 STA seekblock \ store drive number
530 LDA #&7F
540 LDX #seekblock MOD256
550 LDY #seekblock DIV 256
560 JSR osword
570 LDA seekblock+8 \ result
580 BNE seekerror \ = 0 if OK
590 LDA #&01 \ drive 1
600 STA seekblock \ store drive number
610 LDA #&7F
620 LDX #seekblock MOD256
630 LDY #seekblock DIV 256
640 JSR osword
650 LDA seekblock+8 \ result
660 BNE seekerror \ = 0 if OK
670 RTS
680 .seekerror
690 BRK
700 BRK
710 EQUS "Seek error"
720 BRK
730 .format
740 LDA physical \ physical track number
750 STA formblock+7 \ store physical track
760 LDA table+3 \ data size code
770 TAX \ used as index later
780 ASL A \ *2
790 ASL A \ *4
800 ASL A \ *8
810 ASL A \ *16
820 ASL A \ *32
830 STA formblock+9 \ store datacode*32
840 ORA #&01 \ add 1
850 STA copyblock+9 \ store datacode*32+1
860 LDA sizes,X \ load number of sectors
870 ORA formblock+9 \ add datacode*32
880 STA formblock+9 \ store datacode*32+numbersectors
890 LDA gap,X \ load gap 3 for these sectors
900 STA formblock+8 \ store for formatting
910 LDA #&7F
920 LDX #formblock MOD256
930 LDY #formblock DIV 256
940 JSR osword
950 LDA formblock+12 \ result
960 BNE formerror \ = 0 if OK
970 LDX table+3 \ load data size code
980 LDA sizes,X \ load number of sectors
990 ASL A \ *2

1000 ASL A \ *4
1010 SEC
1020 SBC #&04 \ sectors*4-4
1030 STA sectornumber \ store index on sectors
1040 RTS
1050 .formerror
1060 BRK
1070 BRK
1080 EQUS "Format error"
1090 BRK
1100 .deform
1110 LDA physical \ load physical track number
1120 STA deblock+7 \ store physical track
1130 LDA #&7F
1140 LDX #deblock MOD256
1150 LDY #deblock DIV 256
1160 JSR osword \ de-format track
1170 LDA deblock+12 \ result
1180 BNE deerror \ = 0 if OK
1190 RTS
1200 .deerror

1210 BRK
1220 BRK
1230 EQUS "De-format error"
1240 BRK
1250 .register
1260 STA regblock+8 \ value to put in register
1270 LDA #&00 \ drive 0
1280 STA regblock
1290 LDA #&12 \ write track register 0/2
1300 STA regblock+7 \ register number
1310 LDA #&7F
1320 LDX #regblock MOD256
1330 LDY #regblock DIV 256
1340 JSR osword
1350 LDA regblock+9 \ result
1360 BNE regerror \ = 0 if OK
1370 LDA #&01 \ drive 1
1380 STA regblock
1390 LDA #&1A \ write track register 1/3
1400 STA regblock+7 \ register number
1410 LDA #&7F
1420 LDX #regblock MOD256
1430 LDY #regblock DIV 256
1440 JSR osword
1450 LDA regblock+9 \ result
1460 BNE regerror \ = 0 if OK
1470 RTS
1480 .regerror
1490 BRK
1500 BRK
1510 EQUS "Special register error"
1520 BRK
1530 .firstsector
1540 LDA physical \ physical track number
1550 STA idsblock+7 \ store physical track
1560 LDA #&01 \ one sector
1570 STA idsblock+9 \ number of ids
1580 LDA #&7F
1590 LDX #idsblock MOD256
1600 LDY #idsblock DIV 256
1610 JSR osword
1620 LDA idsblock+10 \ result
1630 AND #&1E \ = 0 if formatted
1640 RTS
1650 .sectorids
1660 LDX table+3 \ load data size code
1670 LDA sizes,X \ load number of sectors
1680 STA idsblock+9 \ store number of sectors
1690 LDA #&7F
1700 LDX #idsblock MOD256
1710 LDY #idsblock DIV 256
1720 JSR osword
1730 LDA idsblock+10 \ result
1740 AND #&1E
1750 BNE idserror \ = 0 if OK
1760 RTS
1770 .idserror
1780 BRK
1790 BRK
1800 EQUS "Sector ID Error"
1810 BRK
1820 .copysector
1830 LDX sectornumber \ load index on table
1840 LDA table+2,X \ load logical sector number
1850 STA copyblock+8 \ store for read sector
1860 LDA table,X \ load logical track number
1870 STA copyblock+7 \ and store for read
1880 JSR register \ write track register
1890 LDA #&00 \ drive 0
1900 STA copyblock
1910 LDA #&57 \ read sector command
1920 STA copyblock+6
1930 LDA #&7F
1940 LDX #copyblock MOD256
1950 LDY #copyblock DIV 256
1960 JSR osword
1970 LDA copyblock+10

1980 BEQ notdel \ not deleted data
1990 CMP #&20 \ deleted data result
2000 BNE readerror \ error if not &20
2010 LDA #&4F \ write deleted data command
2020 BNE savecom
2030 .notdel
2040 LDA #&4B \ write data command
2050 .savecom
2060 STA copyblock+6
2070 LDA #&01 \ drive 1
2080 STA copyblock
2090 LDA #&7F
2100 LDX #copyblock MOD256
2110 LDY #copyblock DIV 256
2120 JSR osword
2130 LDA copyblock+10 \ result
2140 BNE writeerror \ = 0 if OK
2150 SEC
2160 LDA sectornumber \ sector index on table
2170 SBC #&04
2180 STA sectornumber \ index=index-4
2190 RTS
2200 .readerror
2210 LDA physical \ physical track number
2220 JSR register \ write track register
2230 BRK
2240 BRK
2250 EQUS "Read error"
2260 BRK
2270 .writeerror
2280 LDA physical \ physical track number
2290 JSR register \ write track register
2300 BRK
2310 BRK
2320 EQUS "Write error"
2330 BRK
2340 .printbyte
2350 LDA physical \ print physical track number
2360 PHA
2370 LSR A
2380 LSR A
2390 LSR A
2400 LSR A
2410 JSR nybble \ print MS nybble
2420 PLA
2430 JSR nybble \ print LS nybble
2440 LDA #ASC(" ")
2450 JSR oswrch \ print space
2460 JMP oswrch \ print space and return
2470 .nybble
2480 AND #&0F
2490 SED
2500 CLC
2510 ADC #&90
2520 ADC #&40
2530 CLD
2540 JMP oswrch \ print nybble and return
2550 .seekblock
2560 EQUB &00 \ drive 0/1
2570 EQUD&00 \ does not matter
2580 EQUB &01 \ 1 parameter
2582 EQUB &69 \ seek command
2584 EQUB &00 \ physical track number
2586 EQUB &00 \ result byte
2590 .regblock
2600 EQUB &00 \ drive 0/1
2610 EQUD&00 \ does not matter
2620 EQUB &02 \ 2 parameters
2622 EQUB &7A \ write special register
2624 EQUB &00 \ register number
2626 EQUB &00 \ value to put in register
2630 EQUB &00 \ result byte
2640 .idsblock
2650 EQUB &00 \ drive 0
2660 EQUDtable \ address of buffer
2670 EQUB &03 \ 3 parameters
2672 EQUB &5B \ read sector IDs

2674 EQUB &00 \ physical track number
2676 EQUB &00 \ always &00
2678 EQUB &00 \ number of IDs to be read
2680 EQUB &00 \ result byte
2690 .copyblock
2700 EQUB &00 \ drive 0/1
2710 EQUDbuffer \ address of buffer
2720 EQUB &03 \ 3 parameters
2722 EQUB &57 \ read data and deleted data
2724 EQUB &00 \ logical track number
2726 EQUB &00 \ logical sector number
2728 EQUB &00 \ sector size/number
2730 EQUB &00 \ result byte
2740 .formblock
2750 EQUB &01 \ drive 1
2760 EQUDtable \ sector table
2770 EQUB &05 \ 5 parameters
2772 EQUB &63 \ format track command
2774 EQUB &00 \ physical track number
2776 EQUB &00 \ gap 3 size
2778 EQUB &00 \ sector size/number
2780 EQUB &00 \ gap 5 size
2782 EQUB &10 \ gap 1 size
2784 EQUB &00 \ result byte
2790 .deblock
2800 EQUB &01 \ drive 1
2810 EQUDdetable \ sector table
2820 EQUB &05 \ 5 parameters
2822 EQUB &63 \ format track command
2824 EQUB &00 \ physical track number
2826 EQUB &00 \ gap 3 size
2828 EQUB &C1 \ sector size/number
2830 EQUB &00 \ gap 5 size
2832 EQUB &10 \ gap 1 size
2834 EQUB &00 \ result byte
2840 .detable
2850 EQUD&04000000
2860 .gap
2870 EQUB 11 \ Gap 3, 18 sectors
2880 EQUB 21 \ Gap 3, 10 sectors
2890 EQUB 74 \ Gap 3, 5 sectors
2900 EQUB 255 \ Gap 3, 2 sectors
2910 EQUB 0 \ Gap 3, 1 sector
2920 .sizes
2930 EQUB 18
2940 EQUB 10
2950 EQUB 5
2960 EQUB 2
2970 EQUB 1
2980 .physical
2990 EQUB &00
3000 .sectornumber
3010 EQUB &00
3020 .last
3030 EQUB &00
3040]
3050 NEXT
3060 INPUT'"Number of tracks (40/80) "tracks$
3070 IF tracks$="40" ?last=40 ELSE ?last=80
3080 PRINT'"Insert ";?last;" track source disc in :0"
3090 PRINT"Insert ";?last;" track destination disc in :1"
3100 PRINT'"Press Spacebar to copy from :0 to :1"
3110 REPEAT
3120 UNTIL GET=32
3130 CALL mcode

130 P%=PAGE+&100
140 [OPT pass
150 .firstbyte
160 EQUW&FF0D \ NEWthe BASIC program
170 .start
180 LDA #&0F
190 JSR osasci \ scroll mode
200 LDX #title MOD256
210 LDY #title DIV 256
220 JSR print \ print title
230 .getdata
240 LDX #drivenum MOD256
250 LDY #drivenum DIV 256
260 JSR print \ which drive?
270 .whichdrive
280 JSR osrdch
290 BCS escape
300 SEC
310 SBC #ASC("0")
320 BMI whichdrive \ drive 0-3
330 CMP #&04
340 BCS whichdrive \ drive 0-3
350 STA block \ format parameter block
360 STA catblock \ catalogue parameter block
370 ADC #ASC("0")
380 JSR osasci \ print 0, 1, 2 or 3
390 LDX #tracknum MOD256
400 LDY #tracknum DIV 256
410 JSR print \ 40 or 80 tracks?
420 .whichtrack
430 JSR osrdch
440 BCS escape
450 LDX #&27 \ 40 tracks
460 CMP #ASC("4")
470 BEQ continue
480 CMP #ASC("8")
490 BNE whichtrack
500 LDX #&4F \ 80 tracks
510 .continue
520 STX finish \ store number of tracks
530 JSR osasci \ print "8" or "4"
540 LDA #ASC("0")
550 JSR osasci \ print "0" to make "40" or "80"
560 LDX #ready MOD256
570 LDY #ready DIV 256
580 JSR print \ ready to format?
590 JSR osrdch
600 BCS escape
610 PHA \ temp store for answer
620 JSR osasci \ print answer
630 JSR osnewl
640 PLA \ pull answer
650 AND #&DF \ upper case
660 CMP #ASC("Y")
670 BNE getdata
680 JSR osnewl
690 LDA #0
700 STA track
710 LDA #&01 \ data size
720 LDX #&10 \ gap 3
730 LDY #&2A \ number of sectors
740 JSR setup
750 LDA #&7F
760 LDX #block MOD256
770 LDY #block DIV 256
780 JSR osword \ format track 0 ten sectors
790 LDA result \ load result byte
800 BEQ trackzero \ format OK if result = 0
810 .error
820 BRK
830 BRK
840 EQUS "Format error"
850 BRK
860 .escape
870 LDA #&7E
880 JSR osbyte \ acknowledge Escape
890 BRK

900 BRK
910 EQUS "Escape"
920 BRK
930 .trackzero
940 LDA #&7F
950 LDX #catblock MOD256
960 LDY #catblock DIV 256
970 JSR osword \ store empty catalogue
980 LDA catresult \ check result byte
990 BNE error \ quit if error

1000 JSR printbyte \ print track 00
1010 .loop
1020 LDA &FF \ poll escape flag
1030 BMI escape \ bit 7 set if Escape pressed
1040 INC track \ increment track number
1050 LDA #&02 \ data size
1060 LDX #&4A \ gap 3
1070 LDY #&45 \ number of sectors
1080 JSR setup
1090 LDA #&7F
1100 LDX #block MOD256
1110 LDY #block DIV 256
1120 JSR osword \ format track with 5 sectors
1130 LDA result \ load result byte
1140 BNE error \ quit if error
1150 LDA track \ load track number
1160 PHA
1170 JSR printbyte \ print track number
1180 PLA
1190 CMP finish \ is that the last track?
1200 BCC loop \ branch if more tracks to format
1210 LDX #another MOD256
1220 LDY #another DIV 256
1230 JSR print \ another?
1240 JSR osrdch
1250 BCS escape
1260 PHA \ temp store for answer
1270 JSR osasci \ print answer
1280 JSR osnewl
1290 PLA \ pull answer
1300 AND #&DF \ upper case
1310 CMP #ASC("Y")
1320 BNE return
1330 JMP getdata
1340 .setup
1350 STX gap3
1360 STY numsectors
1370 LDX #39
1380 LDY track
1390 STY physical
1400 .setloop
1410 STA table,X
1420 DEX
1430 DEX
1440 DEX
1450 PHA
1460 TYA
1470 STA table,X
1480 PLA
1490 DEX
1500 BPL setloop
1510 .return
1520 RTS
1530 .print
1540 STX zeropage
1550 STY zeropage+1
1560 LDY #0
1570 .printloop
1580 LDA (zeropage),Y
1590 BEQ endprint
1600 JSR osasci
1610 INY
1620 BNE printloop
1630 .endprint
1640 RTS
1650 .printbyte
1660 PHA

1670 LSR A
1680 LSR A
1690 LSR A
1700 LSR A
1710 JSR nybble \ print MS nybble
1720 PLA
1730 JSR nybble \ print LS nybble
1740 LDA #ASC(" ")
1750 JSR oswrch \ print space
1760 JMP oswrch \ print space
1770 .nybble
1780 AND #&0F
1790 SED
1800 CLC
1810 ADC #&90
1820 ADC #&40
1830 CLD
1840 JMP oswrch \ print nybble and return
1850 .block
1860 EQUB &00 \ drive number 0-3
1870 EQUDtable \ sector table
1880 EQUB &05 \ 5 parameters
1890 EQUB &63 \ format track
1900 .physical
1910 EQUB &00 \ physical track number 0
1920 .gap3
1930 EQUB &15 \ gap 3
1940 .numsectors
1950 EQUB &2A \ 10 sectors of 256 bytes
1960 EQUB &00 \ gap 5
1970 EQUB &10 \ gap 1
1980 .result
1990 EQUB &00 \ result byte
2000 .table
2010 EQUD&00000000
2020 EQUD&00010000
2030 EQUD&00020000
2040 EQUD&00030000
2050 EQUD&00040000
2060 EQUD&00050000
2070 EQUD&00060000
2080 EQUD&00070000
2090 EQUD&00080000
2100 EQUD&00090000
2110 .catalogue
2120 EQUB &15 \ disc title (disable VDU)
2130 OPT FNfill(7) \ 7 zero bytes
2140 EQUS "!BOOT $" \ next 8 bytes
2150 OPT FNfill(240) \ end of first sector
2160 OPT FNfill(5) \ start of second sector
2170 EQUB &08 \ number of files * 8
2180 EQUW&0A20 \ 10 sectors and *OPT 4,2
2190 EQUD&00 \ load and exec = &0000
2200 EQUW&0800 \ length = &800 bytes
2210 EQUB &00 \ MS 2 bits of sector number
2220 EQUB &02 \ starting at sector 2
2230 OPT FNfill(240)
2240 .catblock
2250 EQUB &00 \ drive number
2260 EQUDcatalogue \ address of buffer
2270 EQUB &03 \ number of parameters
2280 EQUB &4B \ save data multi sector
2290 EQUB &00 \ logical track
2300 EQUB &00 \ start logical sector
2310 EQUB &22 \ 2 sectors of 256 bytes
2320 .catresult
2330 EQUB &00 \ result byte
2340 .title
2350 EQUB &0D
2360 EQUS "5 Sector DFS Format"
2370 EQUB &0D
2380 BRK
2390 .drivenum
2400 EQUB &0D
2410 EQUS "Drive number? (0-3) "
2420 BRK
2430 .tracknum

2440 EQUB &0D
2450 EQUS "40 or 80 tracks? (4/8) "
2460 BRK
2470 .ready
2480 EQUB &0D
2490 EQUS "Ready to format? (Y/N) "
2500 BRK
2510 .another
2520 EQUB &0D
2530 EQUS "Another? (Y/N) "
2540 BRK
2550 .track
2560 EQUB &00 \ physical track number
2570 .finish
2580 EQUB &00 \ last track number
2590 .lastbyte
2600]
2610 NEXT
2620 INPUT'"Save filename = "filename$
2630 IF filename$ = "" THEN END
2640 *OPT1,2
2650 OSCLI("SAVE "+filename$+" "+STR$~(mcode)+"+"+STR$~(las

tbyte-firstbyte)+" "+STR$~(start)+" "+STR$~(firstbyte))
2660 *OPT1,0
2670 END
2680 DEF FNfill(size)
2690 FOR count = 1 TO size
2700 ?O%=0
2710 O%=O%+1
2720 P%=P%+1
2730 NEXT
2740 =pass

There are a number of points worth noting about the program SECTOR5. The
object code is used to create a 5 sector per track formatted disc and, for
the sake of demonstrating the protection techniques, the object code will
also be stored on the disc it formats. The program assembles the object
code to run at PAGE+&100. This is so that the programs which will be used
to store the object code on a protected disc and to read that code back
from the disc can be located at PAGE. These saving and loading programs
are very short and &100 bytes is more than enough room for them. When you
design your own protection system you may need more space for your saving
and loading programs.

The formatting program introduced in module 3 created an empty catalogue
which only contained the number of sectors available on the disc. The
catalogue created by the program above actually contains a disc title,
some file information and the start up option. The disc title is the ASCII
character &15 which disables the VDU and so prevents the disc being
catalogued. The dummy file $.!BOOT is entered into the catalogue and it is
specified as &800 bytes long starting in sector &02. This means that the
dummy !BOOT file uses all the available space on track &00. The number of
available sectors on the disc is specified as &0A and so the catalogue and
the dummy !BOOT file use all the available space on the disc. The start up
option is equivalent to *OPT 4,2 so that the !BOOT file will be *RUN on
Shift+Break. This formatting program produces the sector map shown in
figure 1. You can see that it has not been optimised for speed and you may
like to modify using the logical sector offsets described in module 3.

DFS format physical sector numbers

| 00 01 02 03 04 05 06 07 08 09
---+---------------------------------------

T 00 | 00 01 02 03 04 05 06 07 08 09
r 01 | 01 02 03 04 05 Logical
a 02 | 01 02 03 04 05 sector
c 03 | 01 02 03 04 05 numbers
k 04 | 01 02 03 04 05
s 05 | 01 ...

Figure 1. The distribution of logical sectors

When the disc has been formatted you can use the program IDSDUMP (from
module 0) to check the ID fields and the program VERIFY (also from module
0) to verify the format.

The object code program FORM5, which is used to format the disc, can be
stored on the newly formatted disc using the object code generated by the
program ENCODE. Run ENCODEand choose a suitable filename for the object
code it produces when prompted. For the sake of this demonstration I will
assume that you will call it SAVE5. The object code program SAVE5 will
save the &400 byte program FORM5onto the first two logical sectors of
track &01, storing the data as deleted data.

*LOAD FORM5and then type *RUN SAVE5. Swap the DFS disc for the newly
formatted 5 sector per track disc and press the spacebar. The object code
program FORM5will be stored on the disc. You can use the program VERIFY
to make sure that the data is sucessfully stored as deleted data.

10 REM: ENCODE
20 DIM mcode &100
25 page=PAGE
30 osrdch=&FFE0
40 oswrch=&FFEE
50 osword=&FFF1
60 FORpass=4 TO 6 STEP 2
70 O%=mcode
80 P%=page
90 [OPT pass

100 .firstbyte
110 EQUW&FF0D \ NEWthe BASIC program
120 .start
130 LDX #&00
140 .loop
150 LDA message,X
160 BEQ end
170 JSR oswrch
180 INX
190 BNE loop
200 .end
210 JSR osrdch
220 BCC save
230 BRK
240 BRK
250 EQUS "Escape"
260 BRK
270 .save
280 LDA #&7F
290 LDX #block MOD256
300 LDY #block DIV 256
310 JSR osword \ write deleted data
320 LDA result \ load result byte
330 AND #&1E \ isolate error code
340 BNE error
350 BRK
360 BRK
370 EQUS "Write OK"
380 .error
390 BRK
400 BRK
410 EQUS "Write failed"
420 BRK
430 .block
440 EQUB &FF \ current drive
450 EQUDpage+&100 \ start at PAGE+&100
460 EQUB &03 \ 3 parameters
470 EQUB &4F \ write deleted multi-sector
480 EQUB &01 \ logical track &01
490 EQUB &00 \ start logical sector &00
500 EQUB &42 \ 2 sectors of 512 bytes
510 .result
520 EQUB &00 \ result byte
530 .message
540 EQUS "Press Space to save data on current disc"
550 BRK
560 .lastbyte
570]
580 NEXT

590 INPUT'"Save filename = "filename$
600 IF filename$ = "" THEN END
610 *OPT1,2
620 OSCLI("SAVE "+filename$+" "+STR$~(mcode)+"+"+STR$~(las

tbyte-firstbyte)+" "+STR$~(start)+" "+STR$~(firstbyte))
630 *OPT1,0
640 END

The data stored on the disc using SAVE5 cannot be read back off the disc
using any of the DFS star commands. The disc has been formatted so that a
!BOOT file will be *RUN on Shift+Break and so the dummy !BOOT file entered
into the catalogue by the formatting program needs to be replaced with a
real !BOOT file which will load and run the program stored on track &01.

The program DECODEwill produce an appropriate machine code !BOOT file
which simply reverses the Write Deleted Data operation which put the data
onto the disc. When the deleted data have been reloaded into memory the
command CALL (PAGE+&102) <Return> is inserted into the keyboard buffer,
and BASIC is entered using Osbyte &8E. The VDU is disabled before
inserting the data into the keyboard buffer (lines 460-470) and re-enabled
before the command is executed (line 610). This hides what you are doing
from the disc user. Any command, or series of commands, can be executed in
this way so that BASIC programs as well as machine code programs can be
stored on, and run from, the copy-protected disc.

The optional code in lines 140 to 230 of DECODEcan be used to further
protect your software but you should start to think of your own ideas to
incorporate with these techniques. Disc copy-protection is only useful if
it is unique and very difficult to break. These programs are neither but
they are a good introduction to the necessary techniques and the discs
they produce cannot be duplicated with the *BACKUP command.

10 REM: DECODE
20 page=PAGE
30 DIM mcode &100
40 osasci=&FFE3
50 osword=&FFF1
60 osbyte=&FFF4
70 FORpass=4 TO 6 STEP 2
80 O%=mcode
90 P%=page

100 [OPT pass
110 .firstbyte
120 EQUW&FF0D \ NEWthe BASIC program
130 .start
140 \ LDA #&C8 \ write Break effect
150 \ LDX #&02 \ clear memory on Break
160 \ LDY #&00
170 \ JSR osbyte
180 \ LDA #&4C \ JMP opcode
190 \ LDX #&87 \ JMP &287 gives an
200 \ LDY #&02 \ endless loop on Break
210 \ STA &287
220 \ STX &288
230 \ STY &289
240 LDA #&7F
250 LDX #block MOD256
260 LDY #block DIV 256
270 JSR osword \ read deleted data
280 LDA result \ load result byte
290 AND #&1E \ isolate error code
300 BNE error
310 LDA #&FF \ initialise offset
320 PHA \ save offset
330 .pull
340 PLA
350 TAX
360 INX \ increment offset
370 TXA
380 PHA \ store current offset
390 LDY keyboard,X \ load byte for keyboard buffer
400 BEQ continue \ branch if finished
410 LDX #0
420 LDA #&8A
430 JSR osbyte \ put byte into keyboard buffer

440 JMP pull
450 .continue
460 LDA #&15
470 JSR osasci \ disable VDU
480 LDA #&BB
490 LDX #0
500 LDY #&FF
510 JSR osbyte \ find BASIC
520 LDA #&8E
530 JMP osbyte \ select BASIC no return
540 .error
550 BRK
560 BRK
570 EQUS "Disc read error"
580 BRK
590 .keyboard
600 EQUS "CALL &"+STR$~(page+&102)
610 EQUB &06 \ enable VDU
620 EQUB &0D
630 BRK
640 .block
650 EQUB &FF \ current drive
660 EQUDpage+&100 \ start at PAGE+&100
670 EQUB &03 \ 3 parameters
680 EQUB &57 \ read deleted multi-sector
690 EQUB &01 \ logical track &01
700 EQUB &00 \ start logical sector 0
710 EQUB &42 \ 2 sectors of 512 bytes
720 .result
730 EQUB &00 \ result byte
740 .lastbyte
750]
760 NEXT
770 PRINT'"Press Space to save !BOOT file"
780 REPEAT
790 UNTIL GET=32
800 *OPT1,2
810 OSCLI("SAVE $.!BOOT "+STR$~(mcode)+"+"+STR$~(lastbyte-

firstbyte)+" "+STR$~(start)+" "+STR$~(firstbyte))
820 *OPT1,0

	Module 0. Introduction
	Introduction to single density discs

	Module 1. The DFS Osword commands (part 1)
	Osword &7D
	Osword &7E
	Osword &7F
	Osword &7F Read Drive Status
	Osword &7F Initialise 8271
	Osword &7F Seek
	Osword &7F Load Bad Tracks
	Osword &7F Write Special Register
	Osword &7F Read Special Register

	Module 2. The DFS Osword commands (part 2)
	Osword &7F
	Osword &7F Read Sector IDs
	Osword &7F Format Track
	Osword &7F Verify Data and Deleted Data multi-sector
	Osword &7F Verify Data and Deleted Data 128 bytes
	Osword &7F Write Data multi-sector
	Osword &7F Write Data 128 bytes
	Osword &7F Write Deleted Data multi-sector
	Osword &7F Write Deleted Data 128 bytes
	Osword &7F Read Data and Deleted Data multi-sector
	Osword &7F Read Data and Deleted Data 128 bytes
	Osword &7F Read Data multi-sector
	Osword &7F Read Data 128 bytes

	Module 3. Formatting single density discs
	Module 4. Converting 40 track discs for 80 track drives
	Module 5. Creating discs compatible with both 40 and 80 track drives
	Module 6. Creating copy-protected single density discs
	Module 7. Duplicating copy-protected single density discs

