CHEH R BB R R e

THE COMPLETE
MOUSE USER GUIDE
FOR THE BBC MICRO

APDDEADREDND IO ADTDIDONMNHEHINODOH OO M

@' 1
THE COMPLETE
MOUSE USER GUIDE

FOR THE BBC MICRO

Published in the United Kingdom by
Watford Electronics

Jessa House, 250 Lower High Street
Watford, WD1 2AN. England

Telephone 0923 37774
Telex 8956095
Fax 01 950 8989

© 1988 Watford Electronics & T.1. Hewitt

All rights reserved. This book is copyright. No part of this book can
be copied or stored by any means whatsoever whether mechanical,
photographical or electronic except for private study use as defined in
the Copyright Act. All enquiries should be addressed to the
publishers.

While every precaution has been taken in the preparation of this book,
the publisher assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the
information contained herein.

This book was computer typeset by
Ideal Software Consultants, 11 Hathaway Close, Luton,
Bedfordshire.

Watford Electronics have now been established for over 16 years. We are
ane of the major ¢electronics distributors and retailers in the country,
supplying thousands of different electronic components and computer
peripherals. by mail order, and through our retail outlet at Watford. We
specialise in the BBC and Aries PC ranges of microcomputers, add-on
card; and perpherals. Contact us for all your electronics and computing
requirements.

The Complete Mouse User Manual

CONTENTS

INTRODUCTION...cccrrcinraiasssssssacssmsnissnnsssassnsassnans saanas 3
BASIC PRINCIPLESccconsmmcranssanmenmsssnsssessssssssansssssresresss 4
MOUSE ... ieoeeeeecetrreerserssrsmmmmems s sassnammnmnc e ba e 4
MOUSE MECHANISM ..o 5
TIMING DIAGRAMS ..., 7
HARDWARE.......ccoosmmirtiessremmecsssrssssssssasasssnssrnnsssasnnasansarres 8
CIRCUIT DIAGRAM ... 8
74HC14 PIN CONNECTIONSccoiiimmiiinmineeeece 9
MOUSE/USER PORT PIN ASSIGNMENTS 10
22 VIA ..o iieeeececssrrbeevreees e nsnsr s ae s et b e 11
USER PORT PIN CONNECTIONS.....ccooiiiiiiniinens 12
SOFTWARE.....cciintrrreseemmmmminessssnammmssssssasrrsssrmnnessnnannnresnes 13
6522 VIA REGISTERS......ccimoiciiee e 14
INITIALIZATION PROGRAM 16
INITIALIZATION PROGRAM FLOWCHART .17
INITIALIZATION PROGRAM LISTING.......ccccooumnns 18
INTERUPT SERVICE ROUTINE...cremricsencimivivessanass 20
INTERUPT SERVICE ROUTINE FLOWCHART 21
INTERUPT SERVICE ROUTINE LISTING 23
IMPROVING THE MOUSE SOFTWARE.....ccccciviinnnees 26
TIMING DIAGRAMooimi e 27
IMPROVED INTERUPT SERVICE ROUTINE
FLOWGCHART ...oooeeecieerin i rremssrres s ibbmmnnase s 29
PROGRAMMING THE PCR........ooiiiiineeenn 30
IMPROVED ISR LISTING. ... eneen 32
COMPLETE BASIC PROGRAMS.....occoceeenriaennininnnensene 35
COMPLETE BASIC PROGRAM LISTING................ 36
IMPROVED BASIC... reertrsneeaneanseaentessensbasseanene 37
PROGRAM LISTING ... 37

The Complete Mouse User Manual

|

T m

T M

L AL M YL

™

T TN

xR -Im R TP el T T T

-

I bm b b oW oW W oW oW oW o e W W e

i in & aa ia b i

@ 3
1 INTRODUCTION

The computer mouse is perhaps one of the most useful peripherals
currently available. Its ability to facilitate rapid and accurate data
entry into the micro makes it an invaluable addition to a host of
drawing and CAD packages. It is far faster than calculating
coordinates for entry via the keyboard, and much more accurate than
all but the most expensive light pens.

A mouse has recently become an integral part of many computer
packages available. For older systems, a separate mouse must be
purchased, and integrated into the existing hardware and software
already present in the micro. When such an addition is required, many
pre-written CAD programs are available for use with the mouse, but
there is a distinct absence of information about the mouse itself, and
how to use it for custom programs and applications.

This manual has been written to reveal the secrets of the mouse. it
explains all the principles required by the hardware and associated
software, and also example listings for inclusion into custom
programs. The manual first details the basic principles of the mouse,
and a simple program which uses these principles. This information
should be adequate for most applications. However, it is possible to
improve the performane of the mouse by expanding on the principles
already used in the software. This is again fully explained, and an
example program given.

It is possible to gain a full understanding of the mouse from this
manual. For those not interested in exactly how the mouse functions,
complete example programs are also included. These may be typed
directly into the micro, without the need for any understanding of the
hardware or software involved, enabling the mouse to be used for
custom applications.

This manual is written specifically for the BBC Model B’
Microcomputer and the AMX/QUEST mouse. It should be noted,
however, that most mice are AMX/QUEST compatible, and the
information in this manual is therefore still relevant to them. As all
the basic principles for using a mouse are fully explained, the
information in this manual is still applicable to other computers, and
can be used in conjunction with them. It should also be possible for the
programs listed to be modified for use with different machines.

The Complete Mouse User Manual

: il
2 BASIC PRINCIPLES

Figure 1
MOUSE

A typical mouse is shown in Fig 1. This consists of a small box,
housing the mechanism and electronics, with three push buttons on
top, and a cable with a plug on it for connection to the computer. In
the case of the BBC Micro, the mouse connects to the User Port on the
underside of the machine.

The mouse and associated software produce a pair of coordinates
which represent the exact position of the mouse in two dimensions, X
and Y. This method of using X and Y coordinates is similar to the
method of addressing the graphics screens on the micro. The X
coordinate represents the horizontal position of the mouse, and the Y
coordinate represents its vertical position.

The Complete Mouse User Manual

B R AT MM MM M MMM MMM ™ m

n

E_(: ¥ sonse

Q

4
- n
- —p L

: ! |
| ufl'

‘ o
broken by a solid part of the disc, the detector output decreases to
zero. In this way, the slots in the disc can be detected.

The distance between the slots, and the position of the IR emitters in
respect to this distance, is arranged so that when one beam is fully
broken, the other is only partially blocked. The effect of this, when the
disc is rotating, is that one beam is broken slightly before or after the
other, depending upon the direction of rotation of the disc. By using
one beam as a reference, the direction of movement of the mouse can
be determined by the state of the output from the other detector in the
pair at the start of the pulse generated by the reference. The amount
of travel, as opposed to the direction, is measured simply by counting
the number of pulses received from one of the detectors in the sensor.

As the discs in the sensors contain many slots, and the mouse is moved
fairly rapidly when in use, the frequency of pulses generated by the
rotation sensors can be quite high. In order for the software to
respond quickly enough, machine code software utilizing interupts is
required.

The reference beams from the sensors, are used to generate the
interupts. The output from the corresponding secondary beam then
indicates the direction of travel of the mouse. Assuming that the
interupt is generated on the positive edge of the reference sensor
output:- (i) if the reference beam is broken before the secondary beam,
the output from the secondary beam will be off at the instant the
interupt is generated, (ii) if the mouse is travelling in the opposite
direction and the secondary beam is broken before the reference, the
reference detector will be on at the instant when the interupt is
generated.

The Complete Mouse User Manual

hdndt]

o vEn el

- oo 7 T B T T T Y W 1%

& 4

- o d W«

T

TRRVELLING LEFT T3 RIGHT

1 —_

' X BEFERENCE SERSOR quTAUT

L w

‘ X SECONIIRY SENSIA DYTPLT

TRAVELLING RIEHT TO LEFT

% BEFESENCE SEWSOR QUTPUT

I
[S

I
I ‘ L X SECTNDSEY SENSOR OUTPUT
I

k INTERUPT

I$TENIFY IHTZRURT

8 &

3 HARDWARE
-

+3v - -
L[| ins
| I
Rl t' R [J 9 5 ek
¢ 1ACAN B A
[P O R e R g e
- PB7 |PBE | PES e inz I+I D4 % APA DN

‘ _s | s ICtd
o | |

—<H | T
| | i | | | l
q q q cot | | “em | ™
") : A
L sk | swe /? /V {
UL URz Wi lum
Oy |

Ci=47uf 16w RI=RI-R3=3K3
R4=R3=188R URI-UR4=2K2
ICI=T4HCL4E

=

Figure 4
CIRCUIT DIAGRAM

The complete circuit diagram of the mouse is shown in Fig 4.

Push button switches SW1 - SW3 are connected to User Port lines PB7
- PB5 respectively. These lines are normally held high by pull-up
resistors R1 - R3. When a switch is pressed, the corresponding input
to the User Port is grounded, thus changing the input to the port from
a logic 1" to a logic 0.

The rotation sensors are in the form of two separate slotted opto
switches, each having two IR emitter/detector pairs. The two IR
emitter diodes of each pair, D1,D2,D5 and D6, are connected across
the supply rails in series with the 100 ohm resistors R4 and R5. This
limits the voltage across each IR emitter diode to approximately 1.7
volts to prevent damage occuring to the diodes.

The Complete Mouse User Manual

-

“-

- -
4

A WW A A ae

. e

TR R Sem W] N NE wW e

- TR W

a & a &

wow s e W oW oW W o os oW oA e s

VU N T

L\

& 9
Each of the four IR detector diodes, D3,D4,D5 and D6, is connected in
series with one of 2.2K ohm preset resistors VR1 - VR4. These presets
allow adjustment of the threshold of the output voltage levels from

the detectors.

g o T I

Figure 5
74HC14 PIN CONNECTIONS

The anodes of the IR detector diodes feed inputs to IC1. This a
74HC14 hex inverter, the pin connections for which are shown in Fig
5. A 'HC' device is used in anticipation of the high speeds

The two unused inputs of this device are connected directly to 0 volts
to prevent damage to the chip, and spikes on the supply. The four
outputs which are used are connected to the User Port. The reference
detector outputs connect to the interupt control lines CB1 and CB2.
The secondary detector outputs connect to PB0 and PB2.

When the beam of IR light across a particular emitter/detector pair is
blocked, by the corresponding disc, the resistance of the detector
increases. The associated input to the inverter is pulled towards 0
volts by the comparatively low resistance of the preset. The inverter
thus produces a logic '1' output to the User Port.

When light passes through a slot in the disc allowing it to fall on the
IR detector, the detector conducts. This pulls the input to the inverter
towards +Vcc due to the now lower resistance of the detector
compared to the preset. The output from the inverter now assumes a
logic '0" state.

The Complete Mouse User Manual

10

Pin No. | User Port Function Mouse Function

1 Sv +Vee

2 CB1 X Refo/p
4 CB2 Y Refo/p
5 Ov Ground
6 PB0O XSeco/p
10 PB2 Y Seco/p
16 PB5 SW3
18 PB6 SW2
20 PB7 swi

Figure 6

MOUSE/USER PORT PIN ASSIGNMENTS
The cable from the mouse is terminated in a 20 way IDC header

socket. Fig 6 shows a table of the User Port and Mouse pin
assignments.

The Complete Mouse User Manual

TR - AT, TR Y W YW OYR™ W W

=y

ri

Y

- & sl

B WA Wn W

L N

@ 1

The User Port

o g

Pat
PE2
R
7R |
Fis | rmTa | | Poarse
FAE !

Pz ||
tal &
" |

FaE } ! |
]

B I\ BusEs
CIRTAIL REEISTERS
/T

Figure 7
6522 VIA

The User Port of the BBC Micro consists of a 6522 VIA (Versatile
Interface Adaptor) as shown in Fig 7. The 6522 has two almost
identical ports, A and B, each with eight data lines and two interupt
control lines. In the BBC Micro, port A is used for the parallel printer
port, an port B is used for the User Port.

The eight data lines from ports A and B are labelled PAO - PA7 and
PBO - PB7 respectively. Similarly, the interupt control lines are
labelled CA1/CA2 and CB1/CB2.

The two ports are virtually identical, but completely independent. The
chip contains sixteen internal registers, all programmable by the CPU
to determine the exact function of the two sepatate ports. The
method of programming these registers is described in detail in the
chapter on software. Each of the data lines is independently
programmable as either an input or an output. The mode of interupt
control and acknowledgement is also determined and recorded using
these registers.

The Complete Mouse User Manual

12 @

The addresses of the user VIA are between Sheila &60 to &6F in the
memory map of the micro. Again, further details are given in the next

chapter.
8 i
e

CEL CE2 Ped PBL PB2 PB3 PB4 PBS PBE PEV

DL ieEs O
oonoooooon

5 5y B B B¢ B W G B¢ B¢

VIEW LOOKIKG INTO USER PORT COMHECTOR OH UHDERSICE OF EBC COWPUTER
. o

Figure 8
USER PORT PIN CONNECTIONS

The pin connections of the User Port plug are shown in Fig 8.

The Complete Mouse User Manual

e
am

™ TR TR TR TR W

s TR]

™ ™

- o ™

&

& Ao

TR VT VR VR VR T TRRT AT TRRNT TRRT TRRT TR TR TR/

RIS T G T W T

@' 13
4 SOFTWARE

To enable the mouse to be used for custom applications, a routine is
required which reads its coordinates. These two values, X and Y, are
stored in memory for use by the custom program supplied by the user.

The software required for the mouse itself must react extremely
quickly to ensure correct operation of the system. BASIC is far too
slow, and will not support interupts in any case. For these two
reasons Assembly Language routines are employed.

Using Assembly Language on the BBC is simple, due to the built-in
Assembler. It is possible to enter the source file for the Assembler in
the form of a BASIC program, enclosing the Assembly Language
within the assembler de-limiter symbols (square brackets). This also
makes it possible to mix BASIC with Assembly Language for
Assembler pass control etc.

The programs to control the mouse are shown in Chapters 5 and 6 in
Assembler. These programs show the assembly language code,
accompanied by reference line numbers. Note that these programs
are for demonstration purposes only, and are not complete. The
actual program entered into the machine is shown in Chapter 7. This
listing is in BASIC. When the program is 'RUN’ the Assembler will
place the machine code into memory, ready for execution when the
mouse is moved and generates interupts.

The actual software required by the mouse is in two parts:-

1) The first part of the software, called the ‘Initialization Routine’,
initialises the User Port and existing Operating System, ready for use
with the mouse. Interaction with the OS is required because the
mouse is not the only possible source of interupts. Many other devices
also rely upon the interupt system. When an interupt is received, the
O5 polls each device which may have caused the interupt, to
determine which device actually originated the call. If polling a device
proves positive, the device is serviced by its associated Interupt
Service Routine, and program control then reverts to the polling
routine. If polling a device is negative, the next device is checked.
When all the possible sources of interupts have been checked and
serviced as required, normal foreground processing tasks resume.

The Complete Mouse User Manual

14 @

The mouse software simply adds one more possible source of
interupts to the existing ones. It achieves this by modifying a vector
called 'IRQ2". When an interupt is generated, the OS first checks all
its own devices (eg RS423 port, keyboard, video processpr etc). It then
allows the user to check for any interupts which have been generated
by User add-on devices connected to the interupt system. This is done
by means of the IRQ2 vector. When the OS has completed its own
checks, program control is indirected’ by the IRQ2 vector. This simply
transfers program control to the address pointed to by the contents of
the vector. The user program, starting at this address, may check any
devices required (in our case the User VIA) and take any action
necessary. When the user routine has been completed, program
control must be passed back to the code at the location pointed to by
the original contents of the IRQ2 vector. By doing this in a structured
manner, provision is made for adding further devices to the interupt
system for future expansion.

2) The second part of the mouse software called the 'Interupt Service
Routine’, which constitutes the main volume of the program, actually
checks the User Port VIA to determine if the mouse is the source of the
current interupt. If the mouse has caused the interupt, the routine
takes the necessary action. If it wasn't the mouse that caused the
interupt, program control is returned to the OS, or to the next
interupt routine if more devices have been added to the systern.

Reg. No.| Address |Name |Description

0 &FE60 |DRB Port B Data Reg.

2 &FE62 [DDRB |Port B Data Direction Reg.
12 &FE6C |PCR Peripheral Control Reg.
13 &FE6D [IFR Interupt Flag Reg.

14 &FE6E |IER Interupt Enable Reg.

Figure 9
6522 VIA REGISTERS

The Complete Mouse User Manual

P P P e P P ry— P

) 1

The Interupt Service Routine makes extensive use of the 6522 VIA.
This chip contains 16 internal registers, accessible by the CPU, for its
control. Only 5 of these registers are actually used by the mouse
software. Fig 9 shows the relevant registers, addresses and functions.
Full details of how to use these registers are given in the BBC
Advanced User Guide, but the information needed to use the mouse is
shown at the appropriate points in the explanation of the routines in
the next two chapters.

TR TR TR TR TR TR TR TR TR TR

T U T VR T VRV VT VIR T VT VT Y

VT ST T}

The Complete Mouse User Manual

C 3

16 @'
5 INITIALIZATION
PROGRAM

The initialization program integrates the mouse Interupt Service
Routine into the existing Operating System interupt handling
routine, and configures the User Port for use with the mouse. This
program must only be executed once.

The initialization program modifies the contents of the IRQ2 vector
to allow the interupts generated by the mouse to be recognised. If the
mouse software needs to be reset at any time, the old IRQ2 vector
must be restored first. If this is not done, the ariginal value of the
IRQ2 vector supplied by the OS will be lost. This will crash the
machine, as it will not be able to return from certain interupts
correctly. The easiest method of achieving a reset is by pressing the
BREAK key. When this occurs, the OS restores the original value of
the IRQ2 vector. The initialization program may then be executed
again. If a reset is required under software control, a routine must be
written which retrieves the original contents of IRQ2, and replaces it
in the vector.

Another point to note about the initialization program is that it must
not be called before the Interupt Service Routine has been installed. If
this happens, the next interupt generated will crash the machine. The
interupt will cause the OS to indirect to an address in memory where
it expects to find the service routine. As the routine is not present, the
code at this location will probably be ‘rubbish’ and lock the machine.
This means program execution will not be transfered back to the OS
re-entry point as usual, and the whole system will crash.

The Complete Mouse User Manual

FL o & ulm

'y a3

A ¥z 11

L a M8

o 2 3l I 2] - -~

Ki:m i S

™ FF ¥ R JF¥ 8

|

wom s A s A o oA A A A oA s oA & w

a A in W

2

@ 17
f: — -)

 smr >
bl_f

DISABLE INTERUPTS

STORE DLD [IRDZ VECTOR

‘ L0 KEK IR2 VECTOR |

S ToLOy ATH

| IHITIALIZE VI8 PGGT 8
| RE-EHRELE INTERUFTS

JE2 i Gl

3 b A
Figure 10

INITIALIZATION PROGRAM FLOWCHART

The flowchart for the initialization program is show in Fig 10.

The first operation this routine performs is to disable all maskable
interupts. This is done because if an interupt was called at the instant
when the initialization program was in the middle of altering the
IRQ2 vector, the vector used would not be correct. The first byte of
the vector would have been altered, but the second byte would still be
from the initial vector contents. Disabling interupts will delay the
interupt call until they are re-enabled. When this happens, the vector
will have been modified correctly. Interupts may only be disabled for
a maximum of 2mS if the Operating System is not to be disrupted.
The initialization program only takes a fraction of this time and is
therefore safe to use, as long as interupts are re-enabled afterwards.

Having temporarily disabled interupts, the IRQ2 vector can be
modified. The original contents of this vector must be stored in
memory for use later when program control is returned to the OS.
The new wvalue for the vector can now be loaded into the IRQ2 vector.

Now that the vector has been modified, the VIA must be initialised.
This involves setting the required interupt modes, enabling the VIA to
generate interupts and resetting any interupts previously flagged in
the VIA.

The Complete Mouse User Manual

18 @'

Machine interupts may now be re-enabled, preparing the system
ready to use the mouse.

0010 .init

0020 SEI

0030 LDA &0206

0040 STA oldv

0050 LDA &0207

0060 STA oldv+l

0070 1LDA §$prog MWOD 256
0080 STA &0206

0090 1LDA #prog DIV 256
0100 S8TA &£0207

0110 1DA #112

0120 STA &FEEC

0130 LDA #152

0140 STA &FE6GE

0150 LDA #127

0160 STA &FE6D

0170 LDA #0

0180 STA &FE62

0190 CLI
0200 RTS
Figure 11

INITIALIZATION PROGRAM LISTING

Fig 11 shows the assembly language listing for the initialization
routine.

Line 0010 assigns a name to the routine.

Line 0020 disables maskable interupts by setting the interupt disable
flag in the 6502 condition code register. This must be done as
previously explained on Page 19.

Line 0030 loads the accumulator with the low byte of the IRQ2 vector.
Line 0040 stores the high byte of the IRQ vector in the location ‘oldv'.

This location is used to store the vector contents for use later by the
Interupt Service Routine as a return address into the OS.

The Complete Mouse User Manual

&

A A A A Ny oA A a

TR VIR VRRT VRT VR VT TR

' T T WY G

i\

@' 19

Lines 0050 and 0060 store the high byte of the IRQ2 vector in the next
memory location in a similar manner.

Line 0070 loads the accumulator with the low byte of the mouse
interupt service routine starting address. The address of this routine
is held in the variable 'prog’. Use of the BASIC 'MOD' command
automatically calculates the low byte of this value.

Line 0080 stores the low byte of the mouse interupt service routine in
the low byte of the [RQ2 vector.

Lines 0090 and 0100 calculate and store the high byte of the mouse ISR
starting address in the high byte of the IRQ2 vector. The value is
calculated this time by use of the 'DIV’ command.

Lines 0110 and 0120 set the CB1 and CB2 interupt modes of the 6522
VIA as being triggered on the positive edge of the interupt signal. CB1
is programmed as a normal interupt, but CB2 is configured as an
Independent interupt (This affects the way in which the flags in the
IFR are reset as described later). This is done by use of the Peripheral
Control Register in the 6522. See Fig 3, page 7, for the actual
waveforms of the signals expected on the interupt inputs.

Lines 0130 and 0140 enable the VIA to generate interupt signals to the
6502 CPU. This is done by use of the Interupt Enable Register in the
VIA. This only enables the VIA to generate interupts and does not
allow the CPU to recognise them. Note that line 0020 disabled the
CPU from recognising interupts, not the 6522 from generating them.

Lines 0150 and 0160 reset the Interupt Flag Register in the VIA. When
an interupt is generated, the corresponding flag is set in this register.
These two lines simply reset the flags in case they are not already
clear.

Lines 0170 and 0180 program all the Port B lines of the VIA as inputs
to the micro. This is required because the mouse generates all the
signals, and the micro reads them.

Line 0190 re-enables machine interupts by resetting the Interupt
Disable Flag.

Line 0200 returns control back from the initialization routine.

The Complete Mouse User Manual

" i
6 INTERUPT
SERVICE ROUTINE

When an interupt has been generated, the Operating System checks
all the internal devices to determine if they caused it. The user can

then check additional devices, such as the User Port, if this is required.

This system of checking is performed by the Interupt Service Routine
(ISR). Having already enabled the User Port to generate interupts, as
previously described, the OS indirects program control to the User
Interupt Service Routine through the IRQ2 vector. This vector has
been altered to point to the start of the User ISR by the previous
initialization routine.

The User, or in this case mouse, ISR, must check to see if the current
interupt has been caused by the User VIA and hence the mouse. If the
mouse has caused the interupt, the ISR must then determine whether
the CB1 or CB2 signal caused it and take appropriate action ie
increment or decrement the X or Y variables accordingly. These
values are stored in the two variables ‘xcord’ and 'ycord’
respectively, by the ISR. These two variables are 16 bit or two byte.
The low byte is stored first, followed by the high byte.

When the ISR is complete, program conirol must be returned to the
code at the original address of the IRQ2 vector. The CPU must also
enter this routine with the same data in all its registers as was
present when the User ISR was called. This necessitates pushing the
entire precessor status onto the stack at the beginning of the ISR, and
retrieving it upon completion of the routine. To return program
control to the correct address, the program must ‘jump’ to the
address held in the variable ‘oldv’. This variable was loaded with the
old contents of the IRQ2 vector at the beginning of the initialization
routine.

The Complete Mouse User Manual

e (- kLD

o 4

oar,
el

R ”‘_ELM!‘. o n.-.

=
aly

a &l & & &

& & A

a s s a A oA

YN T TS T~ 1 U S -V 1~V

R

21

N\ &

Ao

—

<D

SAWE REGISTERS TD STACK
| LB

Y st

H0
=i —_ 6522 IHTERUPT 7

|
1

(B INTERUPT 7

RESET CB1 INTERWPT

_—
!

LEFT 5
‘ LEFT OR RIGHT 2 Dol
TR
T_L .
DECREMERT ¥ THCRERERT X

b s sl stens gobundh X 5

»-

4 /_‘j
< £B2 IHTERUPT 7

imeoidsh, doesdmeial
RESET CB2 INTERUPT

DOsH uw

TS e —
| DECREMENT ¥ | IHCREMENT ¥

e T R

. v

¢ RESTORE REGISTERS AND nsr'.;.u\}
hY

Figure 12

INTERUPT SERVICE ROUTINE FLOWCHART

The flowchart of the Interupt Service Routine is shown in Fig 12.

The Complete Mouse User Manual

2 &
The ISR first saves the A, X and Y registers onto the stack. This

enables the processor status to be retrieved upon completion of the
routine.

The routine then checks the User VIA Interupt Flag Register to see if
the 6522 caused the interupt. If it did not cause the interupt, program
control is transfered to the 'exit' subroutine.

If the User VIA proved to be the cause of the interupt, the ISR then
checks to see if it was the CB1 signal that was triggered. Again, the
Interupt Flag Register will reveal this. If CB1 did not generate the
interupt, the program branches to check if the interupt was caused by
CB2.

If CB1 has caused the interupt, the ISR must read the state of the
User Port data lines. This is because the ISR knows that the mouse
has been moved in the X direction, because the CB1 interupt has been
generated, but does not yet know whether the mouse was moved left
or right. Reading the User Port will reveal the state of the secondary
detector in the X direction sensor, which in turn indicates the
direction of travel of the mouse.

‘When the direction of travel of the mouse has been determined, the
value of the co-ordinate variable must be altered as required.

After servicing the CB1 interupt, or confirming that it was not this
signal that caused the interupt, the ISR checks if the CB2 signal
caused the interupt. Again, if not the program jumps to the ‘exit’
routine,

If CB2 has caused the interupt, the program must determine whether
the mouse was moved upwards or downwards and modify the Y
coordinate variable accordingly. This is all done in a similar manner
to that in which the CB1 interupt was processed. When the CB2
interupt has been serviced, the 'exit’ routine is executed.

The 'exit’ routine simply retrieves the processor status, before the ISR

was executed, from the stack, and transfers program control to the
original code the IRQ2 vector pointed to.

The Complete Mouse User Manual

amk SV T FB s O Fw b T W O SQW A AN W e PR W qEr qmn ewWe

Al A & A

B A s A A A s s oA A A A

"

0010 .prog 0360 .CB2

0020 LDA &FC 0370 LDA &FE60

0030 PHA 0380 STA portb

0040 TXA 0390 LDA &FE6D

0050 PHA 0400 AND #8

0060 TYA 0410 BEQ aexit

0070 PHA 0420 STA &FEé6D

0080 LDA &FE6ED 0430 LDA EFE6D

0090 AND $#128 0440 AND $#4

0100 BEQ exit 0450 BNE down

0110 LDA &FE6ED 0460 _up

0120 AND #16 0470 SEC

0130 BEQ CB2 0480 LDA ycozd

0140 .CeBl 0490 sSBC A1

0150 LDA &FE60 0500 STA ycord

0160 STA portb 0510 LDA ycord+l

0170 AND #1 0520 sSBC §¥0

0180 BNE right 0530 S8TA ycord+l

0190 .left 0540 JIMP exit

0200 SEC 0550 .down

0210 LDA xcord 0560 CLC

0220 SBC §#1 0570 LDA ycord

0230 STA xcord 0580 ADC §#1

0240 IDA =xcord+l 0590 STA ycord

0250 sSBC #00 0600 LDA yecord+l

0260 STA xcord+l 0610 ADC #0

0270 JMP CB2 0620 STA ycord+l

0280 .right 0630 .axit

0290 cCLC 0640 PLA

0300 LDA xcord 0650 TAY

0310 apc #1 0660 PILA

0320 STA xcord 0670 TAX

0330 LDA xcord+l 0680 PLA

0340 ADC §#00 0690 STA &FC

0350 STA xcord+l 0700 JMP (oldv)
Figure 13

INTERUPT SERVICE ROUTINE LISTING

The program listing for the Mouse Interupt Servive Routine is shown
in Fig 13.

Line 0010 names the routine as 'prog’. Later, in the BASIC listings,

this name is important because it is from this variable that the
initialization routine calculates the start address of the new ISR.

The Complete Mouse User Manual

24 @

Lines 0020 to 0070 save the CPU registers on the stack. Upon entry to
the ISR at vector IRQ2, the OS has already saved the contents of the
accumulator in address &FC, and saved the Program Counter and
Condition Code Register on the stack. Lines 0020 to 0070 load the
values of the accumulator (from &00FC), X register and Y register
into the accumulator and then push the accumulator on the stack.

Lines 0080 to 0100 check if the 6522 is flagging an interupt by
examining bit 7 of the Interupt Flag Register. If this bit is not set, the
6522 has not generated the interupt, and the program will branch to
the ‘exit’ routine.

Lines 0110 to 0130 check if the VIA CB1 input has generated the
interupt. The program branches to the routine called ‘CB2’ if this is
not the case.

Lines 0150 and 0160 store the data on the lines of the User Portin a
variable called 'portb’. Due to the mode of interupt operation
selected, this also has the effect of clearing the CB1 interupt flag in
the VIA IFR.

Lines 0170 and 0180 determine if bit 0 of the User port was set when
the interupt was generated. If it was, the mouse must have been
travelling to the right when the interupt was generated, and the
program branches to the routine called ‘right". If bit 0 was not set, the
mouse must have been travelling left, and the program continues to
execute the routine left'.

Lines 0200 to 0260 subtract one from the current value of the X
coordinate.

Line 0270 makes the program jump past the right’ routine, to the
‘CB2' routine.

Lines 0280 to 0350 add one to the current value of the X coordinate.
Line 0360 is the start of the CB2 interupt routine.
Lines 0370 to 0410 check for the CB2 interupt and branch to exit if the

appropriate flag is not set in the VIA IFR. These lines also copy the
data on the User Port into the ‘portb' variable.

The Complete Mouse User Manual

Lol

s AR 4 s . TN o i

'y e v -— i - 'L

A A a & Ay

- = & & & & &

C— 2R - IR T’ N -

el

B -
Line 0420 resets the CB2 interupt flag in the IFR. The CB2 interupt
has been programed to be independent, and therefore requires
resetting, unlike the normal CB1 interupt which resets automatically

when the data on the User Port is read from the VIA.

Lines 0430 to 0620 determine whether bit 2 of the User Port was set
when the CB2 interupt was generated, decide from this the direction
in which the mouse is travelling, and then either adds or subtracts one
from the Y coordinate accordingly. This process is carried out in a
similar manner to the CB1 routine, except this routine uses the CB2
interupt to determine whether the mouse was moved up or down.

Line 0630 is the start of the ‘exit’' routine. This pulls the registers from
the stack in the reverse order to which they were pushed onto it
earlier, and restores them.

Line 0700 returns program control back to the routine which the old
IRQ2 vector pointed to.

The Complete Mouse User Manual

!

26 @
7 IMPROVING THE
MOUSE

SOFTWARE

Although the description of the mouse and the software needed to
drive it given so far are perfectly adequate for nearly all applications,
it is possible to improve the software to obtain a higher resolution
from the mouse.

Achieving higher resolution means that:- (i) the mouse generates
more pulses when moved the same distance and (ii) the mouse
generates the same number of pulses when moved a smaller distance.
This effectively increases the sensitivity of the mouse ie how far it has
to be moved to generate a pulse.

For most applications the simple software already described will be
adequate for the mouse. Where a higher resolution is required, for
example when using a very high resolution graphics screen, the
following information may be used to increase the performance of the
mouse,

Refering to the timing diagram on page 7, it can be seen that interupts

are only generated by positive edge pulses from the reference sensor.
This is the principle the simple mouse software uses.

The Complete Mouse User Manual

wr m

(LI R B

m

M N TR ™I

B W Iw &7

a a

Al 2 A & & A & & &4 A &

& o2 A,

@ 27

TRAVELLIRG LEFT TO RIGHT

X REFESERLE SEHSER GUTPUT

T | ‘ : ‘ T SECOKIARY SEWSOR OWTFOT

TRAVELLING ATGHT T LEFT

W I SEFEREHCE SEASDR 0MTPUT

—| : ¥ SECCADEAY SEMSOR QUIPET
#ve -ve e -we #ve (TVFE OF EDSE TRIGGEATHE INTEAUPT)
e /
Figure 14
TIMING DIAGRAM

It is, however, possible to uses the negative edges of the pulses as
well, the principle being to use positive and negative edges
alternately to generate the interupts. The results of doing this are
shown in Fig 14. The interupts generated on the positive edges are as
before. With the mouse travelling left to right, the secondary sensor
output is high when a positive edge triggered interupt is generated,
or low when the mouse is travelling right to left.

The interupts generated by the negative edges operate upon exactly
the same principle, except that the secondary sensor is at the opposite
polarity to before. When using negative edge interupts, the secondary
sensor output will be low when the mouse is travelling left to right, or
high when travelling right to left.

It is apparent that using this method produces twice as many
interupts to the previous routine. This results in the mouse being
more sensitive in that it only needs to be moved half the distance to
generate the same number of pulses as the previous program.

To use this principle to improve the mouse's performance, the IRQ1
vector must be used instead of IRQ2 as before. This is because the
mouse generates interupts at a faster rate than before, which
therefore require servicing more quickly. Using IRQ1 increases the

The Complete Mouse User Manual

5 il

speed at which the OS locates the mouse's interupts, and hence
reduces the time required to service them. When an interupt is
generated, the OS first checks events it already knows about, eg
printer port interupts etc, and then indirects control to the user, by
IRQ1, allowing them to check for interupts generated by external
devices. After this, control is then indirected to the user by the IRQ2
vector. Where several sources of interupts are used, the higher
priority ones must obviously use IRQ1, as this is serviced first. It is
therefore advisable to use IRQ1 when using the improved mouse
software, to reduce the chance of problems occuring due to the CPU
not being able to process the interupts quickly enough.

When using the improved ISR, the initialization routine already
described in chapter 5 must still be used, but the address of the IRQ
vector must be changed to point to IRQ1 instead of IRQ2. The
address of IRQ1 is &0204/&0205, instead of &0206/&0207 as for
IRQ2.

The Complete Mouse User Manual

w w

m wmmww

\

™ oA

a &

-\

| a

'&'

la

B

=

29

l SAVE REGISTERS TO STACK I

6322 [IHTERWPT 7

CBL INTERW®T ?

RESET (31 + TOGGLE }\

LEFT RIGHT
LEFT @R RIGHT 7
A 4 H;I
DECREMENT X IHCEEMENT X
e e AOORCYEN 3 3 3 DRn

i i
— (32 INTERUPT ?
|

RESET (32 + TOGGLE |
ST et

‘ DS U
{ UP 4R DOMS ?
1

| sechesEnT ¥ THCREMENT ¥

‘ e . & T 1 |

<iESTD¥E REGISTERS AHD iETIJRi>

4

Figure 15

IMPROVED INTERUPT SERVICE ROUTINE FLOWCHART

The flowchart for the improved ISR is shown in Fig 15.

The Complete Mouse User Manual

o &
This is exactly the same as for the simple routine, except that when an
interupt from the User VIA is detected, the bit controlling the interupt
(CB1 or CB2) in the PCR register is toggled. For example, if an
interupt is received from CB1, and the interupt was caused by a

positive edge, the PCR is programmed to respond to the next
negative edge on CB1 etc.

[Peripheral Control Register (&FE6C) =

b7 | b6 b5 ba| b3| b2 | bl | bO

i Wl

CAl & CA2 control

CEB1 Control

O=negative active edge
1=positive active edge

CB2 Control
b7 b6 b5 Mode

Input, Negative active edge

Independent, Negative active edge

Input, Positive active edge

Independent, Positive active edge

Output, Handshake

Output, Pulse

Output, Low

L Output, High =

Figure 16
PROGRAMMING THE PCR

HEH-HN-HOO000
-0 =00
HOMOMO MO

The method of determining whether the current interupt was positive
or negative edge triggered is to interrogate the Peripheral Control
Register (PCR) in the VIA, and note what type of edge the interupt
was programmed to respond to when it was generated. Fig 16 shows
how the PCR is programmed.

The Complete Mouse User Manual

MmMheed™ . [

[w e gwy e pen

N AW

Y™ YN SN WA ¥R NFRm WA W W ym w w

adadaaassaaa

) .

Now that interupts may have been positive or negative edge
triggered, the program must take into consideration which type of
edge actually caused the current interupt. The program may then
determine the direction in which the mouse is travelling. For
example, if the secondary X sensor output was high when the CB1
interupt was generated, the mouse was travelling left to right if it
was a positive edge triggered interupt, or right to left if it was a
negative edge triggered interupt. The software must therefore take
the type of interupt ,positive or negative, into account, as well as the
secondary sensor output, before it can determine the direction of
travel of the mouse.

The Complete Mouse User Manual

32
0010 .prog 0520 LDA &FE60
0020 LDA &FC 0530 STA portb
0030 PHA 0540 LDA &FE&D
0040 TXA 0550 AND #08
0050 PHA 0560 BNE skip2
0060 TYA 0570 JMP exit
0070 PHA 0580 .skip2
0080 LDA &FEGD 05%0 STA &FE6D
0090 AND #128 0600 LDA &FE6C
0100 BNE skipl 0610 EOR #64
0110 JMP exit 0620 STA &FE6C
0120 .skipl 0630 AND #64
0130 LDA &FEED 0640 BNE CB2N
0140 AND #16 0650 .CB2P
0150 BEQ CB2 0660 LDA &FE60
0160 .cBl1 0670 AND #4
0170 LDA &FE6C 0680 BNE down
0180 EOR #16 0690 JMP up
0190 STA &FEGC 0700 .CB2N
0200 AND #16 0710 LDA &FES60
0210 BNE CBI1N 0720 AND #4
02z0 .CB1P 0730 BNE up
0230 LDA &FEG0 0740 JMP down
0240 STA portb 0750 .ap
0250 AND #1 0760 SEC
0260 BNE right 0770 LDA ycord
0270 JMP left 0780 SBC #01
0280 .CB1N 0750 STA ycord
0290 LDA &FE60 0800 LDA ycord+l
0300 STA portb 0810 SBC #00
0310 AND #1 0820 STA ycord+l
0320 BNE left 0830 JMP exit
0330 JMP right 0840 .down
0340 .laft 0850 CLC
0350 SEC 0860 LDA ycord
0380 LDA xcoxd 0870 ADC §#01
0370 SBC #1 0880 STA ycord
0380 STA xcord 0890 LDA ycord+l
039%0 LDA =xcoxrd+l 0900 ADC #00
0400 SBC #00 0910 STA ycord+l
0410 STA xcord+l 0920 .exit
0420 JMP CB2 0930 PLA
0430 .right 0940 TAY
0440 CLC 0950 PLA
0450 LDA xcord 0960 TAX
0450 ADC #1 0970 PLA
0470 STA xcord 0980 STA &FC
0480 LDA xcord+l 09%0 JMP (oldv)
0490 ADC #00
0500 STA xcord+l
0510 . CB2
Figure 17
IMPROVED ISR LISTING

The program listing for the improved ISR is shown in Fig 17.

The Complete Mouse User Manual

o

™ W

m

a o w

aaaraaaaaa

@' 33

Lines 0010 to 0070 push the processor's registers onto the stack, as
before.

Lines 0080 to 0110 test to see if the User VIA is flagging an interupt. If
it is, the program branches to 'skipl’, the start of the actual mouse
routine. If the User VIA is not flagging an interupt, control jumps to
'exit’. Note that the program cannot use a BEQ exit command, as the
code is now too long to do this, ie it would require a branch of more
than 127 bytes.

Lines 0120 to 0150 check the CB1 interupt flag, and branch to ‘CB2' if
it is not set.

Lines 0160 to 0190 program the Peripheral Control Register (PCR) of
the VIA ready for the next interupt. This is done by exclusively OR'ing
with 16 to toggle bit 4 of the PCR. Looking at Fig 16, it can be seen
that b4 determines which edge of the interupt signal actually causes
the interupt.

Lines 0200 and 0210 test if the CBI is now set for a positive or
negative edge. Remembering that the type of interupt has just been
altered, the program branches to CBIN (negative edge routine} if the
mode for the next interupt is positive. If the next interupt will be
negative edge triggered, the program continues execution of CB1P.

Lines 0220 to 0270 are the same as the basic routine. They determine
whether the mouse is moving left or right by reading b0 of the user
port, and then jump to the appropriate routine to increment or
decrement the x coordinate as appropriate.

Lines 0280 to 0330 work in the same way as the previous 6 lines,
except that the interupt was caused by a negative edge. As the
polarity of the secondary sensor output will therefore be inverted,
this routine again tests b0 of the user port, but this time branches to
the opposite routine to before (ie left instead of right etc).

Lines 0340 to 0500 work exactly as the basic program, decrementing
and incrementing "xcord’ etc.

Lines 0500 to 0570 test for CB2 interupts using the same method as for
CBI1, and jump to ‘exit’ if a CB2 interupt is not being flagged.

The Complete Mouse User Manual

* &
Lines 0570 to 0740 toggle the interupt mode for CB2, determine the
mode of the previous interupt, and jump to the appropriate routine to
either increment or decrement ‘ycord’ as required.

Lines 0750 to 0910 decrement and increment "ycord" as before.

Lines 0920 to 0990 retrieve the processor status from the stack, and
refurn control from the ISR, as before.

The Complete Mouse User Manual

e al

-

F: 2l

Py

-

J——

_® &

aaa

\

“ a a & aa

-

@' 35
8 COMPLETE BASIC
PROGRAMS

The complete Basic program listings for the mouse routines are
shown at the end of this chapter in Fig 18 and Fig 19. These listings
contain the Initialization and Interupt Service Routines, together
with the necessary Assembler control functions.

Fig 18 shows the code for the simple mouse software, using only
positive edge triggered interupts. Fig 19 shows the code for the
improved version, using both positive and negative edge triggered
interupts. Both programs are complete on their own, so only the one
required need be typed in.

To use either program, simply press BREAK' and type the listing
ired into the micro. Once the program is in the machine, check it
and SAVE' it a few times for future use.

The BASIC program must now be 'RUN' to assemble the code into
memory. If the assembler reports any errors, re-check the BASIC
program, correct it and 'SAVE' the new version. Do not forget to
press <BREAK>, type 'OLD' <RETURN> and 'RUN" the BASIC
program again if any alterations are made !

The code to drive the mouse is now in the micro. To start the machine
code program, type ‘CALL init' <RETURN>. This integrates the
mouse routine into the Operating System.

The mouse program should now be operational. If the machine ‘locks
up’ immediately, or after the mouse is moved, an error must have
been made whilst entering the BASIC program. Press <CTRL> and
<BREAK> to reset the machine, and load the BASIC program back
for correction. When the mistake has been found, proceed as before to
assemble the program in the computer etc.

The Complete Mouse User Manual

36

&

The function of the mouse software is to generate two numbers to
represent the values of the X and Y coordinates of the mouse. To test
the program, type the following line of BASIC into the computer:-

CLS :REPEAT :PRINTTAB (0, Q) ?xcord+256*? (xcord+l), ?
yecord+256%? (ycord+1) :UNTIL FALSE <RETURN>

Two numbers should be displayed in the top left hand corner of the

screen. The first humber, the X coordinate of the mouse, should

increase and decrease as the mouse is moved right and left
respectively. The second number, the Y coordinate, should increase

and decrease as the mouse is moved up and down respectively.

Figure 18
COMPLETE BASIC
PROGRAM LISTING

10 REM MOUSE DRIVER
ROUTINE V1.3
20 REM (C) I.HEWITT
1988
30 DIM MC% 200 e
40 FOR opt¥=0 TO 3
STEP 3
50 P3=MC%
60 [
70 OPT optd
80 .init
90 SEI
100 LDA &0206 &
110 STA oldv
120 LDA &£0207
130 STA oldv+l
140 LDA #prog MOD 256
150 STA &£0206
160 LDA {#prog DIV 256
170 STA &0207
180 LDA #112
190 STA &FE6C
200 LDA #152
210 STA &FE6GE
220 LDA #127
230 STA &FE6GD
240 LDA #0
250 STA &FE62
260 CLI
270 RTS

The Complete Mouse User Manual

280
29%0
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620

.prog

LDA
PHA
TXA
PEA
TYA
PHA
LDA
AKD
BEQ
LDA
AND
BEQ

.CB1

LDA
STA
AND
BNE

&FC

&FEGD
$128
axit
&FE6D
#16
cB2

&FE60
portb
n

right

.left

SEC
LDA
SBC
STA
LDA
SBC
STA
JHpP

xcord

1

xcord
xcord+l
#OFIGc 18
xcord+l
CB2

.right

CLC
LDA
ADC
STA
LDA
ADC
STA

xcord

t D1
xcord
xcord+l
#0

xcord+l

€30
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
850
960

980

990
1000
1010
1020
1030

.CB2

LDA E&FE60
STA portb
LDA &FE6D
AND #8

BEQ exit
STA &FEED
LDA &FEGO
AMD #4

BNE down

- up

EC

LDA ycord
SBC #1

STA ycord
LDA ycord+l
SBC $0

STA ycord+l
JMP exit
.down

CLC

LDA ycoxd
ADC #1

STA ycord
LDA ycord+l
ADC #0

STA ycord+l
.axit

PLA

TAY

PLA

TAX

PLA

STA &FC

JMP (oldv)
.oldv EQUW0000
.xcord EQUW0000
.ycord EQUW0000
.portb EQUBO
]

NEXT coptd

37

Figure 19
IMPROVED BASIC

PROGRAM LISTING

10
20

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

REM MOUSE DRIVER
ROUTINE V2.3

REM (C) I.HEWITT
1988

DIM MC% 400

FOR opt#=0 TO 3
STEP 3

P&=MC%

[

OPT opt%
.init
SEI
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA

&§0204

oldv

£0205

oldv+l

#prog MOD 256
&0204
#prog
&0205
112
&FE6C
#152
&FEGE
LDA #127
STA &FE6D
LDA #0
STA &FE62
CcLI

RTS

.prog

LDA &FC
PHA
TXA
PHA
TYA
PHA
LDA
AND

DIV 256

&FE6D
#128
BNE skipl
JMP exit
.akipl
LDA &FE6GD
AND $16
BEQ CB2

The Complete Mouse User Manual

38

430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
B20
830
840
as0
860
870
880
890
900
910

The Complete Mouse User Manual

.cB1

LDA &FE6C
EOR #16
STA &4FE6C
AND #16
BNE CBI1N
.CB1P
LDA &FE60
STA poxtdb
AND #1
BNE right
JMP laeft
.CB1R

LDA &FE&0
STA porth
AND #1
BNE laft
JMP right
.left

SEC

LDA xcord
SBC #1
STA xcord

LDA xcord+l

SBC #00

STA xcord+l

JMP CB2
.right
CLC

LDA xcord
ADC #1
STA xcord

LDA xcord+l

ADC $00

STA xcord+l

.CB2

LDA &FEG6O
STA portb
LDA &FE6D
AND #08
BNE skip2
JMP axit
.8kip2
STA &LFE6D
LDA &FE6C
EOR #64
STA &FEGC
AND #64
BNE CB2N

820
930
940
950
960
970
980
930
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320

&

.CB2P

LDA &FEGQ
AND #4

BNE down
JMP up
.CB2N

LDA &FE60
AND #4

BNE up

JNP down
.up

SEC

LDA ycozrd
SBC #1

STA ycord
LDA ycord+l
SBC #0

STA ycord+l
JMP exit
.down

CLC

LDA ycord
ADC $1

STA ycozd
LDA ycord+l
ADC 0O

STA ycord+l
.exit

PLA

TAY

PLA

TAX

PLA

STA &FC

JHP (oldv}
.oldv EQUW0000
.xcord EQUWODOO0O
.ycord EQUWO0000
.portb EQURBO
]

NEXT opth

- ™

Y WY wy

-y wy e

I I L

L L T : B) |

™ YW

o o . W .M MY YUY ANt e Y 9 N

e

Jessa House, 250 High Street, Watford, WD1 2AN, England
Tel: Watford (0923) 37774, Telex: 8356095 WATFRD, FAX: 01 950 8989

L |

o 2w E- e o

Y 1Y Yy

e L S

J‘-‘Q‘ y 1‘: "

T,

(oL

™ v wv ey e

	Scan-100713-0001
	Scan-100713-0002
	Scan-100713-0003
	Scan-100713-0004
	Scan-100713-0005
	Scan-100713-0006
	Scan-100713-0007
	Scan-100713-0008
	Scan-100713-0009
	Scan-100713-0010
	Scan-100713-0011
	Scan-100713-0012
	Scan-100713-0013
	Scan-100713-0014
	Scan-100713-0015
	Scan-100713-0016
	Scan-100713-0017
	Scan-100713-0018
	Scan-100713-0019
	Scan-100713-0020
	Scan-100713-0021
	Scan-100713-0022
	Scan-100713-0023
	Scan-100713-0024
	Scan-100713-0025
	Scan-100713-0026
	Scan-100713-0027
	Scan-100713-0028
	Scan-100713-0029
	Scan-100713-0030
	Scan-100713-0031
	Scan-100713-0032
	Scan-100713-0033
	Scan-100713-0034
	Scan-100713-0035
	Scan-100713-0036
	Scan-100713-0037
	Scan-100713-0038
	Scan-100713-0039
	Scan-100713-0040
	Scan-100713-0041
	Scan-100713-0042

