

First published 1987

Copyright (C) 1987 Hybrid Technology Limited. All rights reserved.

Neither the whole nor any part of the information contained herein may
be adapted or reproduced in any form without the prior written
approval of Hybrid Technology Limited.

Hybrid Technology Limited
Unit 3, Robert Davies Court
Nuffield Road
CAMBRIDGE
CB4 1TP

Issue 2

Written by Chris Jordan
Index prepared by Roy Follett

Contents

 1 Introduction 5

Part 1 – General 7

 2 Using AMPLE 9
 3 Programs and words 17
 4 Modules and editors 21
 5 Music and sound 29
 6 Numbers and flags 39
 7 Characters and strings 49
 8 Input and output 55
 9 Execution control 57
 10 Machine-code programming 61
 11 Errors 67

Part 2 – Reference 79

 12 Dictionary of words 81

 Index 203

 4

 5

1 Introduction

AMPLE is the software heart of the Hybrid Music System, and the
most powerful music programming environment available on a
microcomputer. This Guide is the primary source of information
for music programming in AMPLE, covering all facilities of AMPLE
Nucleus, the ROM-based core of the system that is common to all
applications. Application-specific information, particularly that
to do with use of particular hardware units, is deliberately
excluded, being reserved for application Guides including the User
Guide supplied with your system.

 6

 7

Part 1 - General

 8

 9

2 Using AMPLE

AMPLE is designed to support different hardware installations
(combinations of Hybrid Music System units), and different
applications of each installation, with corresponding software
installations. A software installation may include:

 * AMPLE Nucleus – the ROM-based core of the language common to
 all applications. It provides those functions that are
 required by all, and manages the modules and user program

 * modules – disc-supplied application-specific system units
 including hardware drivers, user interfaces and extensions
 for use by the user program

 * program – the component which determines precisely what the
 installation does. In the majority of applications, this is
 the user's work piece, but in others it is a fixed program
 suppplied for a particular job.

starting the system

AMPLE is normally started using the system disc supplied for the
particular application. The system disc usually has a text file
named !BOOT, executed when the user runs the disc by pressing
SHIFT+BREAK. This 'boot' file carries out some or all of the
following:

 1 set system options, including those that may affect the
 amount of language memory available
 2 start AMPLE with the command "AMPLE
 3 build the installation by loading modules with INSTALL
 4 enter an editor (usually a Main Menu) or load and run a user
 program

Most system discs do steps 2, 3 and 4.

*AMPLE is the operating system command that enters the language. You
are quite free to use it to start the language manually, but since
modules will be required for most uses, a boot file is the more
usual method.

 10

using the computer keyboard

AMPLE has two general 'modes' that determine how user input is
interpreted: command mode and edit mode.

Command mode is similar in all applications. A '%' prompt appears
at the left of the screen when the system is ready for input and
an underline cursor shows the current typing position. The user
types the line as normal, and pressing RETURN sends it to be
executed.

In command mode, most keys on the keyboard have their standard
functions, as follows:

 printing character keys and space bar
 enter letters, numbers or symbol. The SHIFT, SHIFT
 LOCK and CAPS LOCK work as standard with these

 DELETE removes the last character typed

 RETURN indicates the end of a line of commands

 left, right, up, down and COPY
 used as standard for re-entering by copying it from
 a higher position on the screen

 CTRL used in combination with other keys to enter
 special codes, in particular:

 CTRL U remove line, but leave it on the screen
 CTRL B turn on screen output to printer
 CTRL C turn off screen output to printer
 CTRL N turn on page wait mode
 CTRL O turn off page wait mode
 When page wait mode is on, the display
 waits after each screenful of scrolling
 text unless the SHIFT key is down.
 CTRL SHIFT hold scrolling text (while pressed)
 CTRL V does nothing. CTRL V's normal function
 of changing screen mode is disabled,
 since this can corrupt language memory
 on computer models without shadow
 memory.

 f1-f9 enter a pre-defined sequence of characters. In
 many applications, the functian keys are defined
 with commonly-used commands or command segments on
 start-up. The user can reprogram them with the
 *KEY command as normal.

 11

The following keys have special functions:

 TAB enter/exit edit mode. Pressing TAB switches
 between command mode and the edit mode of the
 editor in use.

 ESCAPE stop everything, and return to the command mode
 prompt. This is used to stop any AMPLE operation
 or running program. ESCAPE has other effects
 specific to the installation – in particular it
 asks for all sounds to be silenced. See the
 chapter 'Errors' for details.

 BREAK reset the computer. You should never need to press
 BREAK in normal use of AMPLE. If you press it by
 accident, the system will attempt to recover the
 program. You should save it immediately and then
 restart the system.

There is a limit on the length of a single input line, normally
128 characters. If you try to exceed this, the computer beeps and
ignores the character.

Edit mode is specific to the editor in use. Editors vary widely,
but all use TAB to return to command mode. See the application
User Guide for details of a particaulr editor's edit mode. See
the chapter 'Modules and editors' for general information about
editors.

example programs

By convention, if example user programs are provided on the system
disc, function key 9 is defined to present them in a menu, so the
user can always press f9 after system start-up to see a list of
examples. Similarly, any disc with a complete set of user
programs, such as a music album disc, uses f9 as the standard
method of executing it.

This menu is often a user program called 'jukebox', so function
key 9 is defined as follows:

 *KEY9|"jukebox"LOAD RUN|M

Where the system disc starts-up in an editor's edit mode, special
provision is usually made so that f9 still operates. For example,
the editor may respond to an ASCII 0 input by returning to command
mode, and f9 is programmed accordingly:

 12

 *KEY9 |@"jukebox" LOAD RUN |M

ASCII 0 is ignored in command mode.

screen display

The system uses screen mode 7 for most displays. Most editors
work in a specific mode (usually 7) and set this when entered, but
command mode can run in any screen mode. You can select the screen
mode with:

 MODE enter display mode command
 number MODE

On computer models without shadow memory, the screen mode affects
the amount of memory available for other uses, so you will
normally leave the system in mode 7. There may in fact be
insufficient memory free to enter other modes.

Some characters appear with one design in modes 0-6, and another in
mode 7:

 mode 0-6 name mode 7 appearance

 [open (left) square bracket left arrow
] close (right) square bracket right arrow
 ^ 'hat' up arrow
 | vertical bar or 'solidus' double vertical bar
 _ underline long central line
 / backslash 'half' (1/2)

In this Guide, the normal designs (as modes 0-6) are printed.

operating system commands

In command mode, operating system (OS) commands are entered as
standard, prefixed with a '"':

 * indicate operating system command command
 *<line>

OS commands that corrupt language memory are forbidden. These
include those commands that, in their own documentation, are
described as destroying the user program, for example *COMPACT &
*FORM80 (Acorn DFS), and *FX20 (OS).

Language entry commands act as normal, that is, they leave AMPLE

 13

and enter the corrsponding language, for example:

 *BASIC

The AMPLE Nucleus ROM responds directly only to the command *AMPLE
and its abbreviations, such as *AM. It responds indirectly to the
*HELP command, giving its name and version number.

AMPLE commands

The following general information applies to all AMPLE commands,
including those provided by the Nucleus. Nucleus commands are
described individually in the chapter 'Dictionary of words'. See
the application User Guide for descriptions of any extra commands.

An AMPLE command is a word that carries out a particular operation
when entered at the command mode prompt. Commands are in
upper-case letters only – you must enter them in upper case; lower
case letters are used for other things.

You can put more than one command on a single line. Each should
be separated from its neighbour by one or more spaces to be sure
to avoid confusion, though you may find that this is not essential
in many cases.

Some special commands actually re-enter command mode, and so any
following commands on the same line are ignored. This is made
clear in the descriptions of these commands.

Many commands take an input value which may be a string, number or
flag. This goes before the name of the command, again separated
by a space:

 type format example

 string characters in double quotes "myprog" SAVE
 number decimal digits 3 MODE
 flag ON or OFF OFF PAUSE

A few commands take more than one input value, separated by a
space.

Hex and negative decimal numbers are rarely used by commands, but
often used by other words:

 -ve number minus sign, then decimal digits -100 NOUT
 hex number & sign, then hex digits .. &FFEE CODE ..

See the following in the 'Dictionary of words' for more

 14

information:

 " start literal string
 & indicate hexadecimal number
 - indicate negative number
 0-9 decimal digits

Commands may be abbreviated by a dot. The shortest abbreviation
for a given command depends on other commands in the installation,
so you should try the intended abbreviation before relying on it.

Some commands respond with error messages if they cannnot act for
some reason. These are usually self-explanatory, but for detailed
information on a particular error message, see the chapter
'Errors'.

Because AMPLE is a multi-tasking system, you can enter commands at
the % prompt while a program is running in the background. Some
commands stop the program (usually because they modify the program
or its memory) and this is mentioned for each one that does so.

Like commands, programs can produce error messages. These appear
on the screen at the command mode cursor (first switching to
command mode if in edit mode at the time) and since an error can
arise at any time, this could interrupt a line being typed at the
time.

Almost all AMPLE Nucleus commands are always available in command
mode. In addition, there will be extra commands provided for the
particular appplication, described in the application User Guide.
Further, the current editor may provide extra commands specific to
it – again see the User Guide. The names of all non-Nucleus
commands available in each installation and editor can be
displayed on command – see the chapter 'Modules and editors' for
details.

In special cases, an AMPLE Nucleus command may be replaced in a
given installation, or with a given editor in use, by a module
providing its own version with the same name. The replacement
usually has the same function as the original.

 15

starting a new session

After starting from the system disc, the system is completely
clear of user programs and other user data. This is the state
from which you should begin a session. To return to it at any
time, you use the command AMPLE:

 AMPLE restart system command

 16

 17

3 Programs and words

programs

An AMPLE program is a complete set of instructions for a
particular job, for example, playing a piece of music.

In the most general sense, the AMPLE user program is simply the
main store for the user's data, and a particular AMPLE user
program is the contents of this store. This may or may not be a
'program' in the the traditional sense, that is, a sequence of
instructions to carry out a particular job – how the user sees the
program depends on the application, and in turn, the user
interface employed. For example, the 'program' could be a
collection of independent instrument definitions for use with a
keyboard. Similarly, a simple multi-part score may look like a
'program' when it is entered by typing, but less like one when
created by real-time recording from a music keyboard.

Whatever the application or user interface, the user data is
always a standard AMPLE program, on which any of the Nucleus
program-manipulation facilities may be used. Further, the
application's editors act on the program, and are integrated
through the ability of one editor to edit a part of the program
that was entered with a different one.

program-manipulation commands

The system holds a single program in the computer's memory. The
following AMPLE commands work on the program as a whole:

 AMPLE restart system (discarding program) command
 NEW discard program, for entry of new program command

 MERGE merge program command
 namestring MERGE
 SAVE save program command
 string SAVE
 LOAD load program command
 namestring LOAD
 WRITE display text of all words command

WRITE can also be used to print the program.

 18

words

The basic element of AMPLE is the word. Those words that are part
of the system are called system words, and this type includes all
AMPLE commands. Some system words are provided by the Nucleus –
these Nucleus words are available in all installations of AMPLE.
The rest are provided by the installation's modules – they are
called module words.

The other type of AMPLE word is the user word – the basic unit of
user programs. User words have names like system words, but
they use lower-case letters throughout to avoid confusion with
them. Unlike system words, user words can be defined to carry out
a variety of functions – the definition of a user word is the
sequence of other words it performs when executed.

Each word is a separate object which can be created, used, edited
and, if necessary, deleted, independently of other words. The
user program is the complete set of words considered as a whole.

A user word definition may use any system word that is not
'command only' as a program instruction. Hence, it can carry out
a variety of tasks, from active computation tosimple storage,
such as for a piece of musical material represented as a sequence
of music instructions. Most importantly, any user word can also
use any other user word as an instruction, so a program can be
constructed using words as building-blocks. For example, a long
instruction sequence can be divided into sub-words, to be chained
together in a further definition. Further, the program's job can
be broken down in to unique tasks which are then defined as words,
for example, basic musical material which plays many times in the
a complete piece of music.

User words may also be executed as commands, that is, by entering
their names directly at the % prompt. In fact, the Nucleus has no
RUN command since each program may have many words that can be
'run', either as separate programs or additional commands or
options on a single program. In practice, where the program does
one particular job, like play a piece, it should include a user
word with the name RUN. Some installations may provide a
'starter' RUN word for program development in simple applications,
but all finished programs should havs a user RUN word.

 19

word-manipulation commands

The following words define a new user word, or redefine the
existing one of the same name:

 [start word definition command
 namestring [...]
] end word definition [] only

These words are used to define words at three levels:

 * direct text – [is used as a command to create a definition
 by entering it as text directly at the keyboard

 * editor text – an editor is used to prepare the text of the
 definition, and to effectively enter it automatically when it
 is complete

 * editor non-text – an editor is used to enter data in a
 non-text form which is automatically translated to text for
 the word definition. The reverse translation is carried out
 when an existing definition is called up for editing.

The following words are concerned with with user word definitions:

 SHOW show user words command
 DELETE delete user word command
 namestring DELETE
 TYPE type the word definition on the screen command
 namestring TYPE
 RENAME rename word command
 oldnamestring newnamestring RENAME
 FIND find uses of word command
 namestring FIND

user word formatting

Carr iage returns (line separators) and spaces between instructions
may be used inside definitions to make the text easier to read,
and comments – textual notes of your own which are ignored by the
system - may also be included.

 % introduce comment
 <carriage return> mark line end
 <space> separate items

 20

memory usage

The following words are related to the use of memory space for the
program and other items:

 MEM show memory usage in bytes command
 CDMPACT compact unused memory command
 MODE enter display mode command
 number MODE

 21

4 Modules and editors

Modules are the RAM-based extensions to the Nucleus that provide
those facilities that are specific to a particular installation.
Each module interfaces the Nucleus with one of the following:

 * hardware – drivers for peripheral units, including for
 musical voices ('voice servers'), for musical time ('time
 servers')
 * user – editors, menus, and other user interfaces and command
 utlilites
 * program – predefined instruments, music actions, programming
 extensions, etc.

Each application's User Guide describes the modules included on
its system disc. This chapter gives a general description of the
module system, and introduces the Nucleus words that relate to it.

module functions

Modules provide the following types of function in the system:

 * voice server – controls a music peripheral to provide music
 voices which have a voice assignment word and support the
 standard set of voice controls (described in the chapter
 'Music and sound').

 * time server – controls the passage of musical time by
 supplying a timebase signal to the Nucleus, derived from
 internal or external hardware (described in the chapter
 'Music and sound').

 * editor – provides an alternative user interface, usually to
 allow word definitions to be created and altered in a
 particular form, such as text, staff notation etc., but also
 to provide a menu of command options (described below).

 * command utility – supplies additional commands for special
 applications such as advanced program and word manipulation.
 The extra words are available at all times when the module is
 present and are used exactly like Nucleus command words.

 * extension – extends the vocabulary of words for use in
 programs, for special applications. The new words are
 available at all times when the module is present, and they

 22

 are used exactly like Nucleus words. Examples include
 'preset' instruments (for a particular voice type), graphics
 drivers, and some of the functions given above, particularly
 voice servers.

A module does not have to be only one of these, but usually each
functional unit is supplied as a single module.

examining modules

The following words allow modules to be examined:

 MCAT display catalogue of modules command
 MSHOW show words in module command
 modnamestring MSHOW

MCAT displays the status of each module. The status affects the
operation of the other module management commands.

module names

Each module has a short upper-case name, displayed by MCAT, and it
is stored on disc as a file with the same name. By convention,
modules are stored under directory 'M' (for example, the full
filename of the module INT would be M.INT), and the !BOOT file
uses the following command to inform the Nucleus of this:

 MPREFIX set module filename prefix command
 string MPREFIX

Every module load operation adds the MPREFIX string to the start
of the module name to make the filename.

The main filename of a module must not be changed, but the prefix
can be, provided the system is informed through MPREFIX.

A system disc often includes a drive specifier in its MPREFIX
string. This directs module loads to a specific drive (usually
the auto-boot drive, drive 0) so that the default drive selection
can be set for user program filing.

 23

loading modules

Modules are loaded by the following commands:

 INSTALL install module command
 namestring INSTALL
 MLOAD load module command
 namestring MLOAD
 LOAD load program command
 namestring LOAD

module loading on start-up

When the language is entered with the command *AMPLE, no modules
are present. In this state, AMPLE is entirely usable, but the
only words available are those of the Nucleus.

A typical system disc starts the system by entering the language
with *AMPLE, and then loading each module with the INSTALL
command. Each module becomes a fixed part of the installation,
and cannot be removed without restarting with *AMPLE.

The set of INSTALLed modules includes the following kinds of module:

 * essential hardware drivers, such as voice and time servers,
 which will probably be needed in every session.

 * essential editors and menus, such as a main menu which loads
 editors as required

Some modules are inherently 'fixed only', so that they always
become fixed on loading, however they are loaded.

The system disc can be configured to load any module on start-up,
simply by adding an appropriate INSTALL command to the !BOOT file.
The user could, for example, INSTALL a commonly-used editor or
extension module to save the extra memory used by MLOADed modules.
To avoid disturbing an existing INSTALLed module thay may require a
specific memory range, additional modules should be loaded after
the last existing module. Equally, the user could remove a module
from the INSTALL sequence to save memory, either because it was
not required at all, or was better loaded when required.

 24

module loading by the user

Editor and command utility modules are often loaded by the user
when required, and then deleted when finished with (similar to
code 'overlays' in other systems). Loading is either direct, by
the user entering an MLOAD command, or indirect, through a menu
which uses MLOAD internally.

In most installations, a menu looks after such temporary module
loading. This 'main menu' is itself provided by a module which is
installed, so available at all times. The menu provides a list of
available editors and utilities, and records which one it last
loaded. When the user makes a selection, the menu carries out the
following:

 * if the selected editor/utility is already present, it invokes
 it, else it:
 * deletes the module last loaded
 * loads the selected module
 * enters the editor/utility

Note that the module is invoked without loading if already present
for any reason, so the user can get faster access to a module by
INSTALLing it in the !BOOT file or first loading it manually with
MLOAD.

module loading by the program

Each saved program contains a list of the modules which it needs –
a program needs a particular module if it uses any word from it as
an instruction in a word definition. When a program is loaded,
the LOAD command automatically MLOADs any needed modules that are
not already present. When the program is deleted by NEW or a
further load, the program loaded-modules are automatically
deleted. This powerful feature allows a program to use extension
modules without the user having to be aware of it.

module deletion

The following words delete modules:

 MDELETE delete module command
 namestring MDELETE

 LOAD load program command
 NEW discard program command
 AMPLE restart system command

 25

reading module word definitions

Some module word definitions may be read by the user, for example,
displayed with TYPE or called in to an editor. Preset instrument
modules are usually of this type, allowing the user to create a
modified version of an instrument as a user word definition.

module memory usage

Modules are held in a single block of memory along with the user
program (word definitions and public data) and free space, as
follows:

 | |
 | program and |
 | free space |
 |___________________|
 | |
 | movable |
 | modules |
 |___________________|
 | |
 | fixed |
 | modules |
 |___________________|

Both internal boundaries are movable. Modules are loaded from the
bottom up, and when a module is loaded, the amount of memory
available for the program is reduced accordingly.

Each module file consists of the module proper, plus relocation
data which is needed to position the module in memory. When a
module is loaded by INSTALL at start-up (or a 'fixed-only' module
is loaded by any means), it is put in place and the now-redundant
relocation data discarded to save memory space. Its MCAT status is
'F', for fixed.

When a module is later loaded by MLOAD or LOAD, its relocation
data is retained, so it can be moved down when a previously-loaded
module is removed, reclaiming space for use by the program. An
exception is made for the first module, that is, the one immediately
above the last INSTALLed module – Since it will never need to be
moved, its relocation data is always discarded.

Points to note from this are:

 * any module can be INSTALLed rather than MLOADed in order to

 26

 save memory space
 * the amount of user program memory depends on the order in
 which two movable modules are loaded
 * all modules below a fixed module are also fixed – INSTALL is
 used only at start-up, and the 'fixed-only' property is
 merely a precaution to prevent removal.

editors

The common features of all AMPLE editors are:

 * an 'entry' word, usually the name of the module, which makes
 this editor the current editor
 * an 'auxillary dictionary' – a list of commands that are only
 available when the editor is current (displayed by MSHOW)
 * a 'tab' command (on the auxillary dictionary), which enters
 the editor's 'edit mode'.

There is only one current editor at any time, so entering an
editor automatically exits the previous one. MCAT shows which
module is the current editor. Many editors create special screen
displays when entered, and clear them when exited. There is also
a Nucleus command which exits the current editor by switching to a
'dummy' editor:

 QUIT leave editor command

The command AMPLE executes QUIT.

Entering an editor may leave control back in command mode, or in
the editor's edit mode.

editor types

A typical editor offers the following facilities:

 * a data area in which the data currently being edited is held
 * an edit mode in which the data is displayed and may be
 edited. Pressing TAB returns to command mode
 * a command mode with the folowing additional commands:
 * the entry word, to enter the editor, leaving control in
 command mode (the % prompt) or edit mode
 * CLEAR to clear the data area
 * GET to get the contents of a named word in to the data area
 * MAKE to define a word with the contents of the data area
 * NAME to set the name of the word to be created by MAKE
 * 'tab' to enter edit mode

 27

(The tab command is a command like any other, but beause the %
prompt ends the line on a TAB press, the command is executed
immediately. The tab command does not show on the MSHOW display.)

Generally, editors may have more or less command-mode facilities
that these. In particular, simpler user interfaces like menus are
sometimes provided as editors, but they may have no more than an
entry word and 'tab' command – a very simple edit mode displays the
list of options and waits for a selection to be made, and then
returns to command mode as soon as the selection is executed.

editor data

Normal editors manage their own data area, so their data is private
and cannot be accessed except by that editor. Advanced editors use
'public' data which can be accessed directly by other editors, and
is held as part of the user program so it is saved and loaded along
with the word definitions.

Public data has a 'type' associated with it, displayed by the SHOW
command. The commonest type is text, displayed as 'T'.

Public data can be edited with any editor that recognises the type.
When a public data editor is entered, the data is immediately
available for editing if the type is compatible, and it is cleared
if it is not compatible.

The Nucleus has a command that clears the data explicitly:

 CLEAR clear editor data command

After CLEAR, SHOW displays 'no data'. The type is set when data is
next provided by an editor or loaded with LOAD.

A private data editor will often provide its own CLEAR command
which is used in preference to the Nucleus CLEAR.

 28

 29

5 Music and sound

introduction

AMPLE's complete music and sound system can be illustrated as
follows:

 ________ _________ _________ _________
 | | music | music | sound | | | voice |
 | music | events | action | events | sound | | servers |
 | words | | chain | | event | _________
 | | tempo | queue | | time |
 |________| events | | | server |

The components of this system are now discussed individually.

music words

AMPLE Music Notation is the textual music representation provided
for scoring of note-based music. It is used both directly by the
user, and as a standard internal form by editors providing other
notation forms, such as staff notation.

AMPLE Nucleus supports AMPLE music notation by incorporating all
necessary music words as a self contained set, and providing a
standard interface between this and the voice and time control
systems.

The music words are of two types: music event words and music
environment words. Music event words cause direct musical
results, according to values set by the music environment words.

music environment words

The following words control the music environment:

Length: , set length
 number ,
 BAR set bar length
 lengthsnumber BAR
 | mark end of bar

Pitch: : set octave
 octnumber :

 30

 ! move an extra octave up or down

 + sharpen next note
 - flatten next note
 = naturalise next note
 K(start key signature
)K end key signature

 @ set transposition
 transnumber @

Voice: (start additional chord notes
) end additional chord notes
 ; set music voice voicenumber

Gate: ~ slur next note

Level: =L set dynamic level
 +L increase dynamic level
 -L decrease dynamic level

The following also have an effect on the music environment:

 SCORE prepare for music words
 READY ready system

The following access the music environment values for processing:

 MVAL? read music variables
 MVAL? -> framelev keysig barcountlen octnote length tranvoice
 MVAL! write music variables
 framelev keysig barcountlen octnote length tranvoice MVAL!

music event words

Voice events: A – G play ascending note
 a – g play descending note

 X play hit

 ^ play rest
 ^; play chord rest

 / hold notes, hits, and rests
 \ move back

 (start additional chord notes
) end additional chord notes

 31

(The chord words '(' and ')' are considered music environment
words from a notational point of view, but in fact they generate
simple music events, so are strictly-speaking music event words.)

Tempo events: =T set tempo
 number =T
 +T increase tempo
 -T decrease tempo

music interpretation

The interpretation of music notation is the conversion of
high-level music events such as 'note', 'rest' etc. into low-level
sound events having precise effects like 'set pitch’, and 'wait
for a period of time'.

AMPLE interprets the two types of music event words – voice and
tempo – separately.

Each tempo event word simply generates its own type of tempo
event, which includes a single variable value. This event passes
via the sound event queue to the time server where it takes effect
on the timebase, the regular repeating pulse that marks the
overall passage of musical time. All durations, including the
lengths of notes etc., work in timebase units, so the timebase
controls the final duration of all notes and therefore the tempo
of the music.

All voice event words (note letters, etc.) generate a single type
of music event with some or all of the following variables:

 voice voice selection
 pitch pitch in semitones
 'vel' dynamic level, or 'key velocity'
 gate state: on (sounding) or off (silence)
 duration period of time, in timebase units

Each music event is completely defined by the values of these five
variables. They are carried by sound events, via the sound event
queue, to a voice, where they produce the sound of the original
music event.

The voice variable is given to the sound word VOICE, to select the
voice to which subsequent sound events will be directed. The
pitch, 'vel' and gate variables are given to PITCH, VEL and GATE
respectively – standard sound words which all voice types have.
The duration variable is given to the sound word DURATION, which
adds a final time interval through its effect on the sound event

 32

queue itself.

(In fact, the music event has three separate voice values for
PITCH, VEL and GATE; not so that they can be sent to different
voices, but be individually excluded by a voice value of 0, if it
is not required in that music event.)

Notice that all music events, and notes in particular, are 'single
ended' – an initial group of sound events marks the start of a
note, a duration gives it length, but nothing marks the end of it
except the start of the next music event.

music actions

AMPLE gives powerful control over music event interpretation
through the use of music actions. A music action is a sequence of
instructions that is executed every time a music event is issued.
It can use any Nucleus programming words and access the music
event variables to modify, transform, augment or replace the
standard interpretation. Music action definitions are often
provided by extension modules, and may be created by the user
through the following words:

 ACT execute music action
 ACT(start music action sequence [] only
 positionnumber ACT(
)ACT end music action sequence [] only
 SIMPLEACT remove all music actions

The folowing number processing words are used to access the music
event variables in music action definitions:

 FVAR access stack frame item
 itemnumber FVAR -> addressnumber
 VOICE! change voice settings in frame
 voicenumber VOICE or ON VOICE!

sound events

Information is carried from the user program to the low-level
music peripheral driver software in the form of sound events. A
sound event is a simple instruction to set the value of a
particular control on the receiver. There are four main types:

 * voice events
 * type-global voice events
 * time control events (including tempo events)
 * queue control events

 33

Sound events are generated by sound words. The Nucleus provides
queue control sound words, and voice servers provide their own
voice sound words and type-global voice sound words. Tempo sound
events are generated only by tempo music words, so no tempo sound
words are provided.

the sound queue

When a sound event is generated by the user program, the system
does not execute it immediately, but stores it temporarily on the
sound queue, a buffer in which the events are held in the order
they are to be executed, separated by durations. Durations are
continuously consumed from the 'output' end of the queue under the
control of the timebase, and as sound events are encountered, they
are vemoved and executed. All operations carried out by sound
events are therefore synchronised to the timebase. This advanced
mechanism provides two important benefits:

 * sound execution is precisely timed, and independent of
 execution of the generating program
 * sound events may be generated in an order independent of the
 order in which they are to be executed.

The sound queue represents a segment of the total duration of a
piece of music, storing all the sound events required to play in
that period. This segment continually moves forward as passing
time consumes it at the 'real time' (time present) end and the
program extends it at the 'program time' (time future) end:

 sound event sound event
 execution generation

 real time program time
 | |
 | passing time -ve duration | +ve duration
 |––-> <---|--->
 _ _ _ _ | | _ _ _ _ _ _
 | sound events |
 _ _ _ _ | | _ _ _ _ _ _

 <--------- total queue time --------->

 past | future far future
 present

Durations move program time, and 'total queue time' is a measure
of program time, relative to real time. The following words
provide these functions:

 34

 DURATION wait for a period of time
 number DURATION
 QTIME return queue time
 QTIME -> number

Two further words have direct effects on the sound queue:

 READY get ready for players
 GO start players together

Each player has its own independent program time.

The system command line interpreter resets player 0's queue
time before executing each line. See QTIME for details.

queue control sound words

The following words generate sound events which control queue
processing itself:

 FAST select fast/normal tempo
 flag FAST
 PAUSE pause/continue sound processing
 flag PAUSE

time control

AMPLE Nucleus uses an external time server (supplied as a module)
to provide the timebase and thereby control the passage of musical
time. This allows the method of time control to be changed to
suit the application. Most installations will include a time
server providing a free-running, computer-internal timebase,
whereas others might accommodate external sources, such as for
synchronisation with external equipment.

Only one time server is active at a time, but more than one time
server module can be installed. To select between alternative
time servers, each one has a word, usually the same as its name
and having no input or output values, which selects it and
deselects the previously selected time server.

The current time server responds to tempo control events generated
by the tempo music words, and other time control events generated
by the following:

 WIND advance time
 ticksnumber WIND

 35

 HALT halt/continue timebase

voice selection

AMPLE Nucleus can accommodate 132 voices, 12 in each of 11
'ensembles'. In practice, the installation provides a smaller
number of voices, but these can be individually assigned to any of
the 132 voice positions, allowing great flexibility in voice use.

A voice position is identified by the number of the ensemble and
the number of the voice within the ensemble. In most cases, the
ensemble number corresponds to the player number, because the
system selects the same-numbered ensemble for each player on its
creation.

Each player has a voice selection which determines which voice or
voices its subsequent voice sound events affect. This selection
consists of the number of the ensemble and the number of the voice
within the ensemble, and these are set using:

 VOICE select voice(s)
 voicenumber VOICE
 SHARE select voice ensemble
 ensemblenumber SHARE

When a player is created, it automatically has the same-numbered
ensemble selected, so ensemble 1 'belongs' to player 1, ensemble 2
to player 2, etc. SHARE can then be thought of as selecting (or
'sharing') the specified player's voices. Often, each player
addresses only its own voices, and SHARE is not used.

Two further words set the 'range of voices' on the addressed
ensemble (not player). The complete range can be selected by
VOICE so that each sound event is automatically sent to two or
more voices.

 VOICES set number of voices
 number VOICES
 RVOICES set voices range
 startnumber endnumber RVOICES

 36

voice assignment

Each voice type has a voice assignment word which assigns a voice
of that type to the selected voice position or positions. Only
once a voice is assigned to a position can it receive further
sound events and hence be used.

The Nucleus has a special 'unused' voice type, assigned by:

 UNUSED make voice(s) unused

voice events

Each voice type has a set of sound words that give access to the
voice controls, through sound voice events. They include basic
'performance' controls like pitch and gate, and 'instrument'
controls that are designed for selecting or defining overall
characteristics. In principle, any control could be used for
performance or instrument definition and many voice types do allow
this, but some place restrictions on the use of certain controls,
particularly if their voices are on remote, rather than
integrated, devices.

In addition to a voice assignment word, all voice types have the
standard sound words required for default interpretation of AMPLE
Nucleus music words:

 PITCH set pitch in semitone units from middle C
 pitchnumber PITCH

 VEL set dynamic level in range 0 to 127
 levelnumber VEL

 GATE set gate state, 'on' or 'off'
 gateflag GATE

The precise interpretation of these varies between voice types and
event instrument definitions on a single voice type, but the
overall effect is as defined by the words' descriptions.

 37

type-global voice events

These affect all voices of the same type together. The
corresponding sound words are specific to the voice type and are
not affected by the voice selection. Examples include global
tuning and volume.

voice servers

A voice server is a module that provides a voice type, and drives
a particular type of voice-providing music device. It provides
the sound words for its type and the low-level routines that
implement logical voices in terms of the physical voices available
from the device.

 38

 39

6 Numbers and flags

AMPLE supports 16-bit signed integers, that is, whole numbers in
the range -32768 to 32767.

A literal number is one that appears where its value is required,
and in AMPLE may be in decimal, negative decimal or hexadecimal
form.

 & indicate hexadecimal number
 - indicate negative number

arithmetic expressions

AMPLE uses post-fix notation for all operations on numbers. This
is a contrast to languages like BASIC that use in-fix notation.
In BASIC, arithmetic expressions appear in mathematical style,
with each two-input operator appearing between its input values,
for example

 2 + 3 or 4 * (2 + 3)

Sub-expressions are bracketed to define the order of the
operators.

In AMPLE, expressions work in computer style, with numbers and
operators appearing in the order in which they act, that is, with
the operator after its input values, for example:

 2 3 #+ and 2 3 #+ 4 #*

(AHPLE uses '+' for a musical function, so the arithmetic add
instruction is ' #+').

Because AMPLE executes the items in strict left-to-right order,
brackets are never required for sub-expressions. In fact, because
numbers and operators are executed step-by-step like any other
program instructions, AMPLE expressions are much more flexible and
often simpler than their BASIC equivalents, even though they may
look less familiar.

The following arithmetic operators are available:

 #* multiply two numbers
 number1 number2 #* -> productnumber (number1 x number2)

 40

 #+ add two numbers
 number1 number2 1+ -> sumnumber (number1 + number2)
 #- subtract number from previous number
 number1 number2 #- -> differencenumber (number1 – number2)
 #/ divide previous number by number
 number1 number2 #/ -> quotientnumber remaindernumber
 #B12 swap high and low bytes of number
 number1 #B12 -> number2

 MAX leave larger of two numbers
 number1 number2 -> largernumber
 MIN leave smaller of two numbers
 number1 number2 -> smallernumber

A useful word for experimenting with expressions is:

 NOUT print number in decimal
 number NOUT

for example:

 2 3 #+ NOUT prints 5

constants

A numeric constant is an item that has a fixed numeric value. In
AMPLE, this is simply created as a word containing a literal, for
example:

 "semiperoct" [12]

The name of the word can then be used anywhere that a literal is
allowed, for example, in an expression:

 3 semiperoct #+ is equivalent to 3 12 #+

Using a constant instead of a literal makes it simple to change
the value once incorporated into a program, especially if the
value is used in two or more places. It can also make the program
easy to read by describing its function, and in addition a comment
may be included:

 "semiperoct" [12 % number of semitones per octave
]

 41

the number stack

AMPLE uses a structure called a stack to hold numbers as it works
through an instruction sequence. This is effectively a pile to
which items may be added and removed at the top position only – a
last-in first-out buffer, or 'LIFO'. You don't have to know about
the stack to use numbers and expressions, but it helps in
understanding more advanced uses.

A literal number simply puts its value on the stack, for later use
by an operator. Each operator takes its input values from the top
of the stack, and leaves its output value on the top of the stack.
Some words, like NOUT, simply consume a number, that is, they have
no output.

A literal number may remain on the stack to be consumed by an
operator in another word, as illustrated by our definition of a
constant. A constant is an example of a word passing out a value:
one that has no input values and one output value.

The stack can be used for temporary storage, since each number is
unaffected by the activity above it, for example:

 1 % leave on stack
 2 3 #+ NOUT % prints 5
 NOUT % prints 1

(This sequence can only be executed from within a word definition,
since the system will give the 'Extra number' error on finding the
unused '1' at the end on the first line, and then the 'No number'
error on reaching NOUT.)

A simple example of temporary storage is:

 1 2 NOUT SP NOUT % prints 2 1

Of course, the numbers are reversed – last-in, first-out.

Note that each player has its own number stack, so number
processing and storage is entirely independent for each player.
Each number stack can hold 31 numbers.

 42

passing numbers

Since the stack lets numbers be freely passed in and out of word
definitions, an expression can be put into a word definition, and
then receive a value from outside, for example:

 "printsemi" [12 #* NOUT]
 2 printsemi

 is equivalent to

 2 12 #* NOUT

 and prints 24

This structure is the equivalent of a procedure in other
languages: a named sequence of instructions supplied with input
values each time it is called.

It is conventional to indicate the number of input values
required, with a comment inside the word, particularly since this
information is not necessarily obvious from the form of the
definition. The comment shows the form of use of the word, in the
style used in this Guide, for example:

 "printsemi" [% octnumber printsemi
 ...]

A function is simply a procedure with one output value, such as:

 "tosemi" [% octnumber tosemi -> seminumber
 12 #*]
 2 tosemi NOUT

 is equivalent to

 2 12 #* NOUT

An AMPLE function may have more than one output value. The divide
operator, #/ , is an example:

 #/ divide previous number by number
 number1 number2 #/ -> quotientnumber remaindernumber

 43

The input/output description tells us that

 7 3 #/ is equivalent to 2 1

so

 7 3 #/ NOUT SP NOUT prints 2 1

as does

 1 2 NOUT SP NOUT

It should be clear to you that, in AMPLE, literals, constants,
operators, procedures and functions are all just variations on a
simple theme, and they can be created as simple word definitions
without any 'red tape'. You may also have noticed that there is
no need for any sort of statement separator, since execution
always progresses logically through the instructions as they
appear. However, you can make the program clearer to read by
laying out groups of instructions on separate lines, or with extra
spaces in-between.

stack operators

The stack operators allow you to take special advantage of the
stack's storage abilities by duplicating, discarding and rearranging
the top numbers.

 #11 duplicate number
 number #11 -> number number
 #12 swap two numbers
 number2 number1 #12 -> number1 number2
 #2 discard number
 number #2
 #212 duplicate previous number
 number2 number1 #212 -> number2 number1 number2
 #2121 duplicate number and previous number
 number2 number1 #2121 -> number2 number1 number2 number1
 #213 rotate positions of three numbers
 number3 number2 number1 #213 -> number2 number1 number3

 44

The names of these words directly describe their net effects on
the following hypothetical stack:

 9 8 7 6 5 4 3 2 1

For example:

 9 8 7 6 5 4 3 2 1 #11 produces
 9 8 7 6 5 4 3 2 1 1

and

 9 8 7 6 5 4 3 2 1 #213 produces
 9 8 7 6 5 4 2 1 3

A further set of words allow access to numbers at specifiable
positions, or frames, on the stack, independent of the number of
items above:

 FCOPY copy numbers from frame
 number FCOPY
 FRAME mark top of stack frame
 FRAME! set frame pointer
 pointernumber FRAME!
 FRAME? read frame pointer
 FRAME? -> pointernumber
 FVAR access stack frame item
 itemnumber FVAR -> addressnumber
 VOICE! change voice settings in frame
 voicenumber VOICE or ON VOICE!

flags

A flag is a logical value: one that is either ON or OFF. AMPLE
represents flags as numbers, with 0 standing for OFF and -1 for
ON. Flags and numbers are equivalent as far as the system is
concerned, so all words described as number operators can equally
be used on flags.

The following words produce flag results:

 OFF leave false flag
 OFF -> offflag
 ON leave true flag
 ON -> onflag

 #< test previous number is less than number
 number1 number2 #< -> flag (number1 < number2)

 45

 #= test numbers are equal
 number1 number2 #= -> flag (number1 = number2)
 #> test previous number is greater than number
 number1 number2 #> -> flag (number1 > number2)

 SIGN test number is negative number
 SIGN -> flag

flag operators

The following flag operators work on individual binary bits of the
numbers, and they can be used either on flags as logical
connectives, or on numbers as 'bit-wise' operators.

 AND AND bits of numbers
 number1 number2 AND -> ANDnumber (number1 AND number2)
 OR OR bits of numbers
 number1 number2 OR -> ORnumber (number1 OR number2)
 XOR exclusive-OR bits of numbers
 number1 number2 XOR -> number3

NOT is a strict logical connective, meaning that it does not operate
bit-wise.

 NOT invert sense of flag
 flag1 NOT -> flag2

variables and storage

As you may expect, variables and arrays are also defined as simple
words.

 GVAR create variable [] only
 GVAR -> addressnumber
 DIM reserve memory
 ARRAY access array element
 elementnumber baseaddressnumber ARRAY -> addressnumber

A variable or memory block is defined like any other word, using
the appropriate instruction inside the definition, for example:

 Variable: "total" [GVAR]
 Array: "totals" [100 DIM ARRAY]

The storage space for the variable is provided by the GVAR
instruction itself, but the DIM space is claimed from language
memory, and is accounted for in the 'Arrays' entry of SHOW. DIM

 46

may be used without the ARRAY add-on to reserve a simple block of
memory for direct access by the program, for example

 "buffer" [100 DIM]

Other items, such as comments, additional actions, debugging aids
etc. can also be included in any of these definitions.

GVAR and DIM definitions return absolute memory addresses for the
use of the following store and fetch operators:

 #! store number at address
 datanumber addressnumber #!
 #? fetch number from address
 addressnumber #? -> datanumber

 #+! add number to number at address
 datanumber addressnumber #+!

 #B! store low byte of number at address
 datanumber addressnumber #B!
 #B? fetch byte from address
 addressnumber #B? -> datanumber

These are suitable for flags as well as numbers.

From the point of view of a BASIC programmer, #! is the post-fix
equivalent of the assignment operator '=':

 BASIC: total=1
 AMPLE: 1 total #!

In an expression (for example, at a position to the right of a
BASIC '='), each variable is followed by #? to 'fetch' its value,
for example:

 BASIC: total=input
 AMPLE: input #? total #!

Because AMPLE is not restricted to formal 'statements', operations
can often be carried out with fewer instructions than in BASIC,
for example:

 BASIC: t = x : x = y : y = t :REM swap x and y
 AMPLE: x #? y #? x #! y #! % swap x and y

 47

random numbers

The following words control AMPLE's built-in random number
generator:

 RAND get random number
 RAND -> number
 RAND! set starting point for random numbers
 number RAND!
 RANDL get random number in range
 maxnumber RANDL -> number

 48

 49

7 Characters and strings

Single characters may be are represented as numbers, for example,
a letter by its ASCII code. Hence, the number stack and number
operators may be used for processing single characters.

Strings are supported as a separate type, using a single string
stack similar in operation to the number stack. A string is a
sequence of up to 128 characters, including all 8-bit values. The
following words convert between a character on the number stack
and a one-character string on the string stack:

 ASC convert string to number [] only
 string ASC -> asciinumber
 $CHR convert number to string [] only
 asciinumber $CHR -> string

The number value -1 represents a null string/character.

Literal strings may be included in the program by enclosing them
with " characters, for example:

 "hello"

 " start literal string
 "characters" -> string (when inside [...] : see later)

 A " character may be included in the string by repeating it.

string operators

The following string operators are provided:

 $+ add string to left end of previous string [] only
 rightstr ing leftstring $+ -> string (left + right)
 $- split string after numbered character [] only
 string number $- -> rightstring leftstring
 $PAD pad string with spaces [] only
 string1 lengthnumber $PAD -> string2
 $REV reverse the order of characters [] only
 string $REV -> reversedstring
 $STRIP remove leading spaces [] only
 string1 $STRIP -> string2

 LEN get length of string [] only

 50

 string LEN -> string lengthnumber

The string stack operators are:

 $12 swap two strings [] only
 string1 string2 $12 -> string2 string1
 $2 discard string [] only
 string $2

Conversion between number and string form is provided by the
following:

 $STR convert number to decimal string represenation [] only
 number $STR -> string
 &$STR convert number to hex string representation [] only
 number &$STR -> string
 VAL convert string to unsigned decimal number [] only
 string VAL -> remainingstring number ON if found
 string VAL -> remainingstring OFF if not found
 &VAL convert to unsigned hex number [] only
 string VAL -> remainingstring number ON if found
 string VAL -> remainingstring OFF if not found

string stack usage

As an example of normal usage, a word can simply leave a string
with "..." and then print it out immediately:

 "speak" ["hello" $0UT]
 speak % prints hello

Equally, it could leave a string to be picked up by another word:

 "it" ["hello"] "say" [$OUT NL]
 "speak" [it say]
 speak % prints hello

Whereas you may pass a string from instruction to instruction in a
definition as this example shows, you may not pass a string from
command to command, that is, along the command line. This is
because the command input line is itself held, by the system, as a
string on the string stack. For example, if in the above example,
'it say' was entered as a command sequence, the data string would
interfere with the input line, producing an error:

 speak % prints hello
 it say % fails with '! Mistake'

Remember, there is no restriction in normal string stack usage

 51

inside word definitions, that is, usage in which any word executed
from the command line preserves the state of the string stack

using strings at the command line

Because the command input line is itself a string on the stack, "
has a different action when outside [...], and many string
operators are restricted to use inside [...].

Whereas "..." puts the string on the top of the stack when inside
[...], when entered in the command line, it puts the string as the
second item down, that is, underneath the input line string. So,
the complete stack action of a literal string (the word ") is
actually:

 "characters" -> string inside [...]
 inputstring "characters" -> string2 inputstring outside [...]

System commands that take strings (SAVE for example) take them
from below the input line string with $12, leaving the input line
string undisturbed as the top item.

User words can accept direct-mode strings in the same way, for
example:

 "say" [$12 % get direct-mode string from under input line
 $OUT]
 "hello" say % prints hello

User words can deliver direct-mode strings also by using $12, for
example:

 "name" ["program" $12]
 name SAVE % equivalent to "program"SAVE

using the input line

As the system's command interpreter works along the input line
string, it finds the next word name, removes it, and executes the
word. The last word on the line is either carriage return or TAB
(carriage return does absolutely nothing unless inside [...]).
When the input string is entirely consumed, that is, reduced to
"", the system prints the % prompt and waits for the next command
line to be entered. At the point of executing any word on the
line, the input line string is the remainder of the original line,
that is, the part of the line to the right of the word being
executed. Certain system words like & and % access the input line
directly to perform their functions, and user words can do the

 52

same for special purposes.

By adding to the input line string, a user word can issue
commands, for example:

 "memshow" ["MEM SHOW" $+]
 memshow % equivalent to MEM SHOW

When 'memshow' starts executing, the top (and only) string on the
stack is the remainder of the input line; in this case, a single
carriage return. 'memshow' adds MEM SHOW to the start of the
string, and then finishes. Control returns to the command
interpreter which finds the string MEM SHOW<CR> as the remaining
input line, and processes it exactly as if it had been entered
directly by the user.

Commands such as this that substitute the name or names of other
commands to achieve their functions are called 'macro' commands or
just 'macros'. This example is a simple macro that produces the
same output string every time. Computed macros are more advanced,
producing an output dependant on input values, variables, user
input etc. An example of a computed macro is a user menu made
with menu construction words supplied in most installations – when
the name of the menu word is entered as a command, it replaces
itself by a command sequence that is selected by the user.

A command word can access items following it on the input line by
simply examining the input line string, and modifying it if
required. A very simple example is:

 "say" [$0UT ""] % print remaining line, and replace by ""
 say fred % prints fred

'say' consumes the whole of the remaining input line, including
the final carriage return, and replaces it by "" (it does not need
to replace the carriage return).

The following example decodes a number from the input line – it is
a BASIC-style MODE command which is used with the number after it,
e.g. mode 7.

 "mode" [
 $STRIP % remove leading spaces
 VAL % get number from input line
 #2 % discard VAL flag (ON if number found)
 MODE]
 mode 7 MEM % change to mode 7, and do MEM

If no following number is found, 'mode' takes a number from the
stack anyway, so in fact the command can be used either way

 53

around: mode 7 or 7 mode .

It is important to remember that a user-defined command word
always acts as a command word, working on the current input line.
If you use a command word inside [...], then the defined word is
also a command word. For example, you can define a new command as
follows:

 "modecat" [mode "CAT"OSCLI]
 modecat 7 % give mode 7 catalogue display

What you cannot do is include the complete command as an
instruction inside a word definition, for example:

 "teletext" [mode 7]

Entering 'teletext' will not have the same effect as entering
'mode 7'.

using strings in players

The single string stack is common to the whole system, that is, it
is shared by all players, so when two or more players want to use
the string stack independently, a simple restriction applies.
('Two or more' includes the static player).

Basically, only one player can leave strings on the string stack
permanently – all other players must preserve the state of the
string stack over player control transfer points. These points,
called 'idle' points, are present at any instruction from which
control may not immediately return to the player. They include:

 IDLE
 #IN, $IN
 A-G, a-g, X, /, ^, (,) (all music events)
 ACT, DURATION, HALT, FAST, ON PAUSE
 +T, -T, =T
 P(
 sound words (PITCH, GATE etc)

Where a dynamic player runs alongside the static player's command
interpreter, it should always preserve the string stack state,
since the command interpreter uses the string stack to hold the
input line.

 54

string stack capacity

The string stack has a total capacities of 128 characters and 16
strings.

The character capacity available in a word definition is reduced
by the number of characters remaining on the command input line,
so an otherwise successful definition could fail if executed from
the start of a longer command line.

Programs that make heavy use of the string stack may guard against
this by discarding the input line on entry, and replacing it by a
null string on exit:

 "RUN" [$2 % discard input line
 ... % run program
 ""] % leave null input line

This also makes all of the stack's 16 string positions available to
the program.

 55

8 Input and output

AMPLE Nucleus provides a variety of words for QWERTY keyboard
input and screen output via the standard operating system
interfaces. In addition, the user may access operating system
input and output routines directly, for special applications.

numbers

Words for number output are also provided:

 NOUT print number in decimal
 number NOUT
 &NOUT print number in hexadecimal
 number &NOUT

characters and strings

The following words handle character input and output:

 #IN wait for and get keypress
 #IN -> asciinumber
 QKEY test key status or get keypress
 negativenumber QKEY -> flag
 zeronumber QKEY -> asciinumber
 #OUT send ASCII code to screen
 number #OUT

String input and output are provided by:

 $IN input line from keyboard [] only
 $IN -> string
 $OUT print string [] only
 string $OUT

Number input can be implemented with string input and VAL/&VAL for
string-to-number conversion. See VAL and &VAL for examples.

The following provide special output to the screen:

 ALIGN ensure text cursor is at start of line
 MODE enter display mode command
 number MODE
 NL print new line

 56

 SP print a space

system effects

AMPLE automatically sets various keyboard and screen options when
terminal-style line input is called for. The following settings
are made by $IN and the command line before accepting input:

 *FX255, 1 % make function keys expand
 *FX4,0 % engage cursor editing mode
 OSWRCH: 23 1 0 0 0 0 0 0 0 % turn cursor on

commands

A command may be output for execution by the operating system by:

 OSCLI send string to operating system [] only
 string OSCLI

additional interfaces

The user may need to call operating system input/output routines
that are not supported through Nucleus words, particularly for
secondary devices such as the analogue ports and serial link. See
the chapter 'Machine-code programming' for details.

music and sound event input

Modules provide music and sound input where required, through:

 * input words – values are returned to the user program in the
 same way as with #IN and QKEY for QWERTY keyboard input

 * music events – a music input device, such as music keyboard,
 generates events as a transparent side process of keyboard
 input – see the word ACT for general details.

synchronisation

Because sound output is via the sound event queue and referenced
to the timebase, it is delayed relative to non-sound output, and
input appears delayed relative to it. The user program may
synchronise non-sound output to sound output by aligning it with
real time, and synchronise the sound output to input, again by
aligning it with real time. See the word QTIME for details.

 57

9 Execution control

AMPLE provides powerful facilities to control the path of
execution through the program:

 * word definition – the word contents are executed wherever its
 name is used in the program
 * conditional – the instruction sequence is or is not executed
 depending on the outcome of a decision
 * definite loop – the sequence is repeated a definite number of
 times, determined in advance by a calculated value
 * indefinite loop – the sequence is repeated until a certain
 outcome of a decision
 * concurrent – the sequence is executed alongside other
 sequences, using the specified player.

The word definition is described in the chapter 'Programs and
words'.

control structures

Each of AMPLE's execution control structures consists of two words
used as a pair, and in some cases an optional word for use in
between the main two. The first word of the pair ends with '(' and
the second starts with ')', to make clear that they are
complementary parts of a structure, for example:

 ... IF(...)IF ...

Optional structure words have brackets at the start and end of
their names, for example:

 ... IF(...)ELSE(...)IF ...

Each control structure word may only be used as part of the full
structure, and this must be in a single word definition. For
example, the following are not allowed:

 "myif" [IF(] ... myif ...)IF ...

 "start" [... IF(...] "end" [...)IF ...)
 ... start ... end ...

 58

Control structures may be nested:

 ... IF(... FOR(...)FOR ...)IF ... % allowed

but they may not overlap:

 ... IF(... FOR(...)IF ...)FOR ... % NOT allowed

All control structure words are '[] only', meaning that they can
only be used in word definitions, and not in the command line.

conditionals and loops

Simple conditional execution is provided by the IF structure:

 IF(start conditional sequence [] only
 flag IF(...)IF or flag IF(...)ELSE(...)IF
)ELSE(separate conditional sections [] only
)IF end conditional [] only

A simple FOR loop structure handles definite loops:

 FOR(start definite loop [] only
 countnumber FOR(...)FOR
)FOR end definite loop [] only
 INDEX return loop index [] only
 INDEX -> number
 COUNT return loop count [] only
 COUNT -> number

The REPEAT structure allows a wide variety of indeterminate loops:

 REP(start indefinite loop [] only
)REP end indefinite loop [] only
)UNTIL(exit from indefinite loop [] only

condition expressions

The actions of IF(and)UNTIL(are controlled by a flag input
value: ON or OFF. This is usually the result of an expression
using one or more of the following operators:

 #< test previous number is less than number
 number1 number2 #< -> flag (number1 < number2)
 #= test numbers are equal
 number1 number2 #= -> flag (number1 = number2)
 #> test previous number is greater than number
 number1 number2 #> -> flag (number1 > number2)

 59

 SIGN test number is negative
 number SIGN -> flag

 AND AND bits of numbers
 number1 number2 AND -> ANDnumber (number1 AND number2)
 OR OR bits of numbers
 number1 number2 OR -> ORnumber (number1 OR number2)
 XOR exclusive-OR bits of numbers
 number1 number2 XOR -> number3

 NOT invert sense of flag
 flag1 NOT -> flag2

Other number operators may also be used in the expression.

concurrency

AMPLE uses players to execute instruction sequences concurrently,
that is, alongside each other as opposed to one after the other.
In many respects, each player is like a separate AMPLE computer:
it can run its own instruction sequence, has its own music
environment, number stack and voices etc. However, all players
have access to the same word definitions and global data, and can
communicate with each other.

Player number 0 is special. It executes the system's command
interpreter in an infinite loop, accepting and executing input
from the user. Commands, editors and any user words executed by
entering their names as commands are said to be run 'in player 0'.
At this level of use, the system looks similar to other
interactive micro-computer languages, like BASIC. In particular,
the system is either waiting for command input OR executing a
program, but never doing both at the same time.

Concurrency is achieved by using players 1 to 10. Each of these
is idle until it receives an instruction sequence to carry out,
and when it finishes this, it becomes idle again. Any player may
issue a sequence to any player, including itself.

Players 1-10 are commonly used to run the parallel parts of a
musical piece. The program often consists of 'part words' – the
definitions of the musical parts – and a main word (usually called
RUN) that simply gives each player its part to perform. RUN is
entered as a command in player 0: it starts the players and then
finishes, returning to the % prompt while the piece plays.

 60

player-control instructions

The following words assign instruction sequences to players for
concurrent execution:

 P(start concurrent sequence [] only
 playernumber P(...)P
)P end concurrent sequence [] only

They are used along with:

 READY get ready for players
 GO start all players

Other words connected with the use of players are:

 IDLE pass control to other players
 PNUM leave player number
 PNUM -> number

stopping execution

AMPLE has a word to stop execution of all players and return
control to the % prompt:

 STOP stop program

AMPLE has no equivalent to BASIC's general GOTO statement.

 61

10 Machine–code programming

AMPLE user programs can call operating system and user machine-
code routines, and accomodate user routines in existing unused or
specially-reserved memory.

calling routines

A single word allows an operating system or user machine-code
routine, terminated by RTS, to be called from an AMPLE program,
passing and receiving values via the processor registers:

 CODE call machine-code routine
 YXnumber CAnumber addressnumber CODE -> YXnumber PAnumber

User routines called in this way are free to call operating system
routines as normal.

User machine-code routines may also be called directly by the
operating system through the OS vector system, as normal.
Routines should take care to follow the correct procedure so that
AMPLE Nucleus and module vector intercepts are not disturbed. In
particular, they should preserve all registers and exit by jumping
to the vector's previous contents, that is, the address that was
in the vector location before re-direction to the user routine.

user routine applications

The relationship of the various components of an AMPLE system,
including user routines, can be illustrated as follows:

 | |
User program | AMPLE user words |
 |___|
 | | | user m/c |
Application | | AMPLE Nucleus | routines |
 | |________________________|________ |
 | | | |
Operating system | AMPLE modules | BBC Micro OS ____| |
 | | | |
 | | |
Hardware | music | BBC Micro hardware |
 | peripherals | and peripherals |
 | | |

 62

(Each component can use only the facilities of the components
which are immediately below it.)

Note that user routines can be accessed by AMPLE user words and
the operating system, and can access the operating system and BBC
Micro hardware and peripherals. In particular, user routines
cannot call any sort of AMPLE word or access the music hardware
directly. This puts them on a level with the application and
operating system (though they are physically part of the user
program) and in fact the jobs for which user routines are most
used can be thought of as extensions to AMPLE or the operating
system.

Generally, there are two reasons for using a machine-code routine
rather than an equivalent AMPLE definition:

 * speed – where a computation needs to be carried out quickly,
 and a machine-code routine to do it is significantly faster
 than the AMPLE user word definition. Most AMPLE Nucleus
 words run at machine-code speed anyway, so there is little to
 be gained by replacing them or user definitions which use
 them intensively. The biggest speed increases will arise
 from replacing user word definitions which use many simple
 Nucleus words. The routine is accessed via a user word
 containing the CODE instruction, rather than a separate CODE
 at each use.

 * vector interception – only machine-code routines can be
 called by operating system vectors.

Common applications include:

 * computation – an AMPLE user word prepares the input data,
 calls the routine with CODE, and formats the output data.
 The complete user word is used as a formally-defined
 extension to the Nucleus.

 * input – an additional hardware device can be handled by a
 machine-code routine that reports the results to the AMPLE
 user program. A simple method polls or scans the device
 using a machine-code routine (called by the user program) for
 speed, and another uses a vector intercept routine to poll at
 regular intervals, or respond to an interrupt, answering via
 a variable that is scanned by the user program. Any word
 that waits for an external event may use IDLE to avoid
 holding-up other players:

 IDLE pass control to other players

 63

 * output – high-speed output to new or existing devices can be
 provided, for example, for a graphics display using data
 computed and sent direct to the OS vdu drivers. User
 routines are called direct by the user program rather than by
 AMPLE's time control system, so their output is not
 automatically synchronised with normal music output. See the
 word QTIME for a method of synchronising user output.

user routines in language RAM

All language RAM from OSHWM (OSBYTE &83) to the bottom of display
memory (OSBYTE &84) is reserved for use by the AMPLE system, so is
not directly available for user routines. However, memory may be
set aside using the DIM instruction, and machine code loaded into
it using OSCLI, for example:

 "codespace" [255 DIM] % reserves 256 words, i.e. 512 bytes
 ...
 READY % clear all reserved memory
 codespace % reserve space
 $&STR % convert to string in hex
 "LOAD code" $+ % make up command string: LOAD code addr
 OSCLI % execute load command
 ...
 codespace % later, find start address of code for use
 ...

It is important to remember that the address of the code space is
completely variable, and may change on each run of the program.
For this reason, the user machine code must either be
location-independent, or be relocated to the load address each
time it is loaded. Also, remember that READY clears all reserved
memory, so the machine code must be reloaded after each use of
READY.

user routines in operating system RAM

Operating system RAM that may be used for user routines includes
unused primary workspace (for example, &BOO to &AFF under many
conditions), and unused secondary workspace (between primary OSHWM
(OSBYTE &B3) and current OSHWM (OSBYTE &83/&B4)).

The amount of secondary workspace may be increased to include the
requirements of user routines by a user program that raises the
value of secondary (current) OSHWM before the *AMPLE command of
the AMPLE start-up sequence. (This reduces the amount of language
RAM available to AMPLE accordingly.) A BBC BASIC program to do

 64

this is as follows:

 10 usersize=&200:REM amount required (a full number of pages)
 20 osbyte=&FFF4:osbOSHWM=&B4
 30 :
 40 A%=osbOSHWM
 50 Y%=&FF:X%=0
 60 oshwm=USRosbyte
 70 :
 80 Y%=0:X%=(usersize+poshwm)DIV &100
 90 dummy=USRosbyte

This program would be loaded and run immediately before the *AMPLE
command in the system disc's standard start-up EXEC file. The
program could be extended to set the amount of memory required to
suit an existing user machine-code program, and then load it to
the old value of OSHWM (variable 'oshwm'), relocating internal
addresses if necessary. Alternatively, the program could assemble
the user routines there and then, in place. It could also pass
the (variable) entry addresses of the routines to the calling
AMPLE program – see 'locating user routines' later.

An alternative method of allocating RAM is through use of a
sideways ROM that claims private workspace through the normal
mechanism on operating system start-up.

user routines in ROM

Routines in sideways ROM may be called from AMPLE, provided the
standard operating system procedure for ROM selection is followed.
This makes use of the ROM select register at &FE30, the ROM select
register soft copy at &F4, a temporary location for storage of the
AMPLE ROM number, and the number of the ROM containing the user
routine. A typical BBC BASIC assembler program skeleton to this
is as follows:

 rsregister = &FE30 \ define symbols
 rsregistercopy = &F4
 ...
 .ampleromno EQUB 0 \ define workspace
 .userromno EQUB 0
 ...
 STA userromno \ record user ROM number provided,
 \ for example, on ROM initialisation service call
 ...
 .callroutine
 \ select user rom
 LDA rsregistercopy \ get the current ROM number
 STA ampleromno \ save for later restoration

 65

 LDA userromno \ get userromno
 STA rsregistercopy \ store in copy FIRST...
 STA rsregister \ then store in register
 \ call user routine
 JMP routine \ enter user routine, in ROM
 \ reselect AMPLE ROM
 LDA amplerom \ get original rom number
 STA rsregistercopy \ store in copy FIRST...
 STA rsregister \ then store in register
 \ return
 RTS

locating user routines

The entry address of the user routine, whether in RAM or ROM, must
be known to the AMPLE program for it to be called using CODE.
Where the routine is not in AMPLE reserved memory, but in
operating system RAM or sideways ROM, some means is needed to
automatically pass the entry address to the program, since if it
was included as an absolute literal number, it would have to be
changed by hand to suit each new location of the user routine.

One method is to hold the routine entry address at a fixed address
from which the AMPLE program reads it. For a RAM routine, this
could be in primary operating system workspace and be written to
by the code loader program. For a ROM routine, it could be at a
fixed address near the start of the ROM, and the entry address
written to it at assembly time. Where two or more entry addresses
are needed, they can simply be stored at successive addresses.

user routines' zero page workspace

AMPLE leaves locations &8E and &8F free for use by user routines.

communication with user routines

User routines do not have access to any part of the AMPLE
workspace or user program, so passing of values between AMPLE
program and routine is accomplished by CODE's register value
transferral and/or a special mechanism implemented by the user.

One such mechanism uses a block of memory to which both the
program and routine have access. This could be either at a fixed
address in operating system workspace, at a fixed offset from the
routine entry address, or reserved by the AMPLE program with DIM.
In the last case, the program passes the address to the routine in
the Y and X registers each time it is called. The program and

 66

routine agree the use of the locations at fixed offsets from the
start of the block.

 67

11 Errors

An error is a condition arising when the system detects that it is
unable to do what user input demands of it. This is usually
caused by a fault in a program or command. Errors may be detected
by AMPLE or the operating system (including the filing system,
etc.), but are treated in the same way whatever the source.

error effects

All errors give an error message, an explanatory single-line
message beginning with !. There are three types:

 description example

 simple ! Mistake
 with location ! No number in tune
 with location and player ! Bad bar in page1 in player 1

Individual error messages are explained later on.

Depending on how and where the error occurred, its effect may
include:

 * returning to command mode, if the user was in an edit mode

 * stopping execution of the command line, so remaining commands
 are ignored

 * stopping execution of the word executed at the command line,
 and returning to the % prompt

 * if it occured in the definition of a word (inside [...]),
 printing an additional '!' to indicate the site of an error,
 and aborting the definition.

 * stopping execution of players 1-10

 * silencing all sounds

 * executing a SCORE in player 0 if a chord or key signature was
 in progress in player 0. This ends the chord or key
 signature, and restores the music environment to a defined
 state.

 68

In particular, the effects of each class of error are as follows:

 * in the command line, or in an AMPLE word in the command line:
 * a simple error message is printed
 * the rest of the command line is ignored.

 * in the command line, while defining a word (inside []):
 * a '!' is printed under the error site
 * a simple error message is printed
 * the definition is aborted and the rest of the line ignored

 * in a user word in player 0:
 * an error message with location is printed
 * execution in player 0 stops and returns to the %
 * the rest of the command line is ignored
 * SCORE is executed if necessary.

 * in one of players 1-10:
 * an error message with location and player is printed
 * execution of player 0 stops and returns to the %
 * the rest of the command line is ignored
 * SCORE is executed if necessary
 * players 1-10 are stopped
 * all sounds are silenced
 * HALT and PAUSE states are set to 'off'.

 All effects apart from the message printing are exactly as
 if STOP had been executed.

 An ESCAPE key press has the same effect as an error in one of
 players 1-10, but a simple error message is printed, without
 location or player number.

error effects from modules

Each voice-providing module is responsible for silencing its own
voices on those error types that silence all sounds. How this
is carried out depends on the module, but ideally it should give
complete and immediate silence with no further disturbance to
the voices, that is, no alteration to voice control values.
Some modules may be unable to achieve silence, for example, if
they are driving remote physical voices through a simple
interface. In this case, they use the best available
alternative, such as sending an 'off gate' message to each
voice, and letting the sounds end naturally as if in rests.

 69

errors and editors

Each editor may provide extra error effects and reporting
facilities specific to its function, in particular, for locating
the site of an error in the data being edited. Three types of
error location are common:

 * of the site of an error given when the data was executed
 with the editor's 'direct execute' facility, if it has one

 * of the site of an error given when the data was made into a
 word – an alternative to the % prompt's '!' indicator

 * of the site of the last error to be reported, when the word
 containing it is subsequently called into the editor.

Often, the editor indicates the location by automatically
positioning the edit mode cursor on it on entering edit mode.

error-like events

Certain events which are not errors have some of the same side
effects as some errors, including:

 * SCORE is executed if necessary
 * players 1-10 are stopped
 * all sounds are silenced
 * HALT and PAUSE states are set to 'off'.

and the following additional effects:

 * the music action list of player 0 is cleared
 * the record of the location of the last error in a user
 word, available to editors for special locating, is cleared

These events arise from any command that re-arranges memory and
therefore interrapts the execution of the user program. The
commands in this catagory are:

 NEW, LOAD, SAVE
 COMPACT
 MLOAD, INSTALL, MDELETE
 DELETE, RENAME,
 [...] (when redefining an existing word)

Note that MODE is not one of these, so it is usable from within
the user program.

 70

error messages

AMPLE's error messages are as follows, in alphabetical order.
The operating system and its services (including the filing
system) have their own error messages, and you should consult
their documentation if you get any message not listed below.

number
A serious fault has arisen in the system, probably as a result
of memory being corrupted.

If this occurs, you should restart the language from the system
disc (or with *AMPLE). You can save the program first, but in
extreme cases this may also have been corrupted and the file
will be rejected by LOAD.

A faulty program can corrupt memory by incorrect use of a store
operator (#! or #B!), for example if when assigning a value to a
variable, the name of the variable word is missing.

One numbered error that cannot be cured by re-starting the
system is error 8. This rneans 'Too many servers', meaning that
an attempt was made to install too many voice-providing modules.
This can only arise from an incorrect installation sequence on a
user-created system disc. The maximum number of voice-providing
modules is seven.

Already present
An attempt was made to MLOAD or INSTALL a module that was
already in memory. The MLOAD or INSTALL does not take place.

Bad bar
The total length of a bar did not match the bar length set by
BAR. This is issued by '|' and usually arises from an extra or
missing note in a bar, or a missing barline.

If you are entering a sequence of AMPLE notation at the % prompt
by copying from a listing on the screen, you can avoid errors
from incomplete bars by entering '0 BAR' first.

Bad context
A word has been used in an incorrect context, for example, using
a command such as LOAD inside a word definition, or a word that
is only allowed inside word definitions, like $2, as a command.

 71

The following words and types of word can cause this error:

 word fault

 'command only' word inside [...]
 '[] only' word as a command, that is, not inside []
) no (
)K no K(
 (...) inside K()K or ()
 K(...)K inside K()K or ()
 GO inside one of players 1-10
 READY inside one of players 1-10
 INDEX or COUNT not directly inside FOR(...)FOR

Bad element
An attempt was made to access an array element outside the range
dimensioned. This error is issued by ARRAY if it finds the
element number to be less than 0 or greater than the number
dimensioned in the preceeding DIM. The error message gives the
name of the array word, not of the word in which it was used.

This error is also issued by FVAR when an attempt is made to
access stack items that are beyond the range of the stack, for
example if 4 FVAR is executed when there are only 3 values on
the stack below the FRAME point, and when the stack pointer is
found to be below the FRAME point.

Bad hex
The first character after & was not a valid hex digit. This
error is given by & and &VAL.

 72

Bad load address
An attempt was made to load a module which requires a particular
load address, and memory space was not available at this
address. Normal modules can be loaded at any address, and only
very special modules are able to cause this error.

A module may independently require a load address to be a
certain range, for example outside the region of shadow RAM, and
will therefore issue this error itself under certain conditions.
These conditions should not arise under normal use of the module.

Bad mode
There was not enough free memory for the mode requested by MODE
or a module.

If this occurs from MODE typed in directly as a command or
issued from a user program or, you should enter COMPACT and try
again. COMPACT is done automatically on LOAD and SAVE.

Remember that loaded modules take up memory and loading another
module may stop you switching to a particular mode with a
par ticular size program.

On BBC Microcomputers with shadow RAM, this error does not
appear.

Bad module
The file loaded with INSTALL or MLOAD was not a valid module.
This happens if you try to MLOAD an AMPLE program, for example.

Bad name
There was a fault in the name given for a new word, either in
'[' or RENAME. It was probably too long (longer than 15
characters) or null ("").

Bad player number
An invalid player number was given. The range for P(is 1 to
10, and for SHARE is 0 to 10.

Bad program
The LOADed file was not an AMPLE Nucleus program produced by
SAVE. It is possible to get the 'Too big' message for the same
reason. This error leaves a clear program, as if you had used
NEW.

 73

Bad ROM
The Nucleus ROM image is faulty, due to a fault in computer or
the ROM IC itself. Before suspecting the ROM, you should try it
on another computer. The ROM image is checked on *AMPLE
(start-up from the system disc), AMPLE and BREAK inside AMPLE.

Bad string
There was no closing single " in the string. Strings may not
stretch from one line to the next.

Bad structure
A structure mismatch was found. In particular, a structure end
or middle word did not match the last unmatched structure
beginning or middle word, for example

 FOR(... IF(...) FOR

Each word beginning with) should be used only after its
matching word ending with (. The words that can issue this
error are:

)FOR,)REP,)UNTIL(,)IF,)ELSE(,)P,]

Note that though)K and) are each part of a pair, they are
music environment words and not true structure words, so they
give the 'Bad context' error when mismatched.

Division by zero
An attempt was made to divide by zero. This usually occurs from
#/, but other system words that carry out division can also
issue it. For example, +T, -T, +L and -L issue this error if
the ',' setting is 0, (inside a chord, for example).

Escape
The ESCAPE key was pressed. ESCAPE stops all players and
sounds, and returns control to the keyboard.

Extra number
There was a number left on the stack after the input line had
been executed.

This arises when there is a surplus number on the line or in a
word on the line, that is, a number which is not used by
following words. For example,

 24,bDc 12DE 24,G (missing comma after 12)
 1 00 OFFSET (space in number 100)

In complicated programs where the stack is used for temporary
storage, this error can result from faulty program structure or

 74

logic. Note that if such a fault arises in one of players 1-10,
it will not be detected unless it is repeated so as to cause a
'Too many numbers' error.

Extra string
There was a string left on the stack after the input line had
been executed.

This usually means that you gave a string argument where one was
not required, for example:

 "tune" WRITE

Care must be taken when using two double quotes to include a
double quote in a string.

Fixed module
An attempt was made to delete a fixed module (status F) with
MDELETE.

Only modules that are temporary (status T) or program-loaded
(status P) may be deleted. You can find out the status of a
loaded module with MCAT.

In use
An attempt was made to DELETE a word, or MDELETE a module, that
was in use. You can use FIND to locate any usages in the
program. The module could alternatively be in use as the
current editor. MCAT indicates both kinds of module use.

To delete a recursive word, you should first redefine it to an
empty definition, for example, "fact" []

Mistake
Characters on the input line were not understood, i.e. were not
recognised as a word, number or string.

If you mis-type a command, the system will interpret as much of
it as it can in terms of the existing user and system words
before it is forced to give the 'Mistake' message.

This error can sometimes arise if an essential separating space
is left out, so two names are run together and unintentionally
produce the name of another existing word. For example, if

 part1 act was entered as part1act

and there was a word called 'part1a', this longer word would be
recognised. If there was no word called 'ct', the 'Mistake'
message would appear.

 75

No number
A number was missing i.e. the number stack was empty when a word
attempted to remove a number. This is usually the result of
leaving an argument out, for example

 MODE (should be, for example, 7 MODE)

In complicated programs that use the stack for temporary
storage, this often results from a programming fault. If there
was a temporary number on the stack when a word attempted to use
the missing number on top, the temporary number will be used
instead, so you should be careful to test the individual
sections of complicated words, preferably by defining them as
words.

No room
There was not enough free memory for the operation. This error
can be produced in a word definition, during editing, and by P(,
ACT(and DIM.

There may be enough free memory in total, but split up so that
the largest single piece is too small. COMPACT arranges all the
free memory into one piece.

There may still be players in existence from the last run of a
program. The space they consume can be recovered by discarding
them with ESCAPE or STOP. COMPACT does this automatically.

No string
A string was missing i.e. the string stack was empty when a word
attempted to remove a string.

You may have left out an argument, or put it in the wrong place, for
example

 SAVE "temp"

The keyboard input line is always on the string stack, so that
inside a word, this will be used instead of a missing string and
the error will appear when the current directly-executed word
finishes.

 76

No such item
There is no word or module of the given name.

Note that the case of word and module names is significant, so
this error can result from you entering the name in the wrong
case.

Too big
There is not enough free memory to load the program or module.

Memory is shared between the program, module, screen (on
non-shadow memory computers) and the BBC Micro operating system.
If you change the amount of memory used by any one of these, you
could end up with too little for a program or module that
previously loaded successfully. Suggested remedies are as follows:

 reduce the program size
 remove unwanted modules (or use a smaller installation)
 change to a more economical screen mode, for example, mode 7
 remove or disable ROMs that increase operating system memory
 usage

This error may also arise if the file loaded is unrecognisable
as a valid AMPLE program, where one would have expected the 'Bad
program' error.

Too many characters
The maximum total length of strings on the string stack was
exceeded. It can hold 128 characters.

Too many levels
The capacity of the player's return stack was exceeded. This
can happen in the following cases:

 1 a too-deep nesting of words was used
 2 a too-deep nesting of FOR loops was used
 3 a too-long chain of music actions was used

Too many numbers
The capacity of the number stack was exceeded. It can hold 32
numbers.

The commonest cause of this error is a loop that leaves an extra
number on the stack each time around.

 77

Too many strings
The capacity of the string stack was exceeded. It can hold 16
strings.

Too many modules
A limit on the number of loaded modules was exceeded. This
limit applies only to modules that provide words for use in user
word definition, so, for example, most editor modules will not
contribute to this. The maximum number allowed is 9.

Too many voices
All voices of a particular type were already in use when an
attempt was made to assign another. Voices are provided by
modules, each of which has a limit on the number of voices. See
the appropriate application User Guide for information.

Too many words
The maximum number of user words allowed had already been
reached. The maximum number of words allowed is 125.

Warning: duplicate name
The new name specified to RENAME was already in use for another
user word. This message is a warning only, and the operation is
still carried out. All subsequent references to the name will
refer to the new word. You can use RENAME again to change the
name.

 78

 79

Part 2 - Reference

 80

 81

12 Dictionary of words

This chapter provides a detailed description of every AMPLE Nucleus
word and symbol, for reference purposes. An initial index gives
word names and basic information, and the main dictionary has a full
entry for each word and symbol.

The entries are arranged by name in a lexicographic
(dictionary-type) order based on the following order of characters:

 ! " # $ % & ' () * + , - / : ; < = > @ [\] ^ | ~ 0-9 A-Z

Any non-letters at the start of the name are counted as if they were
at the end, that is, they only affect the ordering of otherwise-
identical names. For example, &VAL appears after VAL even though &
appears before VAL. This means you can roughly locate any name by
its letters, ignoring any non-letters in it.

The general form of an entry is as follows:

 word name function status
 input items -> output items

 description

 example(s)

 related words

 further information

word name

The word name is shown exactly as you type it in, except in some
cases where a description of the name in angle brackets is given
instead. For example, <carriage return> means the carriage return
character.

 82

function and status

A short description of the word’s function is given after the name,
sometimes followed by a status item which is one of the following:

 command The word can only be used as a command entered
 directly at the keyboard. It cannot be used in word
 definitions, that is, between [and].

 [] only The word can only be used between [and], that is, in
 word definitions. It cannot be typed in directly as a
 command.

Where there is no status indication, the word can be used both as a
command and in word definitions.

input and output items

Where the word takes input items (arguments) and/or delivers output
items (results), these are indicated on the next line. Each item
(number1, for example) is explained in the text. Input items are
shown before the word, just as you supply them when using it, for
example:

 indication: number MODE
 example use: 7 MODE

Some words deliver output items. Their input/output descriptions
have a -> sign followed by the list of output items which the word
delivers. These are shown exactly as if you had entered them in
place of the word and its inputs, for example:

 indication: number1 number2 #+ -> number3
 example use: 1 2 #+ produces 3

Some words accept and/or deliver numbers (or logical flags) and
strings. Since strings and numbers are held independently on
separate stacks, the position of a string relative to that of a
number, and vice versa, is immaterial. For example,

 indication: string number $- -> rightstring leftstring
 example use: "hello" 1 $-
 equivalent use: 1 "hello" $-

A few words are special symbols that go before a group of
characters, rather than taking a string as an input item. An
example of this is '*' which treats the rest of the line as an
operating system command. This type of input item is shown as a

 83

description of characters in angle brackets (< >), for example,
the 'input/output items' line for '*' is:

 *<line>

description

The description of the word gives all the essential information
in a concise form. More general information on the subject of
the word and similar words can often be found in other chapters -
use the index to find these references.

examples

There are one or more short examples for all but the very
simplest words. These are not intended to be fully-functional
programs for typing-in, but concise extracts showing the use and
function of the word. In particular, some of them use '[] only'
words so they can only be used in a word definition. For the
most important words that are used in programs there are complete
example word definitions in other chapters.

related words

Next, there is a list of related words. This includes words which
are often used with the word being described, and others which have
related or alternative functions in which you might be interested.

further information

This section of the entry only appears for some words and has
additional information for advanced users only, often with further
examples.

 84

index of words

<carriage return> mark line end
<space> separate items
! move an extra octave up or down
" start literal string
 "characters" -> string inside []
 string1 "characters" -> string2 string1 outside []
#! store number at address
 datanumber addressnumber #!
#* multiply two numbers
 number1 number2 #* -> productnumber (number1 x number2)
#+ add two numbers
 number1 number2 #+ -> sumnumber (number1 + number2)
#+! add number to number at address
 datanumber addressnumber #+!
#- subtract number from previous number
 number1 number2 #- -> differencenumber (number1 - number2)
#/ divide previous number by number
 number1 number2 #/ -> quotientnumber remaindernumber
#11 duplicate number
 number #ll -> number number
#12 swap two numbers
 number2 number1 #12 -> number1 number2
#2 discard number
 number #2
#212 duplicate previous number
 number2 number1 #212 -> number2 number1 number2
#2121 duplicate number and previous number
 number2 number1 #2121 -> number2 number1 number2 number1
#213 rotate positions of three numbers
 number3 number2 number1 #213 -> number2 number1 number3
#< test previous number is less than number
 number1 number2 #< -> flag (number1 < number2}
#= test numbers are equal
 number1 number2 #= -> flag (number1 = number2)
#> test previous number is greater than number
 number1 number2 #> -> flag (number1 > number2)
#? fetch number from address
 addressnumber #? -> datanumber
$+ add string to left end of previous string [] only
 rightstring leftstring $+ -> string (leftstring + rightstring)
$- split string after numbered character [] only
 string number $- -> rightstring leftstring
$12 swap two strings [] only
 string1 string2 $12 -> string2 string1
$2 discard string [] only
 string $2
% introduce comment

 85

& indicate hexadecimal number
 &<hex digits> -> number
' accent next note or hit
(start additional chord notes
) end additional chord notes
* indicate operating system command command
 *<line>
+ sharpen next note
, set length
 number ,
- flatten next note or indicate negative number
/ hold music event
: set octave
 number:
; set music voice
 voicenumber ;
= naturalise next note
@ set transposition in semitones
 transnumber @
[start word definition command
 namestring [...]
\ move back
] end word definition
~ slur next note [] only
0 to 9 decimal digits
 <decimal digits> -> number
^ play rest
^; play chord rest
| mark end of bar
A to G play note with ascending pitch
a to g play note with descending pitch
ACT execute music action
 see text
ACT(start music action sequence [] only
 positionnumber ACT(
)ACT end music action sequence [] only
ALIGN ensure text cursor is at start of line
AMPLE restart system command
AND AND bits of numbers
 number1 number2 AND -> ANDnumber
ARRAY access array element
 elementnumber baseaddressnumber ARRAY -> addressnumber
ASC convert character to number
 string ASC -> asciinumber [] only
#B! store low byte of number at address
 datanumber addressnumber #B!
#B12 swap high and low bytes of number
 number2 #B12 -> number2

 86

#B? fetch byte from address
 addressnumber #B? -> datanumber
BAR set bar length in length units
 lengthsnumber BAR
$CHR convert number to character [] only
 asciinumber $CHR -> string
CLEAR clear editor data command
CODE call machine-code routine
 YXnumber CAnumber addressnumber CODE -> YXnumber PAnumber
COMPACT compact unused memory command
COUNT return loop count [] only
 COUNT -> number
DELETE delete word command
 namestring DELETE
DIM reserve memory
 sizenumber DIM -> addressnumber
DISPLAY display text
DURATION wait for a period of time
 number DURATION
)ELSE(separate conditional sections [] only
EVERY leave 'every' value
 EVERY -> number
FAST select fast/normal tempo
 flag FAST
FCOPY copy numbers from frame pointer
 number -> number1 ... number-n
FIND find uses of word command
 namestring FIND
FOR(start definite loop [] only
 countnumber FOR(....)FOR
)FOR end definite loop [] only
FRAME set frame pointer to top of stack
FRAME! write frame pointer
 pointernumber FRAME!
FRAME? read frame pointer
 FRAME? -> pointernumber
FVAR access stack frame item
 elementnumber FVAR -> addressnumber
GO start players together
GVAR create variable [] only
 GVAR -> addressnumber
HALT halt/continue timebase
 flag HALT
#IN wait for and get keypress
 #IN -> asciinumber
$IN input line from keyboard [] only
 $IN -> string
IDLE pass control to other players
IF(start conditional sequence [] only
 flag IF(...)IF or flag IF(...)ELSE(...)IF

 87

)IF end conditional [] only
INDEX leave loop index [] only
 INDEX -> number
INSTALL install module command
 namestring INSTALL
K(start key signature
)K end key signature
LEN get length of string [] only
 string LEN -> string lengthnumber
LOAD load program command
 namestring LOAD
'L set accent strength
 number 'L
=L set dynamic level
 number =L
+L increase dynamic level
 changenumber eventsnumber +L
-L decrease dynamic level
 changenumber eventsnumber -L
MAX leave larger of two numbers
 number1 number2 -> largestnumber
MCAT display catalogue of modules command
MDELETE delete module command
 namestring MDELETE
MEM show memory usage in bytes command
MIN leave smaller of two numbers
 number1 number2 -> smallestnumber
MLOAD load module command
 namestring MLOAD
MODE enter display mode command
 number MODE
MPREFIX set module filename prefix command
 string MPREFIX
MSHOW show list of words in module command
 modnamestring MSHOW
MVAL! write music variables
 framelev keysig barcountlen octnote length tranvoice MVAL!
MVAL? read music variables
 MVAL? -> framelev keysig barcountlen octnote length tranvoice
NEW discard program command
NL print new line
NOT invert sense of flag
 flag1 NOT -> flag2
NOUT print number in decimal
 number NOUT
&NOUT print number in hexadecimal
 number &NOUT
OFF leave off flag value
 OFF -> offflag

 88

ON leave on flag value
 ON -> onflag
OR OR bits of numbers
 number1 number2 OR -> ORnumber
OSCLI send string to operating system [] only
 string OSCLI
#OUT send ASCII code to screen
 number #OUT
$OUT print string [] only
 string $OUT
$PAD pad string to length with spaces [] only
 string1 lengthnumber $PAD -> string2
P(start concurrent sequence [] only
 playernumber P(...)P
)P end concurrent sequence [] only
PAUSE pause/continue sound processing
 flag PAUSE
PNUM leave player number
 PNUM -> number
QKEY test key status or get keypress
 negativenumber QKEY -> flag
 zeronumber QKEY -> asciinumber
QTIME return queue time
 QTIME -> number
QUIT leave editor command
RAND get random number
 RAND -> number
RAND! set starting point for random numbers
 number RAND!
RANDL get random number in range
 maxnumber RANDL -> number
READY make system ready
RENAME rename word command
 oldnamestring newnamestring RENAME
REP(start indefinite loop [] only
)REP end indefinite loop [] only
$REV reverse the order of characters [] only
 string $REV -> reversedstring
RVOICES set voices range
 startnumber endnumber RVOICES
SAVE save program command
 string SAVE
SCORE prepare for music words
SHARE select voice ensemble
 ensemblenumber SHARE
SHOW show user words command
SIGN test number is negative
 number SIGN -> flag
SIMPLEACT remove all music actions
SP print a space

 89

STOP stop program
$STR convert number to decimal string representation [] only
 number $STR -> string
&$STR convert number to hex string representation [] only
 number &$STR -> string
$STRIP remove leading spaces from string [] only
 string1 $STRIP -> string2
=T set tempo
 number =T
+T increase tempo
 changenumber beatsnumber +T
-T decrease tempo
 changenumber beatsnumber -T
TYPE type word definition on the screen command
 namestring TYPE
)UNTIL(exit from indefinite loop [] only
UNUSED make voice(s) unused
VAL convert string to unsigned decimal number [] only
 string VAL -> remainingstring number ON if found
 string VAL -> remainingstring OFF if not found
&VAL convert to unsigned hex number [] only
 string &VAL -> remainingstring number ON if found
 string &VAL -> remainingstring OFF if not found
VOICE select voice(s)
 voicenumber VOICE
VOICE! set voice settings in frame
 voicenumber VOICE! or EVERY VOICE!
VOICES set number of voices
 number VOICES
WIND advance time
 ticksnumber WIND
WRITE display text of all words command
X play hit
XOR exclusive-OR bits of numbers
 number1 number2 XOR -> XORnumber

 90

dictionary of words

<cr> mark line end

The system includes a word whose name is just a single carriage
return character {code 13), for the purpose of representing line
ends inside words. When a word definition is entered, each line
of text, except the last line, ends with a carriage return
character. The carriage return word is included at this point in
the same way as any word with a normal name, thereby marking the
end of the line. When the word definition is displayed, with TYPE
for example, the effect of the carriage return is to start a new
line on the display.

The carriage return also marks the end of comments, so that after
%, only the characters up to the end of that line are ignored, and
characters on the next line are treated as normal.

related words NL ALIGN

further information

A literal (quoted) string cannot contain a carriage return, since it
cannot stretch from one line to the next, and there is no special
mechanism for including control codes in literal strings. However,
you can include a carriage return in a string on the stack by first
creating a one-character string containing the
code using $CHR, for example:

 13 $CHR % create string with just CR
 "HELLO" $+ % make "HELLO<CR>"

To print a carriage return, use NL:

 "HELLO" $OUT NL % print HELLO followed by CR

Carriage returns cannot be included in comments.

<space> separate items

The space character is dealt with by the system as a word much
like words with normal names. It does nothing when executed, but
is important for separating items and making words more readable.
It is stored in word definitions so that spacing is preserved as
expected.

A space must be put between two items that could be misinterpreted
(by the user or the system) if they were run together, for example
numbers, strings, and some words. In any event, you should

 91

separate all words, except in lines of music words where this
would waste a lot of space.

examples

 1 2 #+ NOUT % space needed between numbers

 "keyl" "key2"NAME % space needed between strings to
 % avoid "" in longer string

 1 VOICE Simpleins % space between VOICE and Simpleins is
 % essential to avoid VOICES

further information

The system stores spaces in compacted form so that a group of more
than two spaces uses no more storage space than just two spaces.
A single space uses one byte and two or more spaces use two bytes.

! move an extra octave up or down

The '!' ('pling') word moves the pitch of the next note by one
extra octave, that is, if it is upper case, it raises it an
octave, and if it is lower case, it lowers it an octave. This
applies even if it is in between two notes of the same case.

You use it for pitch jumps of more than an octave, and jumps of an
octave between notes of the same case. '!' is entirely equivalent
to the appropriate ':' setting at the same point, but '!' is
relative to the last note so is more suited for use in the middle
of a line or phrase, whereas ':' is intended for the start of the
line or phrase.

Any number of '!' signs can be put before a note to jump by two or
more extra octaves.

examples

 1:c!C is equivalent to 1:c 3:c

 1:c!c is equivalent to 1:c 0:c

 1:C!c is equivalent to 1:C 2:C

 1:C!!C is equivalent to l:C 3:C

 1:!C is equivalent to 2:C

 92

" start literal string
 "characters" -> string inside []
 string1 "characters" -> string2 string1 outside [...]

The double quote character is used to include strings of
characters in a program or command. Double quotes are put at the
start and end of the string of characters. To include the double
quote character itself in the string, two double quotes are
included. The string cannot stretch over the end of the line.

examples

 "program"SAVE % filename provided as a string

 "HELLO" $OUT % print HELLO

 "Say ""HELLO""" $OUT % print Say "HELLO"

further information

Control codes cannot be included in literal (quoted) strings, but
a string containing a control code can be made on the stack with
$CHR, and this can then be added to a literal string using $+, for
example:

 % to include CR in a string
 13 $CHR % create string with just CR
 "HELLO" $+ % make "HELLO<CR>"

Strings can contain any 8-bit code, included in this way.

In direct mode, that is, outside [...], strings operate differently
because the system uses the string stack to hold the input line
(command line) as a string at all times. Normally, you only use
the string stack inside word definitions, that is, any word
executed from the command line must preserve the state of the
string stack.

Whereas inside [...], "..." puts the string on the top of the
stack, when entered in the command line, it puts the string as the
second item down, that is, underneath the input line string. So,
the complete stack action of " is actually:

 "characters" -> string inside []
 inputstring "characters" -> string2 inputstring outside []

Unlike the number stack, there is only one string stack, accessed
equally by all players. When player 0 is using the string stack,
for the command interpreter for example, all other players should

 93

preserve the state of the stack over each IDLE or other possible
idle (see IDLE for details of possible idles).

#! store number at address
 datanumber addressnumber #!

#! stores number at a particular address. It is mostly used for
storing values in variables and arrays, and usually appears
immediately after the variable name.

examples

 "total" [GVAR] ... % variable 'total' ...
 0 total #! % set to zero

 "totals" [10 DIM ARRAY] ... % array 'totals' ...
 1 0 totals #! % element 0 set to 1

 xvar #? yvar #! % transfer value from xvar to yvar

#! will operate on any address and should therefore be used with
care to avoid corrupting meMory.

related words #? #+! #B! #B? GVAR DIM ARRAY

further information

#! stores the low byte of the number at the address, and the high
byte at the address plus one.

#* multiply two numbers
 number1 number2 #* -> productnumber (number1 x number2)

#* multiplies the two numbers together, leaving the product.

example -2 3 #* produces -6

related words #+ #- #/

#+add two numbers
 number1 number2 #+ -> sumnumber (number1 + number2)

#+ adds the two numbers together, leaving the sum.

examples

 2 3 #+ produces 5

 94

 ... #11 #+ ... % fast multiply by two

related words #- #* #/

#+! add number to number at address
 datanumber addressnumber #+!

#+! adds the number to the number at the address given. It is
used for adding numbers to variables and array elements and in
most cases it is put immediately after the variable or array name.

It provides a more efficient alternative to fetching, adding and
storing:

 1 count #+! is equivalent to count #? 1 #+ count #!

#+! will operate on any address and should therefore be used with
care to avoid corrupting memory.

example 1 total #+! % add one to total
 -1 total #+! % subtract one from total

related words #! #? #B! #B? GVAR DIM ARRAY

#- subtract number from previous number
 number1 number2 #- -> differencenumber (number1 - number2)

#- subtracts the number from the one before it, leaving the
difference.

examples 5 1 #- produces 4
 5 1 #12 #- produces -4

 "neg" [% change sign
 0 #12 #-]
 ...
 2 neg produces -2

related words #+ #* #/

#/ divide previous number by number
 number1 number2 #/ -> quotientnumber remaindernumber

#/ divides the number into the one before it, leaving both the
quotient (integer part) and the remainder (fractional part).

 95

For a simple integer division (like BASIC DIV), the remainder is
discarded using f2:

 number1 number2 #/ #2 -> quotientnumber (number1 DIV number2)

If only the remainder is needed (the result of BASIC MOD), the
quotient is discarded:

 number1 number2 #/ #12 #2 -> remaindernumber
 (number1 MOD number2)

examples 10 3 #/ produces 3 1 % full result
 10 3 #/ #2 produces 3 % quotient only
 10 3 #/ #12 #2 produces 1 % remainder only

 "mod" [% integer remainder
 #/ #12 #2]
 ...
 10 3 mod produces 1

related words #+ #- #*

further information

For each combination of argument signs, the results signs are as
follows:

 number1 number2 quotient remainder
 (dividend) (divisor)

 + + #/ -> + +
 - + #/ -> - -
 + - #/ -> - +
 - - #/ -> + -

#11 duplicate number
 number fl1 -> number number

#11 makes a copy of the number, that is, it leaves two numbers
instead of the one. It is used when there are two operations
required on the same number, for example, printing out, and
storing in a variable.

examples 4 #11 produces 4 4

 ... #11 NOUT count #! % print and store

 #11 0 #= IF(...)IF % non-destructive test

 96

related words #2 #l2 #212 #2121 #213

#12 swap two numbers
 number2 number1 #12 -> number1 number2

#12 exchanges the top two items on the number stack. It allows
the first-supplied of two numbers to be accessed while keeping the
other for a further operation. It is often used to exchange two
input items that have been supplied in reverse order for
convenience.

examples 8 5 #12 produces 5 8
 ... 0 #12 #- ... % negate
 "mod" [#/ #12 #2] % num1 num2 -> remainder

related words #2 #11 #212 #2121 #213

#2 discard number
 number #2

#2 discards the number. This is often used to discard an unwanted
product of an operation or the number left after a list of
operations that duplicate it.

examples 2 1 02 produces 2
 5 2 #/ #2 % remainder discarded

 #IN % number supplied ...
 10 FOR(
 #11 ... % ... repeatedly used ...
)FOR #2 % .. and then discarded

related words #11 #12 #212 #2121 #213

#212 duplicate previous number
 number2 number1 #212 -> number2 number1 number2

#212 copies the second-from-top number to the top of the stack,
leaving three numbers instead of two. It allows easier access
when two or more numbers are being operated on:

 ... #212 NOUT ...
 is equivalent to ... #12 #11 NOUT #12 ...

example 3 2 1 #212 produces 3 2 1 2

related words #2 #11 #12 #2121 #213

 97

#2121 duplicate number and previous number
 number2 number1 #2121 -> number2 number1 number2 number1

#2121 makes copies of two numbers, leaving four instead of two.
 It is useful for performing an operation on two numbers while
leaving them for a further operation.

examples 4 7 #2121 produces 4 7 4 7
 #2121 #= IF(...)IF % non-destructive test

related words #2 #11 #12 #212 #2121 #213

#213 rotate positions of three numbers
 number3 number2 number1 #213 -> number2 number1 number3

#213 moves the three numbers so that the third-from-top number is
moved to the top of the stack, and the other two are moved down
accordingly. It allows access to the third number on the stack,
so that with careful planning, three temporary values can be
stored during calculations.

examples 3 2 1 #213 produces 2 1 3

 "#132" [#213 #213]
 ...
 3 2 1 #132 produces 1 3 2

related words #2 #11 #12 #212 #2121

#< test previous number is less than number
 number1 number2 #< -> flag (number1 < number2)

#< compares the two numbers and leaves ON if number1 is less than
number2, and OFF otherwise, removing the numbers. Remember that
the order of numbers is such that 'number #<' asks 'is it less
than this number'.

examples 4 0 #< produces OFF
 4 6 #< produces ON

 ... 0 #> IF(...)IF % do if positive and not 0

 "#>=" [#< NOT] % 'greater than or equal'

related words #> #=

 98

further information

#< works on signed values, so take care when using it on 16-bit
unsigned values such as addresses, if they could be greater than
&7FFF.

#= test numbers are equal
 number1 number2 #= -> flag (number1 = number2)

#= compares the two numbers and leaves ON if the top two numbers
were equal, and OFF otherwise, removing the numbers.

examples 4 4 #= produces ON
 4 5 #= produces OFF

 ... 0 #= IF(...)IF % do if equal to 0

 "#<>" [#= NOT] % 'not equal to']

related words #< #>

#> test previous number is greater than number
 number1 number2 #> -> flag (number1 > number2)

#> compares the two numbers and leaves ON if number1 is greater
than number2, and OFF otherwise, removing the numbers. Remember
that the order of numbers is such that 'number #>' asks 'is it
greater than this number'.

Examples -2 0 #> produces OFF
 3 2 #> produces ON

 ... 0 #> IF(...)IF % do if greater than zero

 "#<=" [#> NOT] % 'less than or equal'

related words #< #=

further information

#< works on signed values, so take care when using it on 16-bit
unsigned values such as addresses, if they could be greater than
&7FFF.

 99

#? fetch number from address
 addressnumber #? -> datanumber

#? fetches the number from the address given. It is mainly used
for reading variables and array elements, and is put immediately
after the variable or array name.

examples total f? NOUT % print variable 'total'
 3 totals #? NOUT % print element 3 of array 'totals'

related words #! #+! #B! #B? GVAR DIM ARRAY

further information

The low byte is at the address, and the high byte is at the address
plus one.

$+ add string to left end of previous string [] only
 rightstring leftstring $+ -> string (leftstring + rightstring)

$+ adds (concatenates) the two strings, with the second (top)
string going on the beginning (left end) of the first-supplied
one. To add the strings the other way around, use $12 to exchange
them first.

examples

 "there" "hello" $+ produces "hello there"

 "hello" "there" $12 $+ produces "hello there"

 13 $CHR "hello" $+ produces "hello<CR>"

 "hello" "" $+ produces "hello"

related words $- $2 $12 $REV $CHR

$- split string after numbered character [] only
 string number $- -> rightstring leftstring

$- splits the string after the numbered character position,
leaving the left part with the remaining right part underneath.
With further words, it can be used to extract any left, middle or
right part of the string.

examples

 "hello" 2 $- produces "llo" "he"

 100

 "$rest" [% string lennumber $left -> restofstring
 $- $2]
 ...
 "Item 1" 5 $rest produces "1"

 "$mid" [% string lennumber startnumber -> midstring
 $- $2 $- $12 $2]
 ...
 "hello" 2 1 $mid produces "el"

related words $+ $2 $12 $REV $CHR

further information

Either or both results can be null strings. If the split position
is less than zero or greater than the string length, then the
split is made at the nearest limit.

$12 swap two strings [] only
 string1 string2 $12 -> string2 string1

$12 exchanges the two strings. A common use is before $+ to add
the strings in the opposite order.

examples

 "hello" "there" $12 produces "there" "hello"

 "2" " items" $12 $+ produces "2 items"

related words $+ f- $2 $REV $CHR

#2 discard string [] only
 string $2

$2 discards the top string. It is used to discard the unwanted
product of an operation such as $- or VAL.

examples

 "hello" "there" $2 produces "hello"

 "hello there" 6 $- $2 produces "there"

related words $+ $- $12 $REV $CHR

 101

% introduce comment

% causes the rest of the line to be ignored, allowing a comment to
be included. Any normal printing characters can be included in
the comment, but control codes, including carriage return, cannot.

Example 3 VOICES string % for chords

& indicate hexadecimal number
 &<hex digits> -> number

& goes before a hexadecimal number. The digits 0-9 and A-F are
allowed in the number. There must be no spaces between digits or
between & and the first digit.

examples

 &FF is equivalent to 255
 &8000 is equivalent to -32768

 ... &FF AND ... % leave lower byte only

related words &NOUT

' accent next note or hit

' applies an accent to the next note or hit. It operates by
temporarily adding the value set by 'L to the normal dynamic level
of the next note or hit.

The interpretation of ' in sound depends on the voice type, and
possibly the instrument as well.

' stops any change of dynamic level (due to +L or -L) at its
current value.

example

 'XXXX 'XXXX 'XXXX 'XXXX % accent every 4th beat

related words 'L = L

further information

' also works on rests and holds, but this has no effect on the
sound when using the default music action.

 102

(start additional chord notes
 (see further information)

Chords are written using round brackets. A chord consists of a
first ('main') note, followed by the other notes enclosed in round
brackets. In other words, the brackets contain those notes that
are to play at the same time (that is, on other voices) as the
previous note.

 C (E G)
 | | |
 main note | |
 first additional note second additional note

The pitch of the notes in a chord sequence use the upper-case-up,
lower-case-down rule as do notes in a simple tune, but the pitch
does not simply run through all notes in the order they appear - the
main notes are not affected by the additional notes. The main notes
act as a simple line with the pitch moving in the normal way from
main note to main note, so:

 in the sequence: c(EG) D (FA) c(EG) D (FA)
 the main note plays c D c D

Each bracketed group of additional notes has its own line starting
on the previous main note - the first additional note follows on
from the main note, the second follows on from the first, and so
on. At the end of the bracketed group, the last additional note
does not affect the next main note.

In the example above, the additional notes rise in pitch from the
main note, but they could equally well be written down, or up and
down, from the main note. If the sounds of the voices are
identical, that is, they have the same instrument, volume etc., it
makes no differenee which voice a given note is played on.
However, it's clearest to choose a single direction, either bottom
up or top down, and stick to it throughout the chord sequence.

Rests and holds can be included in the main line or in the
brackets to stop the sound of notes on individual voices. You do
this to play a chord which has fewer notes than the one before it,
for example:

 C(EGB) F(AC^) F(AC)

A full chord of rests (for example ^(^^)) stops all voices,
playing a rest for the whole part. A more convenient way of doing
this is with the chord rest symbol, ^; .

If no symbol appears for a particular voice, it continues as if a

 103

hold had been written. This means that a hold on the main voice
will hold the complete chord, so you never need to write a full
chord of holds. For example, /(//) is equivalent to / .

You can play broken chords (chords with a strumming effect
produced by a delay before each additional note in the chord) by
adding a length setting after the open bracket. Each subsequent
note will then have a corresponding delay before it. This length
only applies inside the brackets - it does not affect the length
setting of the main notes. Also, the extra length of the
bracketed notes does not affect the length of the main note, so it
does not make the whole chord longer.

The effect of a length setting inside brackets is as follows:

 Normal chords Broken chords

 48, C(EGB)F(ACE) ^; 48, C(8,EGB)F(8,ACE) ^;

 Voice 4 B-----E-----^ B-----E--^
 Voice 3 G-----C-----^ G-----C---^
 Voice 2 E-----A-----^ E-----A----^
 Voice 1 C-----F-----^ C––---F--–--^

To make broken chords stop completely before the next strum, you
can 'dampen' all voices by putting a zero-length chord rest
between them, for example

 48,C(8,EGB) 0,^; 48,F(8,ACE) ^;

Hits (Xs) can be included in chords to restrike previous notes or
to play percussion instruments. Even if you are using hit symbols
defined to play on particular voices with ';', you can still use
brackets to play two or more hits together.

Remember that before you can play chords, you must put an
instrument on each of the voices you want to be heard.

examples

 simple sequence c(EG)D(FA)c(EG)d(FA)
 isolated chord C(EG-B) ^;
 elaborate sequence C(EG) /(/a) g(BD) / f(A^)
 broken chords C(8,EGB)F(8,ACE)
 moving main voice C(F)bag f(D)GAB C(F)/// ^;

 percussion with X X/ /(X)/ X/ X(X)

 percussion with user symbols "x" [1;X] "y" [2;X]
 ...

 104

 x///y/ /x x///y//x(y)

related words); ^; , VOICE VOICES

further information

When scoring broken chords, the total delay inside the brackets
can even be longer than the main note, making the strummings
overlap. You can also set a negative length so that the strum
goes before the main note, leading up to the beat.

 Overlapping Pre-delay

 48,C(24,EGB)F(24,ACE) C(-8,EGB)F(-8,ACE)^;

 Voice 4 B-----E----- B-----E-------^
 Voice 3 G-----C----- G-----C------^
 Voice 2 E-----A----- E-----A-----^
 Voice 1 C-----F----- C-----F----^

When using overlapping and pre-delay chords, keep in mind that you
are actually scoring notes to play in the future and the past, and
watch out for them reaching past other events in the present. For
example, if you were to add a chord rest (^;) to the end of the
overlapping example above, it would silence the F, A and C, and
the B from the previous chord. The final E would then play as
normal.

SCORE does a '1;' so unless you use ';' yourself', normal notes
will always play on voice 1, and additional chord notes will start
on voice 2. You can use ';' outside the brackets to make the
chord start on a higher voice.

The chord brackets achieve their function by doing two things:
setting 0, so the following notes play immediately, and causing
each note, hit, rest or hold inside brackets to add one to the ;
setting, so they play on successive voices, starting from the main
voice plus one. The , and ; settings are local, like the note
pitch, so they are restored by). Inside brackets, the length of
a note takes place before it starts sounding, so that by making
the length greater than 0 , the notes are delayed to give broken
chord effects.

The dynamic level normally applies equally to all notes in a
chord, but settings can be included in the brackets to affect
individual notes.

You cannot put more chord brackets or a key signature inside chord
brackets.

 105

(...) use the number stack as temporary storage for the
chord-local music environment, so, strictly, their input/output
descriptions are:

 (-> octnote length tranvoice
 octnote length tranvoice)

The temporary values are as follows:

 name low byte high byte

 tranvoice voice (;) transposition (@)
 length (,) low high
 octnote effective last note octave (:)

'(' and ')' can be classified as music events (like note, rest,
hit and hold), since in addition to their modifying effects on the
events contained between them, they call the music action list,
from where they look like holds. '(' issues a duration to retract
the duration of the last note (so inside the brackets, time starts
from the main note's position), and ')' reinstates the main notes
duration, correcting for the total duration of music events used
inside the brackets. They pass the following stack frame:

 description value default destination

 pitch voice OFF VOICE
 pitch undefined PITCH
 level voice OFF VOICE
 level undefined VEL
 gate voice OFF VOICE
 gate undefined GATE
 duration calculated duration DURATION

On return from the action list, '(' and ')' both execute EVERY
VOICE to return the voice selection to a defined state.

) end additional chord notes

Chords are written using round brackets. See (for more
information.

* indicate operating system command command
 *<line>

* indicates an operating system command. The following
characters, up to the end of the line, are executed as an
operating system command.

 106

To switch to another language, leaving AMPLE, you use the normal
language entry * command, for example:

 *BASIC

OS commands that corrupt language memory are forbidden. These
include those that have warnings in their own documentation about
corrupting programs, for example *COMPACT, *BACKUP, *FORM80 (Acorn
DFS), and *FX20 (OS). If you need to use, for example, a disc
command that corrupts memory, you must first switch to another
language such as BASIC.

examples *CAT
 *FX12,4

related words OSCLI

further information

* is a command, so you cannot use it in word definitions. You can
use the OSCLI word to issue an operating system command from a
program. To issue *FX commands, you can define your own FX word -
see CODE for details.

Some extension ROMs have commands or other functions that
seriously corrupt language memory and interfere with AMPLE, but do
not necessarily interfere with other languages such as BASIC, and
have no warning of the fact in the documentation. This is often
the case when the ROM uses language memory temporarily on
processing a * command (either one of its own or one recognised by
the OS or another ROH). Though the contents will be restored
before returning, AMPLE uses its memory continuously under
interrupts, so even temporary corruption can cause interference.

+ sharpen next note

+ is the sharp sign. It raises the pitch of the next note by
one semitone, overriding the key signature. It only affects the
next note.

examples +F % F sharp
 ++C % C double-sharp

related words - = K(

further information

 107

The total modification of the pitch can be up to plus or minus
64 semitones.

, set length
 number,

',' sets the basic length for notes, hits, rests, and holds. The
number is normally in the range 0 to 32767.

All notes, hits, rests and holds last for the basic length that
has been set with ','. Longer events can be made without changing
the basic length, by extending with the hold symbol, '/'.

Suggested basic length settings for common note values are as
follows:

 name alternative name length

 hemidemisemiquaver sixty-fourth 3
 demisemiquaver thirty-second 6
 semiquaver sixteenth 12
 quaver eighth 24
 crotchet quarter 48
 minim half 96
 semibreve whole 192
 breve 384

To get the basic length for modified note values such as dotted
and triplet, just multiply the basic length by the appropriate
factor:

 modified value factor example

 dotted note 3/2 (1+1/2) crotchet 48 -> 72
 double-dotted note 7/4 (1+3/4) minim 96 -> 168
 triplet note 2/3 quaver 24 -> 16

You can set short basic lengths for the grace notes in ornaments
such as trills and mordents. A basic length of zero is sometimes
useful, for example, on a rest which ends a note without occupying
any time itself.

The basic length can be set inside chord brackets to spread the
notes. See '(' for more information.

examples 48, % crotchet
 32, % dotted quaver
 16, % quaver triplet

 108

 48,C/// fG 24,A//B 48,C//B C/// ^

related words / \ BAR | ()

further information

What basic length you choose to represent a particular note value
such as a crotchet is entirely up to you, since the tempo can be
adjusted over a wide range to give the correct playing speed.
Large values are cumbersome and small values cannot be divided so
far for short notes. The suggested set of values based on a
crotchet of 48 allows the full set of normal and triplet values to
be achieved through division and multiplication by 2 and 3. If an
application needed divisions into 3,4 and 5 units for example, a
crotchet of 60 would be a better choice.

The full range of the basic length is -32768 to 32767. The
ability to program negative-length events is an advanced feature
which can be used for articulation effects, pre-strummed chords,
backwards-playing notes, overlayed note sequences, random access
to the time domain, and more. The basic length translates
directly into DURATION when a music event is played, so this is
really a feature of DURATION. See DURATION for more information.

- flatten next note or indicate negative number

The '-' symbol has two functions: as a minus sign for numbers, and
a flat sign for notes.

Immediately before a decimal digit, it acts as a minus sign and
the number is accepted as a negative decimal number.

Otherwise, it acts as a flat sign, lowering the pitch of the next
note by one semitone, overriding the key signature. It only
affects the next note.

examples -200 % minus 200
 -B % B flat
 --a % A double-flat

related words + = K(

further information

The total modification of the pitch can be up to plus or minus 64
semitones.

 109

/ hold music event

'/' is the hold symbol. It holds the last music event on each
voice for one 'beat' - the length set with ','. It is used singly
or repeated to extend notes, hits, and rests.

The hold is the most basic AMPLE music symbol since it simply
marks a unit of musical time in which notes, hits, and rests all
continue with no change. It is often used where a rest would
appear in more specialised music notations, for example, between
percussion hits, and in long sections where a part doesn’t play.

'/' affects chords exactly like normal notes, so a single '/’ in the
main voice holds all the voices. There is no point in writing a
full chord of holds, since the holds inside the brackets, and the
brackets themselves (for example (///)) are redundant. You do
use '/' in brackets to hold voices when a higher voice is not
being held, for example C(/G)

examples

 C/// fGAB C//A G/// % tune with simple rhythm
 48,f | / % two crotchets tied across bar line
 | X/// /X/X | % 'rests' with percussion instrument
 0,^ 192,/|/|/|/| % four bars 'rest'
 C(GE) / C(AF) C(BG) % held chord
 C(EA) /(/G) a(DG) % passing note in chord sequence

related words , \

further information

The length of the hold is added to the bar's total of note
lengths for checking by the next bar line.

0,/ has no effect on the music. Since '(' sets '0,' a hold
inside chord brackets has no effect on musical time, but may
still be required to 'pass over' its voice so a note or rest
can be put on a higher voice.

There is a separate word /// which does exactly the same as
three separate hold symbols, and is provided only to represent
groups of holds more compactly. A /// instruction uses the same
amount of memory as a / instruction.

Each note letter word calls the player's current music action

 110

list, passing the following stack frame:

 description value default destination

 pitch voice OFF VOICE
 pitch undefined PITCH
 level voice OFF VOICE
 level undefined VEL
 gate voice OFF VOICE
 gate undefined GATE
 duration ',' setting DURATION

On return from the action list, it executes EVERY VOICE to return
the voice selection to a defined state.

If ~ is applied to / , it is recognised and therefore cleared, but
has no net effect on the interpretation.

: set octave
 number :

':' sets the octave for the next note. 0: means the octave
starting at middle C, positive numbers give higher octaves, and
negative numbers give lower octaves.

You use ':' to set the octave at the start of each line or
phrase of music. Though it can be used in the middle of a line
or phrase, the '!' word is more suited for this.

examples

 0: % centre of range, around middle C
 1: % treble (G) clef, C is the third space on the stave
 -1: % bass (F) clef, C is the second space on the stave

 0:C/// fGAB C//A G/// % play tune at middle C

related words !

further information

':' actually sets the effective last note pitch to be C in the
numbered octave, so for example 0:C sets the pitch as if middle
C had just played, with an upper case C. Since you can follow
the ':' by a lower-case letter, a particular octave number gives
access to two octaves of pitches:

 0:c 0:d 0:e 0:f 0:g 0:a 0:b 0:C 0:D 0:E 0:F 0:G 0:A 0:B
 <-----lower octave--------> <------upper octave------->

 111

; set music voice
 voicenumber ;

';' sets the voice on which notes, hits and rests will play.
For chords, you normally use the chord brackets to automatically
place the notes within on successive voices, but in other cases
it is more convenient to specify the voice directly with ';',
for example, for

 * a line that plays on one voice while other voices are held
 * complex sequences of overlapping notes
 * playing on all voices simultaneously
 * a user-defined percussion word that hits a particular voice

Since the length of a note, rest or hit affects all voices on
the player (like a hold), the voices always stay in step. A
note, hit or rest played on one voice sounds until another one
on the same voice, even though you may have played on other
voices in the meantime. A hold has the same effect whatever
voice it is on.

SCORE does a '1;' so unless you use ';' yourself, normal notes
will always play on voice 1, and additional chord notes will
start on voice 2.

The upper/lower case pitch movement is common for all voices on
a player, so the pitch moves from note to note as normal,
whatever the voice.

Remember that you must put an instrument on each of the voices
you want to play.

examples

 1; % use voice 1

 16,1;cDEF G 2;fGA B 3;aBCD % chord build-up effect

 1;C 2;G 1;D 2;A 1;E 2;B % overlapping notes

 "x" [1;X] "y" [2;X] % user-defined hit symbols...
 ...
 x///y//x x///y//X(y) % ...used in percussion score

related words (VOICE VOICES

 112

= naturalise next note

= is the natural sign. It cancels the effect of the key
signature on the next note, so it plays at its unmodified pitch.
It affects the next note only.

example =b % B natural
 =F % F naturaI

related words + - K()K

@ set transposition in semitones
 transnumber @

'@' sets the transposition to be applied to notes. The number
before it is the transposition in semitones, which can be
positive or negative.

'@' has a variety of uses, including:

 * scoring music for transposing instruments
 * playing a fixed note pattern ('riff') at different pitches
 * moving a part to play at an octave above or below.

The following table shows the @ value (number of semitones) for
transposing from C:

 Transpose C to lower pitch:

 Pitch name C C# D D# E F F# G G# A A# B C
 AMPLE name c +c d +d e f +f g +g a +a b C
 @ value -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

 Transpose C to higher pitch:
 Pitch name C C# D D# E F F# G G# A A# B C
 AMPLE name C +C D +D E F +F G +G A +A B !C
 @ value 0 1 2 3 4 5 6 7 8 9 10 11 12

SCORE cancels the transposition, that is, it carries out 0@ .

The key signature works on the note letters rather than the note
pitches, so you don't need to worry about the effect of
transposition on it.

examples

 SCORE 12@ ... % play music an octave up

 113

0@ riff 7@ riff 5@ riff % play at root, fifth, fourth

SCORE -2@ % play music for a Bb clarinet

further information

The @ word can be used as a means to specify note pitch by
number rather than letter, for example:

 the sequence 0@ 0:C 1@ 0:C 2@ 0:C 3@ 0:C ...
 plays 0:C +C D +D ...

 24, 12 FOR(COUNT @ 0:C)FOR % rising chromatic scale

 12, REP(10 RANDL @ 0:C)FOR % random 'robot speech'

The instructions to play a transposed note can be conveniently
defined as a word:

 "note" [@ 0:C]
 ...
 0 note 1 note 2 note 3 note

 24, 12 FOR(COUNT note)FOR % rising chromatic scale

This is particularly useful for programs that generate music
from calculation or stored data, rather than fixed score.

[start word definition command
 namestring [...]

The [and] (square bracket) symbols are used to define user
words.

 "wordname" [...]
 | | | |
 name of word in double quotes | | |
 open square bracket starts definition | |
 contents |
 close square bracket ends definition

The name can be up to and including 15 characters long. Any
characters may be used, but to avoid confusion with system words
and sequences of them, upper-case letters and spaces should
normally be avoided.

If a user word of the same name already exists, it is replaced by
the new definition.

 114

The word definition can use any existing user or system word,
other than system commands (words with the 'command' status).
The definition can stretch over a number of lines.

You will normally enter a new word definition using an AMPLE
editor, but you can enter it directly at the % prompt. Between
[and], the normal prompt is replaced by [% .

examples "tune" [0:48,C///fGAB C//aC//a C///]
 "cube" [#11 #11 #* #*] % number cube -> number^3
 "x" [1;X] % user-defined music symbol

related words]

further information

When an existing word is redefined, players 1-10 and all sounds
are stopped, and player 0's music action chain is reset.

As with other commands, the name string is in fact supplied as
the second item down on the string stack (see '"').

Choosing a name that is a valid sequence of music symbols will
cause confusion, for example "cdef" or ”c1". This rarely
happens in practice unless short names are used, but you should
still remember not to use names that use just the letters 'a' to
'g' with or without a number at the end.

To define a recursive word, you first have to create a dummy
(non-recursive) definition, so that the word already exists when
you try to define the real recursive one, for example:

 "fact" [] % dummy definition
 "fact" [% real definition
 #11 1 #= IF(#2 1)ELSE(
 #11 1 #- fact #*)IF % refers to dummy, which is
] % then replaced by real one

To delete a recursive word, you must reverse the process since
DELETE will only delete words that are unused (not referenced by
any word):

 "fact" []
 "fact"DELETE

 115

\ move back

\ (back hold) is the converse of / – it moves back in music time
by the basic length setting. This back-spacing effectively
undoes the net time effect of previous holds, notes, rests and
ties, but doesn't affect when they play, only affecting when the
following notes play. It is useful when you find it more
convenient to score notes in an order other than that in which
they play, for example, to overlay two separately scored note
sequences.

The back hold symbol lets you reach from one point in the score,
say, where you have used a music symbol of your own definition,
to place a note at another point in the past or future. One
example of this is where a part is broken up into sections and
defined as separate words. If a verse was to start with a few
notes which actually played before the start of the first bar,
that is in the last bar of the previous section (a pick-up), you
could score it at the start of the verse where it belongs by
first back-spacing with the back hold symbol.

When moving backwards and forwards in time with \ and / , watch
out for spacing past other sound events like instrument changes.

In all other respects, including the effect inside chords, \ is
exactly like / . In fact, 48,\ is equivalent to -48,/ , and
-48,\ is equivalent to 48,/ .

examples

 /\ or \/ % do nothing

 12,\\\dEF G/// /fed c/// % three-note pickup

 24,x/// x/// x/// % percussion score ...
 24,x/// x//20,/ 4,x 24,x/// % with flam (double hit) ...
 24,x/// x/// 4,\x 24,x/// % then written with \

 % interleave notes of two riffs, half a beat apart
 riff1 48,\\\\ \\\\ % back to start
 24,/ riff2 24, % forward half beat, then back

related words / , ()

further information

There is no limit to the amount of time by which you can
back-space with \ , but there is a limit to the number of sound
events you back-space past. This is the same as for DURATION –
see DURATION for details.

 116

] end word definition [] only

The [and] (square bracket) symbols are used to define user words.

See] for more infovmation.

~ slur next note

~ causes the following note to be slurred, that is, played as a
continuation of the previous note without re-gating. You put a
slur between two notes that you want to be played in a smooth
connected fashion, with just the change of pitch between them.

The exact effect effect of a slur depends on the type of voice
(some cannot carry out the slur at all), and the envelopes of
the instrument. On envelopes with a non-zero sustain level, it
sounds as you would expect, but on those that decay to zero, the
second note is quieter and may be lost entirely. Note that
'slurs' on piano-type sounds are in fact gate period effects and
are not produced with the slur symbol.

Because the slur causes the note to play without being gated,
other effects of the gate, such as a 'Len' gap, are also
disabled, so the only effect is a change of pitch.

Individual notes of a chord may be slurred.

examples melody Dc b~ggd~GG B~gBD~cb
 chords A(CE) /(/~F) A(DF) ~C(~E~G) ^;

related words A-G a-g

further information

~ takes effect by disabling the level and gate of the next music
event, which it does by setting the level voice and gate voice
to OFF, leaving only the pitch and duration to be executed.
This works equally on note, hit, rest, and hold, though in the
case of a hit, rest or hold, the result is interpreted by the
default music action simply as a hold.

See 'A to G' for a description of the effect of ~ on the music
action variables.

 117

0 to 9 decimal digits
 <decimal digits> -> number

A groups of decimal digits is accepted as a number whose value
is then left on the stack. A preceding '-' sign makes the
number negative.

The range of number values is -32768 to 32767.

examples 0 42 -273

related words & –

^ play rest

^ is the symbol for a rest. It plays a rest lasting for the basic
length, on the current music voice. It finishes the previous note
on that voice, causing the sound to stop or die away depending on
the instrument in use.

Rests can be extended in length by the hold symbol. This is
preferable to repeating the rest, for example,^/// is better
than ^^^^. Hold symbols should also be used rather than rests to
mark passages where a part doesn't play. In percussion scores,
normal non-hit beats ('rests' in other notations) are marked by
hold symbols: the rest has the effect of cutting short the sound
of the previous hit, just as it ends the sound of a note.

Since rests work on individual voices, to silence all notes of a
chord, you should use ^;

Each part of a piece usually ends with rests to finish the last
note(s). Section ends can also include rests so that the notes
always finish whatever is notated at the beginning of the next
section. In this case, they must be zero-length so they take up
no musical time.

examples C^C^C^C^ % isolated notes
 192,D | ^ % end of piece
 x///x^/x x///x^x^ % decaying and cut-short beats
 CEGC 0,^ % zero-length rest

related words ^;

further information

The length of the rest is added to the bar's total of note
lengths for checking by the next bar line.

 118

^ calls the player's current music action list, passing the
following stack frame:

 description value default destination

 pitch voice OFF VOICE
 pitch undefined PITCH
 level voice OFF VOICE
 level undefined VEL
 gate voice event voice VOICE
 gate OFF GATE
 duration ',' setting DURATION

On return from the action list, it executes EVERY VOICE to return
the voice selection to a defined state.

If ~ is applied to ^ , it reduces it to a hold (with the default
music action) – see ~ for details.

^; play chord rest

^; plays a chord rest (a rest on all voices of the part), lasting
for the length setting. It is equivalent to ^(^...^) with a rest
symbol for each of the voices, but more convenient for use with
chords.

example C(EG-BC)^;C(EG-BC)^;

related words ^ VOICES ;

further information

^; is equivalent to EVERY; ^ , but it does not change the
current voice setting. It has the effect of ^ on each voice in
the range of voices set with VOICES.

| mark end of bar

| represents a bar line. Bar lines are used only to check the
length of bars (detecting extra or missing items) and have no
effect on the music.

Their use is entirely optional. For full scores translated from
written music with bar lines, and music with many basic length
changes, they are usually worth using. For simple tunes and
music composed directly into AMPLE, they are usually best left
out.

 119

The first bar starts with the SCORE, so there should be no bar
line before it. Bar lines are placed at regular intervals
throughout the part, the last one going at the end but before
any extra rest you have added to finish the final note.

BAR sets the desired bar length, and if a bar line finds that
the total of lengths since the last bar line or SCORE is
different from this, then it gives the 'Bad bar' error.

If the bar length is set to zero, lengths are still totalled but
checking is disabled. If you are trying out extracts at the
keyboard by cursor-copying incomplete bars, you should set 0 BAR
to avoid unwanted bar errors.

SCORE sets the bar length to zero, so you must use BAR if bar
checking is required.

examples SCORE 48, 4 BAR C E F c | % ok
 SCORE 48, 4 BAR C E D | % gives 'Bad bar'
 SCORE 0 BAR C E D | % not faulted

related words BAR

A to G play note with ascending pitch

The letters 'A' to 'G' play notes of their respective pitches
above the previous pitch.

AMPLE music notation uses the letters A-G to represent note
pitches of the same names (the white keys on a piano keyboard).
In upper-case (A-G), the letter plays that pitch above the last
pitch, and in lower-case (a-g), it plays the pitch below. The
exception is that a repeated letter (with the same case) always
plays the same pitch.

This effect allow a phrase of music to be written using note
letters without octave indications: each note's pitch is up or
down from the previous one, depending on its case. The octave
pitch of the whole phrase is set with a single ':' at the start.
For intervals greater than an octave, '!' causes an extra octave
jump on the following note.

The note takes as its length the basic length (set with ',')
though you can extend it with the hold symbol (/).

The '+'(sharp) and '–' (flat) symbols modify the pitch of the
following note by one semitone. A key signature (K(...)K
containing a list of sharpened or flattened notes) modifies all

 120

uses of particular note letters, except those that have a '+', '-'
or '=' (natural) symbol on them. @ transposes all note pitches by
a specified number of semitones.

Notes normally play on the current music voice (set by ;), but
inside chord brackets ((...)), they play on successive voices
starting on the current music voice. Chord brackets also set
the length to zero temporarily, so the notes start at the same
time.

examples

 CDEFGAB^ % rising scale
 Cbagfedc^ % falling scale
 CCCC^ % repeated note
 cCcCcCcC^ % alternating octaves
 CCDbCD EEFedc DcbC^ % pitch sequence of phrase of
 % 'God Save the Queen'

related words ! : + – = K(@ ~

further information

The length of the note is added to the bar's total of note
lengths for checking by the next bar line.

Also, see '('.

Each note letter word calls the player's current music action
list, passing the following stack frame:

 description value value default
 (if normal) (if after ~) destination

 pitch voice event voice event voice VOICE
 pitch calculated pitch calculated pitch PITCH
 level voice event voice OFF VOICE
 level calculated level calculated level VEL
 gate voice event voice OFF VOICE
 gate ON ON GATE
 duration ',' setting ',' setting DURATION

On return from the action list, it executes EVERY VOICE to return
the voice selection to a defined state.

 121

a to g play note with descending pitch

The letters 'a' to 'g' play notes of their respective pitches
below the previous pitch.

See 'A to G' for more information.

ACT execute music action
 see text

ACT calls the next in the player's chain of music actions. It is
may be used inside ACT(...)ACT in the definition of a music
action to modify the interpretation of music events, or outside
ACT(...)ACT to call the music action chain to generate music
events directly.

ACT accepts a seven-number description of the music event in a
stack fr ame:

 dur gate gatev level levelv pitch pitch FRAME ACT ->
 dur gate gatev level levelv pitch pitch FRAME

When the music action chain is empty (that is, no actions are in
use) ACT calls the following 'terminating' routine to feed the
seven numbers (the action variables) to the standard 'music
playing' sound words that are provided for all voice types:

 7 FCOPY
 % duration gate gatevoice level levelvoice pitch pitchvoice -> 0
 VOICE PITCH
 VOICE VEL
 VOICE GATE
 DURATION

Separate voice settings for each sound event allow each sound
event to be sent to the destination voice or disabled (with OFF
VOICE) as required by that music event.

ACT(...)ACT supplies the action variables for any ACT included
in the sequence, for example:

 ACT(ACT)ACT

In contrast, where ACT is used in the main program, the program
must supply the variables for example:

 48 ON 1 64 1 0 1 FRAME ACT
 #2 #2 #2 #2 #2 #2 #2

 122

This will play a note with pitch 0, level 64, and duration 48.

When the music action chain has one or more items on it, each ACT
instruction calls the action that is next in the chain from its
own position. Successive actions use ACT to pass control along
the chain, until in the last action, ACT calls the terminating
routine as described above. Each ACT enters the next action at
the first instruction after ACT(, and is returned to when the
action reaches)ACT. For example, with one action in the chain,
control follows this course:

 ... ACT ... % main program
 ____| |____
 | |
 ACT(... ACT ...)ACT % music action
 ___| |___
 | |
 terminating
 routine

Some actions may deliberately not include an ACT, thereby ending
the event's interpretation as an alternative to the standard
terminating routine. Others may call ACT more than once so that a
single input music event is interpreted as two or more output
music events – to create an echo, for example.

Actions may read and write the action variables in their stack
frame using FVAR as normal:

 function sound word

 1 FVAR pitch voice VOICE
 2 FVAR pitch PITCH
 3 FVAR level voice VOICE
 4 FVAR level VEL
 5 FVAR gate voice VOICE
 6 FVAR gate GATE
 7 FVAR duration DURATION

Many actions read the action variables to control additional
output (possibly through ACT or direct sound words), and/or write
them to alter the results of the terminating routine and
down-chain (later) actions. Actions normally preserve the action
variables, copying them first with FCOPY if they need to pass
modified values to ACT. Others may change the original values,
either to send results back to the previous actions or main
program, or simply to maximise speed by not copying, accepting
that this might affect the operation of any up-chain (earlier)
action that expected values to be preserved.

 123

ACT is the originator of all music events, whether from Nucleus
music event words, user programs, or additional module functions
including real-time music event generators such as a music
keyboard and other input devices. Real-time music events differ
from other ('advance') music events only in their use of the
duration variable (7 FVAR), which sends the duration of the
previous event (calculated from QTIME), in arrears. Simple action
definitions are entirely compatible with real-time events, but
because real-time events always operate 'behind time', definitions
that use DURATION or other than a single ACT require
re-arrangement.

examples

 "randn" [% play random-pitch notes using any effects available
 READY 1 VOICES instrument
 ... % add any music action effects here
 REP(
 48 % duration
 ON 1 % gate and voice
 0 OFF % no level (sent to 0 VOICE)
 12 RANDL 1 % pitch and voice
 FRAME ACT % execute
 #2 #2 #2 #2 #2 #2 #2
)REP]

 "randn" [% alternative
 READY 1 VOICES instrument
 ... % add any music action effects here
 48 % duration
 ON 1 % gate and voice
 0 OFF % no level (sent to 0 VOICE)
 0 1 % pitch and voice
 FRAME
 REP(
 12 RANDL 2 FVAR #! % set pitch
 ACT % execute (assuming preservation)
)REP]

 "noop" [
 20 ACT(ACT)ACT] % basic 'no effect' action

 "sink" [20 ACT()ACT] % throws all music events away

 "repeat" [% duplicates each music event
 20 ACT(
 ACT % do it
 ACT % do it (including duration) again
)ACT]

 124

 "mon" [% action monitor – print variables on each event
 30 ACT(
 " v pitch v level v gate duration"
 $OUT NL % print legend
 7 FOR(COUNT FVAR #? % get each action variable
 $STR 4 $PAD $OUT % and print (in field of four)
)FOR NL
 ACT % continue with the event as normal
)ACT]
 SCORE mon
 C % prints
 & v pitch v level v gate duration
 % 1 0 1 64 1 -1 48

related words ACT(FRAME

further information

The standard set of seven action variables is not a feature of ACT
itself, but merely of the Nucleus standard terminating routine and
music event generators. The user can easily implement an
alternative music event standard, possibly with more values for
greater control, having its own music event generators and
terminating routine, and/or actions to convert to and from Nucleus
standard music events.

ACT(start music action sequence [] only
 positionnumber ACT(

ACT(...)ACT defines a music action. It either adds the enclosed
sequence to the player's music action chain at the position
specified, or, if the position is zero, it removes the action from
the chain.

ACT(is used to set a sequence of instructions to be carried out on
each music event (note, hit, rest, or tie), and hence to redefine
the interpretation of music events.

When the music action chain is called, control passes to the first
action in the chain, entering at the first instruction after ACT(.
Control returns to the calling routine when)ACT is reached. The
sequence may call the next in the chain through the word ACT.

Position numbers between 1 and 127 determine where in the chain
the action is placed – a low number goes before a higher number.
Where there are two actions with the same position number, the
most-recently selected is placed first. Each action can only be
included once in each player's chain – on inserting it a second

 125

time, the first is removed. Position number 0 removes the action
from the chain.

A convention applies to the choice of position number for action
that need to be compatible with others for simultaneous use. Most
action definitions fall in to one of three classes, each of which
has a single position number assigned by the convention:

 position class type of example
 number processing

 10 early score set transpose to pitch of note
 20 middle music generate echoes of each event
 30 late sound change sound depending on pitc

Score processing actions set or respond to music environment
variables, and include those that redefine music event words for
notational purposes. Such sequences often use music environment
words to set, and MVAL? to respond. If the normal ACT is left
out of the sequence, events will not play. A temporary action
may turn itself off with a self-reference once it has completed.

Music processing actions respond to and issue standard music
events to perform operations such as expansion, both on the same
voice, for example converting single notes to sequences, and on
other voices, for example playing true echoes or parallel voices.
They use ACT both directly, and indirectly through music events
words included in the action sequence itself.

Sound processing actions use sound words (including voice-type
specific ones) to control voices directly, with or without
invoking the default interpretation through ACT. Examples
include articulations, automatic panning, pitch slides etc.
Sequences often read the action variables (with FVAR) to
determine the type of event and set the voice for sound words.

examples

 % fixed pitch: all letters play on 0: (4-oct range using !)
 "fix" [
 10 ACT(% early (for score processing)
 ACT % do event as normal
 0: % then set octave for next note
) ACT
 0:] % set octave for first letter after 'fix'.
 ...
 SCORE fix CDEFGAB!CBAGFEDC^ % up-and-down scale in 0:

 % alternative, with control flag
 "fix" [% flag fix

 126

 % ON fix -> fixed pitch mode
 % OFF fix -> normal pitch mode
 10
 AND % 10 if ON, 0 if OFF
 ACT(ACT 0:)ACT % all events do 0: for the next one
 0:] % for the very first event

 "macro" [% expand each note to a sequence on that pitch
 20 ACT(% middle (for music processing)
 MVAL? % save music environment
 2 FVAR #? @ % set transpose to pitch
 0:CCGG % play riff (using global ',')
 MVAL! % restore music environment
)ACT]
 SCORE macro
 48,CD % plays 48,CCGG ddAA
 12,CFFggCC

 "dance" [% set random stereo pan on each event
 % (for voice types that have PAN)
 30 ACT(% late (for sound processing)
 1 VOICE % select voice (
 6 RANDL 3 #- PAN % set random pan
 ACT % execute event as normal
)ACT]
 SCORE dance 12,CCCCCCCC

 "dance" [% improved version which selects voice and
 % only acts on ON GATE's, i.e., notes/hits
 30 ACT(% late (for sound processing)
 5 FVAR #? % get gate voice: OFF, 1, 2, 3 etc
 6 FVAR #? % get gate value: OFF or ON
 AND % voice number if ON GATE,
 VOICE % OFF if OFF GATE/no gate
 6 RANDL 3 #- PAN % set pan (no effect if OFF VOICE)
 ACT) ACT % always execute event as normal
]
 SCORE dance
 12, C^/CC//CC^/CC///^

 % phrasing – slurs every note in a contiguous note sequence
 "prevgate" [GVAR]
 "phrase" [
 20 ACT(
 5 FVAR #? IF(% if gate present (gatevoice <> OFF)
 6 FVAR #? IF(% if gate ON
 prevgate #? % if previous gate was ON
 IF(OFF 5 FVAR #! % set this gate OFF
)IF
)IF

 127

 6 FVAR #? prevgate #! % record for next
)IF
 ACT)ACT
 OFF prevgate #!] % initialise
 SCORE phrase 24, % use instru with peak AND sustain
 aBCDEdc^Dcb^Cba^ % three separate phrases

 % phrase mark instruction for use with 'phrase' above
 "ph" [OFF prevgate #!] % force phrase start (without rest)
 SCORE phrase 24, % phrasing as before, but
 aBCDEdc/ ph Dcb/ ph Cba/ ^ % without rests between phrases

related words ACT FVAR VOICE! FRAME SIMPLEACT

further information

An instance of ACT(...)ACT is known as an action structure, and
the instructions it encloses as an action sequence.

An action structure may be used inside an action sequence itself,
for example:

 % tran instruction: transpose to pitch of next letter
 "tranact" [] % null defn for self-reference
 "tranact" [% flag tranact
 10 AND ACT(% early action, controlled by flag
 2 FVAR #? @ % set transposition to pitch
 OFF tranact % remove music action
)ACT]
 "tran" [
 0@ % cancel transposition
 ON tranact] % turn on music action
 ...
 tran 0:-b ... % transpose C -> -b
 tran 1:C % transpose C -> ! C (up octave)
 tran 0:C % cancel transposition

)ACT end music action sequence [] only

ACT(...)ACT defines a music action. See ACT(.

ALIGN ensure text cursor is at start or line

ALIGN makes sure that the text cursor is at the beginning of a
line, that is, in column zero • If the cursor is not in column
zero already, ALIGN moves it to the start of the next line by
printing a carriage return/line feed.

 128

example ALIGN "Enter pos:" $OUT % put prompt at line start

related words NL

AMPLE restart system command

The command AMPLE restarts the system, clearing the program to
make ready for entr y of a new program. The rest of the input line
is ignored.

It also removes P and T modules, QUITs the editor and checks that
the Nucleus ROM image is complete, issuing the '! Bad ROM' error
if not. F modules are retained.

further information

The AMPLE command also selects and initialises the time-server
with the alphabetically latest name.

AND AND bits of numbers
 number1 number2 AND -> ANDnumber (number1 AND number2)

AND performs the logical AND operation on the bit patterns of
the two numbers. Each bit in the result is only 1 if both
corresponding bits in the input numbers are 1.

AND is used both as a bit-wise operator for manipulating bit
patterns, and as a logical operator for flags:

 bit1 bit2 bit3 flagl flag2 flag3
 0 0 0 OFF OFF OFF
 0 1 0 OFF ON OFF
 1 0 0 ON OFF OFF
 1 1 1 ON ON ON

example

 &1234 &FF AND produces &34
 in binary:
 0001001000110100 AND
 0000000011111111
 produces 0000000000110100

 #11 0 #> #12 5 #< AND % number -> ON if 1<=n<=4, else OFF

 129

related words OR XOR NOT

ARRAY access array element
 elementnumber baseaddressnumber ARRAY -> addressnumber

ARRAY is used in the definition of arrays. It is usually used
after DIM, which reserves store from program memory, in a word
definition which serves to give a name to the array.

 "totals" [10 DIM ARRAY]
 | |
 array name |
 maximum element number (number of elements is 11)

The array elements are numbered 0 to the number specified,
though you will often leave 0 unused. Array elements are stored
to (set) and fetched from (read) by #! and #?. The array
element number goes immediately before the array name.

As an alternative to standard arrays, which take a single
argument, it is possible to create internally indexed arrays
that take no arguments and are used like variables, and multiply
indexed arrays which take two or more arguments. In these
cases, the single element number required by ARRAY is provided
by additional instructions added at the start of the standard
array definition.

examples

 "values" [20 DIM ARRAY]
 ... 0 1 values #! % store 0 in element 1
 ... 3 values #? NOUT % print element 3

 % 10 x 10 array
 "matrix" [% col row matrix -> address
 1 #- 10 #* #+ % element = (row-1)*10 + col
 100 DIM ARRAY] % col row matrix -> address

 % print matrix
 10 FOR(COUNT % column loop
 10 FOR(% row loop
 #11 COUNT matrix #? NOUT SP % use column number on stack
)FOR #2 NL % discard column number
)FOR

 "plvar" [% plvar -> address % player-local variable
 PNUM % index is player number
 10 DIM ARRAY] % normal array definition

 130

 0 plvar 1! % used like normal variable
 % but is independent for
 plvar #? NOUT % each player

 "crazy" [% random shuffler!
 8 RANDL % random index value
 8 DIM ARRAY] % normal array definition

related words DIM #! #? #+! #B! #B?

further information

ARRAY performs the following:

 1 Converts the element number into the location address
 2 Checks that the address is in range

ARRAY is sometimes worth using where only a DIM is required,
merely for its range checking function. It can later be removed
for speed when the program is fully tested.

Any arrays created by a program remain in existence until
discarded by those commands that stop any program that is <ecuting,
that is, COMPACT, SAVE, LOAD, NEW etc.

ASC convert character to number [] only
 string ASC -> asciinumber

ASC converts a character into its ASCII code, a number. If the
string is longer than one character, the trailing characters are
ignored. If the string is a null string, ASC returns -1.

examples

 "A" ASC produces 65

 ... % string on stack
 1 $- ASC #11 $CHR $+ % find ASC but retain
 ... % string and number on stack

related words $CHR

 131

#B! store low byte of number at address
 datanumber addressnumber #B!

#B! stores a single byte (the low byte of the number) at the
address. #B! is often used with single-byte arrays.

It will operate on any address and should therefore be used with
care to avoid corrupting memory. exaaples

examples

 1 &8E #B! % store 0 at location &8E

 0 buffer 3 #+ #B! % store 0 at buffer+3

related words #B? #! #? DIM

further information

Two-byte values are stored with the low byte at the address and
the high byte at the address plus one, for example:

 1 xvar #B! % store 1 in low byte of variable xvar
 0 xvar 1 #+ #B! % store 0 in high byte of xvar

#B12 swap high and low bytes of number
 number1 #B12 -> number2

#B12 swaps the high and low bytes of the number. It is used for
byte-processing operations.

It can be used as a fast '256 #*' (placing the top byte) and an
unsigned '256 #/ #2' (extracting the top byte – not possible with
the signed #/). These operations are useful with CODE, that uses
the high and low bytes of numbers independently.

examples

 &1234 #B12 goes to &3412

 ... CODE % YX PA two number returned by code
 #2 % YX
 #11 #B12 &FF AND % YX y
 #12 &FF AND % Y X Y and X as separate numbers

 132

#B? fetch byte from address
 addressnumber #B? -> datanumber

#B? fetches the byte from the address. The number has the fetched
byte as the low byte, and the high byte is zero. #B? is often
used with single-byte arrays.

examples

 &8E #B? % fetch and print byte as &8E

 value 1 #+ #B? % fetch high byte of word at 'value'

related words #B! #! #? DIM

further information

Two-byte values are stored with the low byte at the address and
the high byte at the address plus one. #B? can be used to extract
the separate byte from a variable:

 var #B? % fetch low byte
 var 1 1+ #B? % fetch high byte

BAR set bar length
 beatsnumber BAR

BAR sets the bar length in beats. The beat is usually specified
beforehand with a length setting, so the two act as a time
signature: the length setting has the function of the bottom
number, and the BAR setting is the top number. Only the total bar
length is important – the number and length of beat have no
additional effect.

After a BAR setting, if any bar in the music does not add-up to
the same total length, the 'Bad bar' error is issued at the bar
line.

With the bar length set to 0, the checking action of bar lines is
disabled. SCORE does a 0 BAR, so you must make a BAR setting if
you want bar length to be checked.

The BAR setting has no effect on the sound of the music.

See | for more information.

examples

 48, 4 BAR % 4/4 (4 crotchets per bar)

 133

 92, 2 BAR % 2/2 (2 minims per bar), same effect as 48, 4 BAR

 24, 5 BAR % 5/8 (5 quavers per bar)

related words |

further information

BAR may be used at any point in the music, for example, for a new
time signature. BAR does not interfere with length totalling – a
new setting can only take effect at the next bar line.

CLEAR clear editor data command

CLEAR clears the public editor data, freeing the memory for
re-use. It is used to clear the data before entering new data or
saving the program. After CLEAR, SHOW shows 'no data'.

Editors that use private data storage, rather than public, replace
the Nucleus CLEAR command with one of their own while selected.
This clears the editor's private data, and has no effect on public
data. QUIT exits the editor, reinstating the Nucleus CLEAR.

&CHR convert number to character [] only
 asciinumber $CHR -> string

$CHR converts the number to the corresponding ASCII one-character
string. If the number is negative, a null string is produced.
Values between 0 and 255 are allowed.

$CHR is often used in assembling strings from numbers, and in
particular, for putting control codes in strings.

examples

 65 $CHR produces "A"

 13 $CHR produces "<cr>" (carriage return>

 -1 $CHR produces "" (null string)

 "instant" [% key press -> command, e.g. A-g and a-g play notes
 "instant" $+ % return to this word when done
 #IN $CHR % get key and convert code to string
 $+ % add on to command line
 0,] % make all notes immediate
 READY 1 VOICES instrument
 instant

 134

CODE call machine-code routine
 YXnumber CAnumber addressnumber CODE -> YXnumber PAnumber

CODE calls the machine code routine at the address given, and
returns control when the routine exits by RTS. It takes two
numbers to set the processor registers on entry (YX and CA), and
returns two numbers (YX and PA) with the register contents on
exit:

 On entry On exit

 A low byte of CA A low byte of PA
 C bit 8 of CA P high byte of PA
 Y high byte of YX Y high byte of YX
 X low byte of YX X low byte of YX

CODE may be used for calling operating system and user routines.
Where a data block is required, memory can be reserved for it with
DIM – see DIM for details.

examples

 1 15 &FFF4 CODE #2 #2 % *FX15,1 flush input buffer

 "FX" [% YXnumber CAnumber FX
 &FFF4 CODE #2 #2]
 ...
 1 15 FX % flush input buffer

further information

User routines may be accommodated in unused operating system
workspace, ROM, or memory reserved with DIM.

Zero page locations &8E and &8F are available for use by user
routines.

The routine is entered with the I, D and B flags clear.

COMPACT compact unused memory command

COMPACT arranges unused memory space into one contiguous area,
making it fully available for use.

In general use, the space freed by deleted words and other items
can be left in isolated pieces which are too small for re-use.
When this happens, an operation may fail with the 'No room' error
when there is in fact enough space in total, particularly when
only a small amount of user memory is free. In this event, you

 135

may enter COMPACT and re-try the operation that gave the error.

See MEM for guidance on memory economy.

On computer models without shadow RAM, you can also get a 'No
room' error when changing to a lower-numbered screen mode (mode 7
to mode 3, for example) since this incurs a reduction in the
amount of language memory. If this happens, use COMPACT and try
again.

related words MODE MEM

further information

COMPACT stops players 1-10 and all sounds, and resets player 0's
music action chain.

Programs are saved in a compacted state, so immediately after SAVE
or LOAD, the free memory is compacted. This means that you can
include a MODE change in a program and be sure that you won't get
a needless 'No room’ when it is LOADed and RUN.

COUNT return loop count [] only
 COUNT -> number

COUNT leaves the loop count of the most recent FOR(...)FOR loop
containing it. The count starts at one and increases by one each
time around the loop. On the last time around, it is equal to the
number given to FOR(

COUNT lets the instructions inside the loop do something different
on each pass, usually sequencing through a particular range of
values.

The COUNT can be put anywhere inside the FOR(...)FOR loop,
except enclosed in a separate word ([...]) or intervening
P(...)P structure.

examples

 "countup" [% print numbers from 1 up to 20
 20 FOR(COUNT NOUT SP)FOR NL]

 "timestab" [% print 10x10 times table
 10 FOR(COUNT % get y count
 10 FOR(
 #11 % copy y count
 COUNT #* % calulate x * y
 $STR 4 $PAD $OUT % print in field of 4

 136

)FOR
 #2 % discard y count
 NL % print new line for next row
)FOR]

related words FOR(INDEX

further information

COUNT counts up whereas INDEX counts down. INDEX is slightly
faster in execution than COUNT.

DELETE delete word command
 namestring DELETE

DELETE removes the named user word, freeing its space for re-use.
It should be used with care as its action cannot be reversed.

If the user word is in use by any word, it is not deleted and the
'In use' error is given. FIND can be used to locate the uses of
the word.

example "oldword" DELETE

further information

DELETE stops players 1-10 and all sounds, and resets player 0's
music action chain.

To delete a self-referencing word, you must first redefine it to a
non-self-referencing version, such as an empty definition: []
For example:

 %"fact"DELETE
 ! In use % fails due to use inside itself
 %"fact" [] % redefined, leaving fact unused by any word
 %"fact"DELETE % succeeds
 %

If you press BREAK while DELETE is operating, the program may be
left in an intermediate unexecutable state, but it will be
restored on saving.

When short of free memory, you should use COMPACT to make best use
of the memory freed by DELETE.

 137

DIM reserve memory
 sizenumber DIM -> addressnumber

DIM reserves a specified amount of memory for data storage by the
program, and leaves the address of the first location. It is
often used with ARRAY to define an array, in which case the number
before DIM is the maximum array element number (see ARRAY for
details) .

DIM can also be used without ARRAY, leaving the user to address
the memory directly. The DIM instruction is included in a simple
definition which serves to give the memory block a name. The
block is (sizenumber+1)*2 bytes in size, that is, locations
'addressnumber' to 'addressnumber+sizenumber*2+1' inclusive. The
definition can also carry out additional address calcultions,
using input values if required. Hence the user can create custom
storage words for various functions including single byte arrays,
faster access store, specially-indexed arrays, string variables,
operating system inter face control blocks and many others.

Note that it is the user's responsibility to check addresses
against the bounds of the DIM block, if required. Checking can be
included in the DIM definition, and then removed to increase speed
and free memory when the progr am is complete and tested.

READY clears records of all memory reserved with DIM, so the first
use of a DIM instruction after READY reserves memory afresh, not
necessarily at the same address as previously. It is good
practice to include READY at the start of any pr ogram that uses
DIM.

examples

 "list" [10 DIM ARRAY] % array with elements 0 to 10

 "chars" [% elementnumber chars -> addressnumber
 4 DIM#+] % byte array with elements 0-9
 ...
 65 0 chars #B! % set element 0 to 65
 ...
 0 chars #B? NOUT % print element 0

 "chars" [% elementnumber chars -> addressnumber
 1 #+ 4 DIM #+] % alternative with elements numbered 1-10

 "chars" [% bounds-checking version
 #11 0 #< % less than 0?
 #212 9 #> OR % or greater than 9?
 IF(
 "!! bad element in chars"$OUT

 138

 STOP)IF % print message and stop, or
 4 DIM #+] % DIM as normal

 "check" [% offset sizenum namestring -> offset sizenum
 #2121 % working copies of offset and sizenum
 #11 #+ %from sizenum ...
 1 #+ % calculate max byte element
 #212 #< % less than supplied element?
 #12 SIGN % negative?
 OR IF("!! bad element ("$OUT
 #12 NOUT % print element no.
 ") in "$OUT
 $OUT STOP % print supplied name
)IF
 $2] % discard supplied name
 "chars" [
 4
 "chars” check
 DIM 1 #+]

 "$!" [% string addressnumber $!
 LEN #212 #B! % store length
 LEN FOR(% for each character...
 1 #+ % next location
 1 $- ASC #212 #B! % store character, leaving remainder
)FOR
 $2 #2] % discard null string and address
 "$?" [% addressnumber $? -> string
 ""
 #11 #B? % fetch length
 FOR(1 #+ % next location
 #11 #B? % get character
 $CHR $+ % add to string start
)FOR
 #2 % drop address
 $REV] % turn string right way around
 ...
 "$var" [63 DIM] % define string variable
 ...
 $IN $ var $! % store (inside [])
 ...
 $var $? $OUT % fetch (inside [])

related words ARRAY #! #? #+! #B! #B?

further information

The first time the DIM instruction is executed, it finds and
reserves the memory, and subsequently it ignores the size number.
If the size is less than zero, a value of zero is used. The

 139

maximum size number allowed is 16383.

DIM takes memory from the program area, and its consumption is
shown by MEM. The record of DIM memory is cleared by any command
that rearranges memory space, including any that moves or removes
user words. The first subsequent use of a DIM instruction
reserves memory afresh, not necessarily at the same address.

The structure of the user-accessible part of the memory block is
as follows:

 Number of elements in array : element 1 : element 2 ...
 | | |
 At address-2 At address At address+2

DIM consumes (sizenumber+5)*2 bytes of memory – this includes 8
bytes of system information.

Where a DIK block is accessed from only one point in the program,
the DIM instruction may be used in-line, unnamed. The following
example is a word to open a sequential file, using an in-line DIM
to provide a control block holding the file name:

 "fopen" [filenamestring opnumber fopen -> channelnumber
 10 DIM % 22-byte block
 #11 %
 LEN % string length
 21 MIN % limited to 21 as precaution
 FOR(
 1 $- ASC #212 #B! % move character to buffer
 1 #+)FOR % increment address
 $2 % discard remainder string
 13 #12 #B! % store carriage return at end
 #12 % leaves: blockaddress opnumber
 &FFCE % OSFIND entry address
 % YX(blockaddress) A(opnumber) entryaddress
 CODE % leaves: YX PA
 #12 #2 % leaves PA
 &FF AND] % leaves A (channel number)
 ...
 "infile" &40 fopen ... % open for input (inside [])
 ...
 "outfile" &80 fopen ... % open for output (inside [])
 ...
 "temfile" &CO fopen ... % open for update (inside [])

 140

DISPLAY display text

DISPLAY prints the following lines of text on the screen. The
text lines must start with % (making them into comments), and
DISPLAY stops at the first line not starting with %, or at the end
of the word.

DISPLAY is used as a convenient method to print fixed text, for
example, the title of a piece, or a page of instructions.

related words % $OUT

examples

 "title" [DISPLAY

 % 'Shards'
 % by
 % John Favero
 % November '87
 %
]

 "page1" [DISPLAY
 %
 ... text for page 1 ...
 %
 page2]

DURATION wait for a period of time
 number DURATION

DURATION makes the specified number of timebase ticks elapse
before the player’s sound continues. It is used to make a sound
play for a certain period of time by delaying the onset of the
next sound.

Music event words generate their own duration (from their length
setting), so DURATION is usually confined to additional effects in
music notation, such as extra delays that do not contribute to bar
length, and use in programs which employ sound words directly,
including music action definitions.

The number must be in the range -32768 to 32767. With the normal
timebase period, each unit corresponds to 10 milliseconds. =T
allows the actual duration of the tick to be changed.

 141

examples

 "fermata" [80 DURATION] wait for 80 ticks
 "part1" [
 SCORE 24, 3 BAR
 ...
 12,ADf/ed |
 D///// fermata | % hold last note (with bar length as normal)
 0,^]

 "part1" [SCORE 48, 4 BAR % bass drum
 4 FOR(
 8 FOR(XXXX | XXXX |)FOR % crotchet beat for reference
)FOR]
 "part2" [SCORE 48, 4 BAR % snare drum
 3 DURATION % put behind (after) the beat
 8 FOR(/X/X | /X/X |)FOR
 -3 DURATION % put back on the beat
 8 FOR(/X/X | /X/X |)FOR
 -3 DURATION % put in front of (before) the beat
 8 FOR(/X/X | /X/X |)FOR
 3 DURATION % put back on the beat
 8 FOR(/X/X | /X/X |)FOR]
 ... % play part1 & part2 together

 "metronome" [% strike (existing) voice every 20 ticks
 REP(
 1 VOICE QN GATE % strike
 20 DURATION % wait 20 before next
)REP]

 "talkback" [
 READY 1 VOICES ins % 'ins' to suit installation
 REP(
 16 FOR(
 12 RANDL 24 #+ PITCH ON GATE
 10 DURATION % repeated short
)FOR
 OFF GATE
 100 DURATION % single long
 4 FOR(
 12 RANDL 24 1- PITCH ON GATE
 40 DURATION % repeated medium
)FOR
 OFF GATE
 20 DURATION % single short
)REP]

related words QTIME =T

 142

further information

DURATION adds the given number to the player's program time,
moving forwards or backwards, possibly passing over sound events
issued previously. The practical limit on backwards movement is
the total queue time itself, returned by QTIME. Under normal
conditions, the queue time before reduction by negative durations
is determined by the total queue capacity, which is 220 events for
all players.

A player's time begins to pass at the instant its P sequence begins
or in the case of player 0, when the command line begins
execution, and continues regardless of whether durations are sent.
If the player has sent nothing for a long time, durations will be
consumed rapidly to make up this lost time, ensuring that the
temporary hold-up does not cause a permanent error and loss of
synchronisation with other players.

In some situations, the player needs to start time afresh after
sending no durations for a time. An example is a program that
waits until a key press before playing a short tune. To ensure
that the tune starts on time, the player sends a duration equal to
the time that has passed,. as follows:

 QTIME % read queue time – should be negative
 0 #l2 #- % negate
 DURATION % send at duration to make QTIME up to zero

Here is an improved version that also will not cause overlap on an
unfinished previous tune:

 "makeup" [% make-up lost time to start afresh
 0 QTIME #-
 0 MAX
 DURATION]

It is used before the start of the tune, for example

 "keyplay" [
 REP(#IN #2 % wait for key
 makeup % make up lost time
 SCORE 12,gABCDcbag^ % play tune
)REP

The contrasting type of program in which occasional user input
affects music that runs continuously, can also use QTIME – see
QTIME for details.

 143

)ELSE(separate conditional sections [] only

)ELSE(is used inside IF(...)IF to introduce a sequence of words
that is done if the tested flag is OFF.

See IF(for more information.

EVERY leave 'every' selector

EVERY is a constant for use with various selecting words, where it
selects every one of the items together. For example, EVERY VOICE
selects all voices in the current voice range, set by VOICES.

EVERY leaves the value -1, and is equivalent to ON.

related words VOICE ; ON

FAST select fast/normal tempo
 flag FAST

FAST controls whether musical time passes normally, or runs as
fast as the program will go. ON FAST selects fast execution, and
OFF FAST returns to normal.

FAST can be used to skip over sections of music, or run through
the whole piece at top speed to test for errors such as 'Bad bar'.

further information

Unlike WIND, ON FAST makes time pass only as fast as the program
can run, ensuring that the players remain in synchronisation while
running fast.

FCOPY copy numbers from frame pointer
 number -> number 1 ... number-n

FCOPY copies the specified number of numbers from underneath the
FRAME pointer to the top of the stack, preserving the order. It
is used to access groups of numbers without destroying them.
FCOPY is much faster than the equivalent FOR/FVAR instruction
sequence.

examples

 3 FCOPY % copy 3 numbers from FRAME

 2 4 6 FRAME % leave three numbers, marked with FRAME

 144

 8 10 % add some more on top
 3 FCOPY % copy 3 to top
 NOUT % prints 6
 NOUT % prints 4
 NOUT % prints 2
 % leaves: 2 4 6 8 10

 "dump" [% number dump ->
 % print top n numbers (not inc n!), going down
 FRAME % mark
 #11 1 #+ FCOPY % copy n numbers AND n itself
 FOR(NOUT SP)FOR % print n numbers
 #2] % discard n
 ...
 1 1 2 3 5 8 6 dump % prints 8 5 3 2 1 1
 % leaves: 1 1 2 3 5 8

related words FRAME

FIND find uses of word command
 namestring FIND

FIND displays the names of all words which use the specified word.
The specified word can be a system or user word, and module words
with readable definitions also searched. FIND is useful for
finding where a particular user word is used in the program, and
displaying a list of all words of a certain type, for example all
instruments, by searching for a key word.

The list of finds is given in groups: program and each module.

examples "riff1"FIND % find all uses of riff1
 "SCORE"FIND % find all uses of SCORE

related words SHOW

FOR(start definite loop [] only
countnumber FOR(...)FOR

FOR(...)FOR carries out the instructions inside it the
specified number of times. It is particularly used to repeat
musical sections.

If the number of repeats is less than one, the contents are not
executed at all. FOR(...)FOR can only be used inside words.

The words COUNT and INDEX give the number of executions done and
the number to be done, respectively.

 145

examples

 "stars" [% number stars
 FOR("*" $OUT)FOR]
 5 stars % prints *****
 0 stars % prints nothing

 "pnout" [% number pnout % prints number in field of 8 stars
 $STR % convert number to dec string form
 8 LEN #- % calculate how many stars needed
 FOH("¿" $+)FOR % add them to start
 $OUT] % print
 42 pnout % prints ******42

 phrase1 % (in a word definition)
 8 FOR(phrase2)FOR % phrase2 is done 8 times
 phrase3

 SCORE -2: 8, % (in a word definition)
 4 FOR(CDEFGAB)FOR ^] % play a scale over four octaves

 "tri" [% print triangular area
 10 FOR(% on lines 1 to 10...
 COUNT FOR("*"$OUT)FOR % print 1 to 10 stars
 NL % next line
)FOR]
 tri

related words COUNT INDEX REP(

)FOR end definite loop [] only

FOR(...)FOR carries out the instructions inside it the
specified number of times.

See FOR(for more information.

FRAME set fr ame pointer to top of stack

FRAME marks the current top of the number stack as the start of a
stack frame which can then be accessed like an array, using FVAR.
FRAME enables direct access to numbers on the stack, so that the
stack can more easily be used for temporary storage of more than
just a few numbers.

The current FRAME value can be saved and restored with FRAME? and
FRAME!, allowing outer and inner levels of a program to use FRAME

 146

independently. Music events use FRAME to mark music event values
on the stack, and therefore the FRAME value is undefined over
music events, so you should save and restore it around music
events if the calling word needs it to be preserved.

examples See FVAR

related words FVAR FRAME? FRAME! FCOPY

FRAME! write frame pointer
 pointernumber FRAME!

FRAME! sets the stack frame pointer to the value supplied. It is
used to restore the pointer to the value read with FRAME?.

examples See FVAR

related words FRAME FRAME? FVAR

FRAME? read frame pointer
 FRAME? -> pointernumber

FRAME? reads the value of the stack frame pointer. It is used to
save the pointer value on the stack for later restoration by
FRAME! .

examples See FVAR

related words FRAME FRAME! FVAR

FVAR access stack frame item
 elementnumber FVAR -> addressnumber

FVAR is used to access the items in the stack frame marked by
FRAME as elements of an array. It is used for convenient access
to temporary values on the stack, and to access temporary
var iable storage on the stack •

It takes the element number and returns the address of it, for use
by #?, #!, #+!, #B? and #B! . The position of the top of the
stack when FRAME was used is element number 1.

examples

 FRAME 4 FVAR #? % #43214 – copy the fourth item to the top

 147

 FRAME % non-destructive stack print
 3 FOR(COUNT FVAR #?
 NOUT SP % print the top 3 items
)FOR % leaving them unchanged

 % method of random access to stack location
 0 % leave one number on stack
 FRAME % mark it for later access
 ... % other operations, putting items on stack
 1 FVAR #! % store value to variable
 ... % other operations
 1 FVAR #? % read value from variable

 ",?" [% ,? -> number % return ',' setting, from MVAL?
 0 % dummy item for storage
 MVAL? % seven items, including ',' as no. 2
 FRAME % mark
 2 FVAR #? % get no. 2 out
 8 FVAR 4! % and store over dummy item
 MVAL! % get rid of the MVAL? numbers
] % leaving result on stack
 ...
 48, ,? NOUT % prints 48

 "pitch" [1 FVAR] % define named action variables
 "pitchv" [2 FVAR] % for clearer action definitions
 "level" [3 FVAR] % (see ACT(
 ...
 "dur" [7 FVAR]

related words FRAME FRAME! FRAME?

GO start players together

GO starts the players executing together, after allowing them time
to prepare to play. It is only used in combination with READY and
a list of P(...)P structures, usually in the 'RUN' word of a
piece.

GO cannot be used inside a player, and is used only once after
READY. Normally, there should be no DURATIONs (or music events,
which themselves use DURATION) between READY and GO.

example "RUN" [
 READY mix
 1 P(part1)P
 2 P(part2)P
 GO]

 148

related words READY P(GATE DURATION QTIME

further information

GO allows players to continue when every one of them has sent a
GATE, signalling that the first note is ready to play, though
players that send no sound events at all are exempt. In special
applications where a player does not send a first note, it should
send a dummy GATE on voice 0 to signal that it is ready:

 OFF VOICE OFF GATE

GO's sequence of operations is as follows:

 1 The timebase is halted
 2 Players are executed, using IDLE, until either the sound
 event queue is full, or no more sound events are issued. At
 this time, the system executes each player's sound events up
 until its first GATE event (voice selection immaterial),
 including for example initial voice assignment events, but
 holds the GATE and subsequent events on the queue.
 4 The timebase is allowed to continue, and execution of held
 events begins.

GVAR create variable [] only
GVAR -> addressnumber

GVAR creates a number variable. It is used inside [...], which
gives the variable its name. #? and #! are used to fetch from
(read) and store to (set) the variable.

 store to variable: number variable #!
 fetch from variable: variable #? -> number

Variables are not used as much in AMPLE as in other languages,
because AMPLE's stack can be used for temporary storage and
passing values to and from words. Before deciding to use a
variable, you should think about whether it would be simpler to
use the stack.

GVAR variables are global to all players, so a value stored by one
player can be read by any other . The initial value is undefined.

examples

 "var" [GVAR] % create variable 'var'
 0 var #! % set to0
 var #? NOUT % print value

 149

 var1 #? var2 #! % var2 := var1
 var1 #? 1 #+ var2 #! % var2 := var1 + 1

 varl #? var2 #? % swap var1 and var2
 var1 #! var2 #!

 % use of variable to engage chain of next prog at end of piece
 "var" [GVAR] % variable to hold message
 "speak" [% sends 'end reached' message
 REP(
 QTIME -100 #<)UNTIL(% wait for 100 ticks past last event
 IDLE)REP % (or longer if long fade past end)
 ON var #!] % set var to ON
 "listen" [% wait for ON message
 REP(var #?)UNTIL(% repeat until var has been set to ON
 IDLE)REP] % by another player
 "part1" [% part1 is longest part
 OFF var #! % initialise message variable
 ... % play music
 speak] % send 'end reached' message
 ... % rest of program
 "RUN" [% main word
 ... % start piece playing
 listen % wait for 'end reached' message
 $2 % discard existing command line
 """nextprg""LOAD RUN"] % leave command to chain next program

related words #? #! #+! DIM ARRAY

further information

The GVAR instruction itself includes the storage space for the
variable.

HALT halt/continue timebase
flag HALT

HALT controls the timebase:

 ON HALT stops timebase
 OFF HALT allows timebase to continue

While the timebase is stopped, all durations last indefinitely so
that music is frozen. HALT is used to temporarily halt the music
while it is playing. While halted, the music can still be
advanced by WIND.

The timebase is automatically allowed to continue by READY and
when an error occurs.

 150

examples % function keys to hold and resume music
 *KEY4 ON HALT|M % halt music
 *KEY5 OFF HALT|M % continue music
 *KEY6 192 WIND|M % wind music while halted

further information

The main difference between HALT and PAUSE is that HALT just stops
the passage of time, whereas PAUSE also stops the execution of
sound messages.

#IN wait for and get keypress
 #IN -> asciinumber

#IN waits for a character from the keyboard and returns its code.

If there is already a character in the keyboard buffer when #IN
is called, it returns the character immediately.

example % wait for RETURN press
 "RETget" [REP(#IN 13 #=)UNTIL()REP]

related words #OUT QKEY

further information

#IN calls 0 QKEY so that it can IDLE until a keypress is
available. Calling OSRDCH would halt other players.

$IN input line from keyboard [] only
 $IN -> str ing

$IN accepts a line of characters from the keyboard, terminated by
RETURN or TAB. The terminating character is included at the end
of the string.

$IN lets the program accept a line of characters from the user.
This can be used as a string, or converted into a number using VAL
or &VAL. Leading spaces are included, but they can be removed
with $STRIP.

The special key functions of $IN are the same as those of the
system's % command line. The DELETE key removes the last
character, and CTRL-U discards the line but leaves it on the
screen. No control codes (apart from CR and TAB) are included in
the input line. All control codes except 22 (select screen mode)

 151

are sent to the screen via #OUT.

examples

 $IN ASC % alternative to kIN, but waits for RETURN

 % input number: nin -> number ON
 or nin -> OFF if no number found
 "nin" [
 $IN % get string
 $STRIP VAL % convert to number
 $2] % discard remainder of string

 % alternative input number: ninz -> number (0 if no number)
 "ninz" [
 $IN % get string
 $STRIP VAL % convert to number
 $2 % discard remainder of string
 NOT IF(0)IF] % leave 0 if no number detected by VAL

related words #IN $STRIP VAL &VAL

further information

$IN bleeps if you try to add another character when the line is at
maximum length. $IN will accept a line right up to the maximum
length that can be accommodated on the string stack, but because
there is a total limit (of 128 characters), this length will be
decreased by other strings on the stack.

$IN resets various keyboard and screen options before accepting
input, as follows:

 *FX255,1 % make function keys expand
 *FX4,0 % engage cursor editing mode
 OSWRCH: 23 1 0 0 0 0 0 0 0 % turn cursor on

IDLE pass control to other players

IDLE passes control to other players allowing them to continue
execution.

IDLE is used in loops that wait for an external event before
continuing, so that other players are not held up. IDLE is not
normally required in loops that issue sound or music events.

example % wait for CTRL key to be down
 "CTRLwait" [REP(-2 QKEY)UNTIL(IDLE)REP]

 152

further information

Some Nucleus words can wait for an external event before
returning, and they have the effect of IDLE while waiting. These
include:

 #IN, $IN
 A-G, a-g, X, /, ^, (,) (all music events)
 ACT, DURATION, HALT, FAST, ON PAUSE
 +T, -T, =T
 P(
 sound words (PITCH, GATE etc)
 some commands, including WRITE

IF(start conditional sequence [] only
 flag IF(...)IF or flag IF(...)ELSE(...)IF

IF(...)IF carries out the instructions inside only if the flag
is ON. IF(...)IF is used to carry out operations or not
depending on the results of previous calculations.
An)ELSE(can be included between IF(and)IF. In this case, if
the flag was off, the instructions after)ELSE(are carried out.

... flag IF(.. done if ON ..)ELSE(.. done if OFF ..)IF ...

IF structures can only be used inside word definitions.

example

 "test" [IF("ON")ELSE("OFF") IF $OUT]
 % ON test prints ON
 % OFF test prints OFF

further information

IF(treats all non-zero values as ON, so you can use it directly
to test a number for non-equality to zero.

)IF end conditional [] only

IF(...)IF and IF(...)ELSE(...)IF enclose words which are
executed conditionally.

See IF(for more information.

 153

INDEX leave loop index [] only
INDEX -> number

INDEX leaves the index of the most recent FOR(...)FOR loop
containing it. The index starts at the maximum (the loop count
given to FOR() and decreases by one each time around the loop.
On the last time around, it is one.

INDEX lets the instructions inside the loop do something different
on each pass, usually sequencing through a particular range of
values. In many cases, COUNT is more convenient.

The INDEX can be put anywhere inside the FOR (...) FOR loop,
except enclosed in a separate wor d ([...]) or intervening
P(...) P structure.

example

 "countdown" [% print numbers from 20 down to 1
 20 FOR(INDEX NOUT SP)FOR NL]

related words FOR(COUNT

further information

The functions of INDEX and COUNT differ only in direction of
counting. INDEX is slightly faster in execution than COUNT.

INSTALL install module command
 namestring INSTALL

INSTALL installs the named module as 'fixed'. All modules already
present in memory also become fixed.

example "INT" INSTALL

related words MCAT MDELETE MLOAD MPREFIX

further information

INSTALL stops players 1-10 and all sounds, and memory is compacted
before the new module is installed. Any module can be INSTALLed
but then cannot be disposed of with MDELETE. Some modules may
only be installed, and will cause a 'Fixed only' error if an
attempt is made to MLOAD them. INSTALL is usually used from a
!BOOT file.

 154

K(start key signature

K(...)K sets the key signature for the player. A key signature
is a set of sharps and flats for particular note letters which are
automatically applied to each of those note letters in future.

To set the key signature, enclose a list of the note letters
(upper or lower case), each with a sharp or flat before it, inside
K(...)K:

 K(+F +C +G)K
 | || |
 start key signature || |
 pitch modification | |
 note letter |
 end key signature

Where is single key signature is used throughout a piece, it is
sometimes set out in a single 'sig' word which also includes SCORE
and BAR instructions, and is then called up by all players.
Alternatively, the global key signature may be stated after READY
in the form of RUN word which uses a list of P(...)P structures
– see P(for details.

An individual note can be returned to its unmodified pitch by
putting a natural symbol, '=', before it. This effect applies to
that note only. The sharp and flat symbols (+ – or =) also cancel
the effect of the key signature for the next note.

Chord brackets and more key signatures are not allowed inside key
signatures. Both upper-case and lower-case note letters may be
used inside K(...)K, with the same effect.

examples

 K()K % C major
 K(+F +C +G)K % A major
 K(-B)K % F major

 "amaj" [K(+F +C +G)K]

 "sig" [% complete signature
 SCORE K(-B)K
 48, 4 BAR]

 READY K(-B)K % key signature for all parts (see READY)
 ... rest of RUN ...

 155

related words + – =

further information

The key signature can be freely changed in the middle of music.

There is no restriction on the modifications inside key
signatures, so non-standard key signatures can be created. This
is particularly useful for minor keys, since the raised 7th can be
included, for example, D minor: K(-B +C)K.

Notes inside key signatures do not play or alter the effective
previous note pitch.

)K end key signature

K(...)K sets the key signature for the player.

See K(for more information.

LEN get length or string [] only
 string LEN -> string lengthnumber

LEN returns the length of the string (the number of characters in
it). It leaves the string on the stack as it found it.

example LEN 0 #= % test if string is null (inside word)

LOAD load program command
 namestring LOAD

LOAD loads the named program file. The existing program is
entirely replaced by the new one.

examples "myprog" LOAD
 "myprog" LOAD RUN % (RUN is user word)

related words SAVE MERGE

further information

LOAD stops players 1-10 and all sounds, and resets player 0's
music action chain.

 156

'L set accent strength

'L sets the amount of dynamic level added by ' (accent), that is,
the strength of accents. The range is -127 to 127.

SCORE sets the accent level to 15.

Remember that the available range of dynamic level depends on the
type of voice in use.

example SCORE 30'L % make accents stronger

 -20 1L % set reverse (quieter) accents

related words ' = L

=L set dynamic level
 number = L

=L sets the dynamic level of hits and notes in the range 0 (soft)
to 127 (loud). 0-127 is the maximum range possible, but a
particular voice type may respond to only part of this range.

64 is the normal value, set by SCORE.

=L cancels any +L or -L level change in progress.

example

 80 =L % set medium loud level

 64=L 40 16 +L % set level before crescendo

 "ppl" [24 =L] % define words for set dynamic markings
 "pl" [44 =L]
 "ml" [64 =L]
 "fl" [84 =L]
 "ffl" [104 =L]

related words +L -L

further information

Remember that the effect of the level depends on the voice type in
use, and possibly the instrument also. Also note that the dynamic
level only takes effect at the start of a note or hit, not within
it.

 157

+L increase dynamic level
 changenumber eventsnumber +L

+L increases the dynamic level of the player's voices by a
specified amount over a specified period of time. It is used for
making changes of level relative to the current setting, both
instantly and automatically over a period of time (crescendo).

The first number is the amount of change in the dynamic level, and
has the range -127 to 127. A positive value gives an increase,
and a negative value gives a decrease. The second number is the
number of events, of the length setting in use at the time of the
+L, over which the change is to take place. These events can be
notes, rests, hits and ties, and the length setting can be changed
after the +L without affecting the length of the change period. A
value of zero makes the change happen instantly. At the end of
the change period, the level is left at the final value.

The change follows a slope starting at the +L and ending at the
end of the last event. This means that the first note is
unaffected (unless the change is instant), and the first note that
plays at the final level is the one after the last event on the
slope. In practice, this is the effect you would expect.

Remember that the range of the dynamic level itself is 0 to 127,
and that the effect of the level depends on the instrument in use.
Also note that the dynamic level only takes effect at the start of
a note, not within it. A crescendo within a note is a feature of
the instrument, and must be created by programming an envelope.

examples

 48, 10 4 +L % crescendo of 10 units over four crotchets

 12, 40 8 +L XXXX XXXX X % drum roll with crescendo

 48, 40 2 +L 12,XXXX XXXX X % equivalent

 60 =L CDEG % a bar with a dynamic level of 60
 40 4 +L GABC % then increasing to 100 over a bar
 40 4 -L Dcba g % then decreasing back to 60 over a bar

 4, 40 4 +L 48,D(4,FACD) % crescendo over broken chord

 "at" [% user-defined accent symbol
 20 0 +L % instant increase by 20 units
 20 1 -L % decrease by 20 units after next event
]
 ...

 158

 at Cggg at Cggg % accent both Cs
 at E(GB)/ % accent whole chord

related words =L -L

further information

The change is halted by another +L, -L, =L or SCORE instruction.
0 0 +L can be used to halt a change, leaving the level constant at
whatever value it had reached.

+L cannot be used with a ',' setting of zero (in normal chords,
for example). Attempting to do so gives the 'Division by zero'
error .

Though the effective range of the level (instantaneous =L value)
is 0 to 127, the stored value is held accurately up to 255. This
means that even if a relative change exceeds the maximum, an
opposite change will still return to the starting point. However,
there is no such margin at the bottom of the range, and the level
is clipped at 0.

-L decrease dynamic level
 changenumber eventsnumber -L

-L decreases the dynamic level by a specified amount over a
specified per iod of time. It is used for making changes of level
relative to the current setting, both instantly and automatically
over a period of time (diminuendo).

-L is exactly equivalent to +L, except that positive change values
give a decrease (and negative change values give an increase).
See +L.

MAX leave largest of two numbers
 number1 number2 -> largestnumber

MAX leaves the largest of the two numbers and discards the other.
It is often used to make sure a variable value does not go below
a fixed limit, enforcing a minimum value.

example -5 -2 MAX produces -2

related words MIN

 159

MCAT display catalogue of modules command

MCAT lists the names of all the modules in the system in
alphabetical order, together with their version numbers and status
indicators. The indicators have the following meanings:

Indicator Meaning

F Fixed – fixed modules are loaded using INSTALL by the
 system disc start-up.

 Fixed modules are part of the installation and cannot
 be removed by MDELETE. The command AMPLE leaves fixed
 modules installed.

P Program-owned – the module was loaded automatically on
 load of a program that required it.

 P modules are removed automatically when the program is
 removed, and may be deleted with MDELETE if not in use.

T Tempora y – the module was loaded manually by MLOAD,
 and may be removed at any time (provided not in use) by
 MDELETE. The command AHFLE removes temporary modules.

U In use as editor – the module is the currently in-use
 editor.

 The module may not be removed by MDELETE while it is in
 use as the current editor.

W In use by words – one or more words of the module are
 in use by the user program.

 The module may not be removed while words are in use.
 FIND can be used to locate the uses of the words.

M In use by modules – one or more words of the module are
 in use by other modules.

 The module may not be removed while words are in use.

The F, P and T statuses are mutually exclusive.

 160

example %MCAT
 INT 0.2 F PAD 0.2 TU M5 0.7 FW
 | | | || |
 Module name | | || |
 Version number | || |
 Fixed module || |
 Temporary module | words in use
 in use as editor by program

related words INSTALL MDELETE MLOAD MSHOW

MDELETE delete module command
 namestring MDELETE

MDELETE removes the named module. This command is used to remove
modules that are no longer required, freeing their space for other
uses.

Note that the module name must be given in the correct case –
module names are usually all upper case.

The module may not be removed if it is fixed or in use, that is,
if its MCAT display shows any of the indicators F, U, W or M.

examples "PAD" MDELETE

related words INSTALL MCAT MLOAD

further information

Some special modules load further modules when loaded. When
deleting such a module with MDELETE, you will also need to delete
the further modules manually, using the MCAT display as a guide.

MEM show memory usage in bytes command

MEM shows the number of bytes of user memory in use for various
functions.

The following figures are given:

 Words memory used by the program, that is, word
 definitions, not including editor data
 Data memory used by editors for public data
 System memory used by players and music actions
 Arrays memory reserved by the program with DIM
 Free memory free for use

 161

Note that the free memory may be fragmented so that the largest
single piece may be smaller than the total figure given. See
COMPACT.

example %MEM
 Words: 2569 Data: 234
 System: 972 Arrays: 0
 Free: 12330

further information

The total amount of user memory depends on the value of OSHWM
(determined by ROMs fitted to the machine), and, on a BBC
Microcomputer without shadow RAM, the screen mode in use. Without
shadow RAM, mode 7 gives the maximum amount of language memory.

The total amount of program memory is the amount of language
memory minus that used by modules.

MIN leave smallest of two numbers
 number1 number2 -> smallestnumber

MIN leaves the smallest of the two numbers and discards the other.
It is often used to make sure a variable value does not go above a
fixed limit, enforcing a maximum value.

example 4 5 MIN produces 4

related words MAX

MLOAD load module command
 namestring MLOAD

MLOAD loads the specified module. The module filename prefix set
with MPREFIX is added to the start of the filename.

The loaded module is temporary (shows with indicator T in the MCAT
display) and can removed with MDELETE when no longer required.

MLOAD prints messsages indicating the full prefixed names of the
modules it loads.

examples "LEDIT" MLOAD

related words INSTALL MCAT MDELETE MPREFIX MSHOW

 162

further information

The disadvantage of using MLOAD over INSTALL is that all but the
first module loaded with MLOAD will take up slightly more memory
than otherwise. In normal use, only one temporary module is
loaded at a time, so this has no effect.

Some special modules require further modules, and these will be
loaded automatically. MLOAD prints messsages indicating the
prefixed names of the original and any further modules it loads.

MODE enter display mode command
 number MODE

MODE enters the specified display mode.

On BBC Microcomputers without shadow RAM, different display modes
use different amounts of memory, and you will normally use mode 7
since this uses least memory.

If the memory required by the new mode is not available, you will
get the 'No room' error. In this case, you may still be able to
change to the new mode after entering COMPACT.

example 3 MODE % change to mode 3

related words #OUT COMPACT

further information

MODE can be freely used in programs. Since programs are saved in
compacted form, LOAD RUN will never give a needless 'No room'
error.

MPREFIX set module filename prefix command
 string MPREFIX

MPREFIX sets the filename prefix to be used by MLOAD and INSTALL
to load modules. It allows modules to be held in and loaded from
specific directories and drives. The prefix is set to null on
*AMPLE (start-up) and AMPLE (restart).

Modules are usually supplied under directory 'M', so the system
disc sets "M."MPREFIX on booting.

examples ":0.M" MPREFIX % load modules from drive 0

related words INSTALL MLOAD

 163

further information

The maximum prefix length is 9 characters.

MSHOW show list of words in module command
 modnamestring MSHOW

MSHOW displays the names of all the words in the specified module.
If the module contains auxilliary command words, as do editors,
they appear in a separate list.

Note that the module name is normally in upper case.

example %"PAD" MSHOW
 PAD
 Aux: CLEAR GET MAKE
 NAME PANEL RETGATE TRY
 %

related words SHOW MCAT

MVAL! write music variables
 framelev keysig barcountlen octnote length tranvoice MVAL!

MVAL! writes the important music variables. The input values are
the same as the MVAL? output values. See MVAL? for more
information.

related words MVAL?

MVAL? read music variables
 MVAL? -> framelev keysig barcountlen octnote length tranvoice

MVAL? reads the important music variables – the 'music
environment' values used by the 'music event' words. It copies
them from working locations to a byte-packed form as seven numbers
on the stack.

MVAL? is supplied for advanced programs which need to access the
music settings for special processing, extended music functions
etc. It can also be used with MVAL! to save and restore the music
variables around 'local' music sections so that their music
settings do not affect the settings in the sections that contain
them.

 164

name position low byte high byte

tranvoice 1 (top) voice (;) transposition (@)
length (,) 2 low high
octnote 3 effective last note octave (:)
barlen (BAR) 4 low high
key signature 5 sharps flats
framelev 6 (bottom) dynamic level (=L) FRAME pointer
barlen count 7 low high

The 'effective last note' is the combined record case and letter
used for the determination of the relative pitch octave of the
next note:

 bits 0-2 letter number: 0 = C, 1 = D, ... 6 = B
 bit 7 case: 0 = lower case, 1 = upper case

The 'octave' value is a semitone pitch offset from middle C which
records the curr ent pitch octave, always being a multiple of 12.
It is set by ':' and incremeted or decr emented by note letters.

The two key signature bytes record the state of sharp and flat
modification of each of the note letters, one bit per letter:

 bit 0 C
 bit 1 D

 bit 6 B

 bit = 0 normal
 bit = 1 sharp or flat

The FRAME value is just as returned by FRAME?. Though the number
stack is not used for storage of the music environment values, it
is used to hold the music action values. These are marked by
FRAME, for access inside ACT(...)ACT. This means that FRAME must
be preserved through the ACT(...)ACT contents, so if further music
events are included inside ACT(...)ACT itself, it must be saved
and restored. Because FRAME is MVAL, is is saved and restored
along with the music environment values.

examples

 MVAL? % save music variables
 2; 4@
 3: CDEG
 MVAL! % restore to state before MVAL?

 ",?" [% return current length setting (item 2)
 MVAL?

 165

 #2 % discard item 1
 5 FOR(#12 #2)FOR % discard items 3 to 7
]

 "riffact" [% 'note expansion'
 1 ACT(
 MVAL? % save music values
 2 FVAR #? % get pitch
 @ % transpose to this
 12,0:CCGG % play transposed riff
 MVAL! % restore music values
)ACT]
 ...
 SCORE riffact % engage note expansion
 0: C D % plays 0:CCGG ddAA
 ccccFFGG ccccb+aa+g gggg

related words MVAL!

NEW discard program command

NEW discards all user words, ready for a new program to be
entered. Editor data (text) is not affected. NEW should be used
with care as its effect cannot be reversed.

To do a complete clear befor e entering a new program, use the
command AMPLE.

related words AMPLE CLEAR

further information

NEW stops players 1-10 and all sounds, and resets player 0's music
action chain.

NL print new line

NL moves the cursor to the start of the next line, ready for
printing on a new line.

example " Elegy"$OUT NL NL " by John Favero"$OUT NL

 prints the following:

 Elegy

 by John Favero

 166

related words ALIGN $OUT #OUT

further information

NL calls OSNEWL.

NOT invert sense of flag
 flagl NOT -> flag2

NOT inverts the sense of the flag, that is, it replaces ON by OFF,
and OFF by ON. Is it used in logical expressions, and often
before IF(...)IF so the contents are carried out if the flag is
OFF.

examples #< NOT % ON if number was greater than or
 % equal to previous number

 $IN VAL NOT IF(0)IF % leave number or 0 if none

related words AND OR XOR

further information

NOT is not a bitwise operator like AND, OR and XOR. It treats any
non-zero number as ON. For a bitwise NOT, use &FFFF XOR.

NOUT print number in decimal
 number NOUT

The number is printed on the screen in decimal. It is printed at
the cursor position with no formatting spaces.

$&STR can be used to convert the number to the equivalent string
for formatting prior to printing.

examples 56 NOUT prints 56

 "ppitch" ["Pitch: " $OUT NOUT NL]
 ...
 32 ppitch % prints Pitch: 32

related words &NOUT $STR

further information

For control over printing format which is not provided by NOUT,
the user can use $STR plus further string operations – see $STR

 167

for details.

&NOUT print number in hexadecimal
 number &NOUT

&NOUT prints the number in unsigned hexadecimal. It is printed at
the cursor position without formatting spaces.

$STR can be used to convert the number to a string which can be
formatted before printing.

examples 255 &NOUT prints FF

 "pregs" [
 NL "PA: &" $OUT &NOUT
 " YX: &" $OUT &NOUT]
 ...
 %FFOO 533CA pregs % prints PA: %33CA YX: &FFOO

related words NOUT $&STR

For control over printing format which is not provided by &NOUT,
the user can use &$STR plus further string operations – see &$STR
for details.

OFF leave off flag value
 OFF -> offflag

OFF is the 'false' flag constant. It is used with commands and
other words that accept a flag, and in logical expressions.

examples OFF PAUSE % turn PAUSE off
 flagvar #? OFF #= % equivalent to flagvar #? NOT

related words ON

further information

OFF is represented by the numeric value 0.

ON leave on flag value
 ON -> onflag

ON is the 'true' flag constant. It is used with commands and
other words that accept a flag, and in logical expressions.

example ON PAUSE % turn PAUSE on

 168

related words OFF EVERY

further information

ON is represented by the numeric value -1.

OR OR bits of numbers
 number1 number2 OR -> ORnumber (number1 OR number2)

OR performs the logical OR operation on the bit patterns of the
two numbers. Each bit in the result is 1 if the corresponding bit
in either of the input numbers is 1.

OR is used both as a bit-wise operator for manipulating bit
patterns, and as a logical operator for flags:

 bit1 bit2 bit3 flag1 flag2 flag3
 0 0 0 OFF OFF OFF
 0 1 1 OFF ON ON
 1 0 1 ON OFF ON
 1 1 1 ON ON ON

examples

 1 OR % set bit 0 of number

 #11 -1 #= #12 1 #= OR % number -> flag
 % test number was 1 or -1

 &1234 &FF OR produces &12FF
 in binary:
 0001001000110100 OR
 0000000011111111
 produces 00010010l1111111

related words AND XOR NOT

OSCLI send string to operating system [] only
 string OSCLI

OSCLI sends the string to the operating system as a command, as
if it had been entered as the keyboard after *. It allows OS
commands to be included in programs, and programs to make up OS
commands from other data.

examples "CAT" OSCLI

 169

 "LOAD ""code"" A00" OSCLI

 "fkey" [% string number fkey % defines function key
 $12 % swap string to top
 " " $+ % add separating space
 $STR $+ % add number
 "KEY" $+ % add command
 OSCLI]
 ...
 "1 VOICES |M" 9 fkey

related words *

further information

OSCLI puts the required carriage return on the end of the string
before sending it to the OSCLI routine.

#OUT send ASCII code to screen
 number #OUT

#OUT sends the number to the screen. The number may be the
ASCII code of a printing character, for example 65 for A, or a
control code, for example 10 for line feed.

example 12 #OUT % clear text screen
 11 #OUT % move cursor up one

 "cls" [12 #OUT]

related words #IN $OUT

further information

#OUT calls OSWRCH.

Never send code 22 to select display mode. Use MODE instead.

$OUT print string [] only
 string $OUT

$OUT prints the string on the screen. It is used to display
messages from within programs. It can only be used inside a
word definition.

$OUT does not print a new line at the end of the string. Use NL
for this.

 170

example "hello" $OUT NL % prints hello
 % and moves to the next line

related words #OUT $IN DISPLAY

further information

$OUT calls OSASCII.

$PAD pad string to length with spaces [] only
 string1 lengthnumber $PAD -> string2

$PAD pads the string to the required length by adding spaces to
its start (left end). It is used to make strings appear in fixed
columns (fields) when printed.

If the string is not less than the length given, it is left
unchanged.

examples "hello" 8 $PAD produces " hello"

 % print number in field. number fieldnumber nfout
 "nfout" [#12 $STR $PAD $OUT]
 ...
 ": "$OUT 20 4 nfout 10 4 nfout
 % prints : 20 10

related words $STR $&STR $STRIP

P(start concurrent sequence [] only
 playernumber P(...) P

P(...)P instructs the numbered player to execute the enclosed
sequence of instructions. Program execution continues with the
instruction after)P, while the numbered player executes the
enclosed sequence alongside at the same time.

P(...)P is commonly used in the 'RUN' word of a multi-part
piece, to give the parts of a multi-part piece to the players.
The 'RUN' word contains a list of P(...)P structures, one per
player, between READY and GO:

 "RUN" [
 READY
 ...global instructions, such as mix, tempo setting
 1 P(...instructions for part 1...)P

 171

 2 P(...instructions for part 2...)P
 ...
 n P(...instructions for part n...)P
 GO]

The players are numbered 1 to 10. To refer to a player once the
piece has started, to change its sound with SHARE for example, you
identify it with this player number.

examples

 "RUN" [% piece for two players
 READY mix
 1 P(part1)P
 2 P(part2)P
 GO]

 "canvas" [% play background notes for
 READY % interactive sound editing
 1 P(1 VOICES Simpleins
 SCORE 16,
 REP(-2: 4 FOR(CEGB)FOR)REP
)P
 GO 1 SHARE]

related words READY GO PNUM SHARE

further information

The P(...)P structure is often called a P structure and the
contents a P sequence, for convenience.

A player may receive second and subsequent P sequences from any
player including itself. It executes them in the order they were
received, becoming idle if it reaches the end of the last one.
Player 0 may not be sent P sequences.

Each P sequence synchronises its player to the issuing player,
with the result that a sound event issued at the start of the P
sequence will play at the same time as one issued at the point of
the P structure (that is, immediately before or after). This
synchronisation works by P(sending the program time of the
issuing player, to be adopted by the destination player before
beginning the P sequence. Examples of structures that can be
created using synchronised parallel sequences are as follows:

 * temporary secondary parts, for example:

 1 P(... section1a 2 P(section 2b)P section1b)P

 172

 player 1 plays: <----- section1a -----><---- section1b ----->
 player 2 plays: <---- section2b ----->

 * chained multi-part sections, for example:

 "movA" [1 P(sectA1 movB)P
 2 P(sectA2)P
 3 P(sectA3)P] % and similarly for movB and movC

 * sequenced multi-part sections, for example:

 8 P(SCORE 3072, movA / movB / movC /)P % 16 4/4bars

READY stops execution of players 1-10 (and discards all voices).

A further feature of the P structure is that each player's first P
sequence after READY begins with the music environment, except the
music action list, copied from the issuing player. This allows
any music environment setting common to all players, such as key
signature for example, to be stated once immediately after READY
for automatic transferral to every player.

Players 1-10 use some additional memory when in use. MEM displays
the total amount in use by players.

GO controls the initial execution of players – see GO for details.

)P end concurrent sequence [] only

P(...)P instructs the numbered player to carry out the
instructions inside the brackets, alongside the instructions in
any other players.

See P(for more information.

PAUSE pause/continue sound processing
 flag PAUSE

PAUSE controls the processing of sounds:

 ON PAUSE stops sound processing
 OFF PAUSE allows sound processing to continue

While sound processing is stopped, the timebase is also stopped,
as in the case of HALT. PAUSE is used to temporarily pause the
music while it is playing. While paused, no sounds will be
processed, even if a FAST is issued.

 173

A special feature of PAUSE is that while the music is paused, any
DURATION issued from player 0, for example, / entered as a
command, will allow the music to play normally for that period of
time, after which it will pause again.

Since PAUSE stops sound processing as well as time, an ON PAUSE
immediately before a note, for example, will, as expected, stop
that note from sounding. ON HALT in the same position would allow
that note to sound, since though it stops time, there is no time
interval between it and the sound instructions of the note.
Hence, PAUSE is often more useful for pausing at particular
locations in music.

Sound processing and timebase are automatically allowed to
continue by READY and when an error occurs.

examples

 RUN % word to start music playing
 ON PAUSE % pause music
 48,//// % allow music to run through 4 beats (only)
 OFF PAUSE % allow music to continue normally

 ... C ON PAUSE D E % stops before D
 ... C ON HALT D E % stops on D, that is, before E

further information

Since the sound instruction OFF PAUSE is required to execute in
the ON PAUSE state, it is a special exception – OFF PAUSE sends a
direct message which is acted on immediately, and not queued.

Obviously, it is not useful to include OFF PAUSE from within a
sequence of music events or DURATIONs, since it would probably
never be reached. OFF PAUSE is normally issued from outside the
control of the timebase, that is, in response to an external event
such as a direct command from the user.

PNUM leave player number
 PNUM -> number

PNUM provides the number of this player, that is, the number of
player executing it. It allows a word or instruction sequence
that might be used from any player to find out which player it
is being used from, and then make settings or decisions
accordingly.

 174

examples

 PNUM SHARE % return this player to using its own voices

 % automatic progressive delay of canon parts
 "intro" [% delay intro of successive canon parts
 PNUM 1 #- % player 1 -> 0, player 2 -> 1 etc.
 FOR(% repeat <player number – 1> times
 48,////|////| % basic 2-bar delay
)FOR]
 ...
 "RUN" [
 READY mix
 3 % number of parts required in canon
 FOR(% repeat for each part
 COUNT P(% give instructions to player
 intro part % after appropriate delay, start common part
)P)FOR
 GO]

 "pvar" [% definition of a player-local variable –
 PNUM % independent location for each olayer
 10 DIM ARRAY]

related words P(

further information

PNUM returns zero if used from player 0, for example, if the
following is entered at the % prompt:

 PNUM NOUT

QKEY test key status or get keypress
 negativenumber QKEY -> flag
 zeronumber QKEY -> asciinumber

QKEY performs the 'INKEY' functions: it tests whether a key is
down, or gets a character from the keyboard.

A negative number indicates the key to be tested. QKEY gives the
answer ON if the key is down and OFF if it is not. See the BBC
Microcomputer User Guide under 'INKEY' for a list of the negative
key numbers.

Given zero as the number, QKEY returns a keypress from the
keyboard. If there is no keypress waiting, QKEY returns a
negative number. Programs use 0 QKEY to test for and accept key
presses between other operations.

 175

example "shiftstate" [-1 QKEY] % returns state of SHIFT

related words #IN

further information

QKEY calls OSBYTE 129. Positive values should not be used.

QTIME return queue time
 QTIME -> number

QTIME returns the current difference, in timebase units, between
the player's 'program time' and the system's 'real time', that is,
the amount of time by which program execution is ahead of sound
execution (the actual sounding of music).

When a player is playing music normally, its QTIME is value is
slightly-varying positive. The value of each DURATION it issues
is added to QTIME, while QTIME decreases continuously at the
timebase (tempo) rate. If QTIME should go negative, it means that
the player has failed to deliver music (DURATIONs in particular)
as fast as it is being played, and has fallen behind real time.

Uses of QTIME include general timing of external events, and
direct control over the differential between program time
(accumulated DURATION) and real time (passed time).

Control over the time differential is particularly useful for
synchronising sound and non-sound output, for example, music and
screen messages - since sound output is strictly 'in-time' and
screen output comes directly from program execution, screen output
normally appears before any sound output generated at the same
point in the program. QTIME can be used to hold back the player's
execution until its previous sound has played, keeping the
differential near to zero. In time control terms, program time is
prevented from running ahead of real time, the queuing of sound
messages is disabled and therefore the delay in sound output is
eliminated. Under these conditions, the player's sound output
will no longer be independent of system load, and, like the screen
output, could be held up by any intensive program task, in the
same or another player. A solution is to program one player to
handle sound output as normal, and a further player to provide the
screen output, with minimum time delay, from a non-sound score
which simply marks time between screen messages.

examples

 "keytime" [% keypress timer – prints time after 2nd press
 100, 60 =T % 100 ticks/sec & 60 secs/minute

 176

 REP(
 "Press a key:" $OUT
 #IN #2 % wait for key and discard code
 NL % print new line
 QTIME % record time
 "Press a key again:" $OUT
 #IN #2 % wait for key and discard code
 NL % print new line
 QTIME % get new time
 #- % calculate difference
 "Time interval was "$OUT
 NOUT % print it
 "centiseconds" $OUT NL
)REP] % do it again

 "keymon" [% continuous keypress timer – prints on each press
 REP(
 #IN #2 % wait for key and drop code
 QTIME % read time
 0 #12 #- % negate
 #11 NOUT SP % print, but keep
 DURATION % return QTIME to zero
)REP]

 "swait" [% waits until last DURATION (or music event) complete
 REP(QTIME 0 #<)UNTIL(% exit loop when QTIME negative
 IDLE)HEP] % (while letting other players run)
 ...
 section1
 swait % wait until done
 "Section 1 finished" $OUT % print announcement
 section2

 REP(% wait for 50 ticks after last DUR.
 QTIME -50 #<)UNTIL(% program time run out by 50 yet?
 IDLE)REP % idle and repeat if not

related words DURATION

further information

Note that only one player at a time is allowed to leave strings on
the stack over IDLE, so for example unless the player 0 is
prevented from interpreting input, the following use of the
'swait' word is not allowed:

 "Section 1 finished" swait $OUT.

Other uses of 'swait' include:

 177

 * waiting until the end of the piece, for example to chain
 another program

 * waiting until the last possible moment before issuing a sound
 that must follow-on from the previous sound, but that is also
 computed from a real-time user-controlled variable,
 minimising delay in the effect of the control.

The system command line interpreter takes special action to ensure
that a timed sequence, such as a line of music notation, is not
consumed by time that passed before the line was entered: if QTIME
is less than zero, player 0's program time set so that QTIME
returns -1.

QUIT leave editor command

QUIT leaves the current editor. Common uses include exiting the
current editor before removing it with MDELETE, and restoring the
screen to its normal state after using an editor.

Each command to enter an editor does an automatic QUIT to leave
the previous one. The command AMPLE also does QUIT.

RAND get random number
 RAND -> number

RAND produces a random number in the range -32768 to 32767.

You can use RAND to make random decisions and settings in music
so it plays differently each time. With RAND! it produces
repeatable number sequences which can be used as the basis of
computer-generated music.

You will often need to limit the RAND value to a certain range of
values before making use of it. An alternative is RANDL which
provides numbers in a specified range.

examples

 RAND NOUT % print a random number

 RAND 0 #< % leave random flag – ON or OFF

 RAND 31 AND % random number between 0 and 3‘I

 RAND &E AND % even numbers between 0 and 14

related words RAND! RANDL

 178

further information

RAND can return 0, unlike random number generators in some other
languages. See RAND! for more information.

RAND! set starting point for random numbers
 number RAND!

RAND! sets the random number seed (the number from which the next
random number will be generated). For each value set by RAND!,
successive calls of RAND and RANDL will generate the same sequence
of numbers.

RAND! is used to create repeatable arbitrary number sequences.
You use RAND!, preceded by a chosen number, before the start of a
loop which contains RAND or RANDL instructions, so that the loop
generates the same sequence of numbers every time it is run.
Adding a RAND! at the start of any simple program that uses RAND
or RANDL will make sure that it gives the same results on each
run.

example

 "rseq" [% number rtest
 RAND! % print particular sequence
 10 FOR(% of ten numbers
 9 RANDL NOUT SP
)FOR NL]
 ...
 0 rseq % prints a sequence
 1 rseq % prints a different sequence
 ...
 "rrep" [
 10 FOR(RAND % print ten different sequences,
 3 FOR(% each three times
 #11 rseq)FOR
 #2)FOR] % (discard sequence seed)
 ...
 rrep

 "randomize" [% set random number generator by time
 % of key press – different each time
 READY
 "Press a key, please" $OUT
 #IN #2 % wait for key
 QTIME RAND!] % seed generator

related words RAND RANDL

 179

further information

Though RAND! and RAND work on standard 16-bit numbers, the random
number generator holds its seed as a 33-bit number – RAND! sets
the lower 16-bit directly, and generates the other 17 bits from
these while guarding against a zero seed, and RAND returns just
the lower 16 bits. Because only part of the seed is accessible
by RAND! and RAND, using RAND! with a value taken from an output
sequence will not necessarily resume that same sequence.

On system start-up (*AMPLE, BREAK or AMPLE), the seed is
undefined, except that it is guaranteed to be non-zero.

RANDL get random number in range
 maxnumber RANDL -> number

RANDL produces a random number between zero and the number given,
inclusive. The input number can be positive or negative.

You can use RANDL to make random decisions and settings in music
so it plays differently each time. With RAND! it produces
repeatable number sequences which can be used as the basis of
computer -generated music.

examples

 9 RANDL NOUT % print random number between 0 and 9

 9 RANDL RANDL % random number weighted to lower values

 18 RANDL 9 % random number between -9 and 9

 "rflag" [% number rflag -> randomflag
 RANDL 0 1=] % 1/number = probability of ON

 "randlb" [% maxnumber randlb -> randomnumber
 %symmetrical about 0, e.g. -5 <= 5 randlb <= 5
 #11
 2 #* % double range
 RANDL
 #12 #- % centre on zero
]

 "part" [SCORE
 REP(12,
 2 RANDL 1 #- % choose increment
 10 RANDL 5 #- % choose starting pitch
 20 RANDL % choose number of notes

 180

 FOR(
 #212 #+ % copy and add increment to pitch
 #11 @ 0:C % play numbered semitone
)FOR #2 #2 % discard pitch and increment
 300 RANDL % choose delay
 100 #+ ,/ % (minimum 100)
)REP % repeat for ever
]
 "RUN" [
 READY
 8 FOR(COUNT % choices are independent for all 8 parts
 P(1 VOICES ins % use a no-sustain, long-decay instrument
 part)P
)FOR
 GO]
 RUN % play

related words RAND RAND!

READY make system ready

READY prepares the system to receive new instructions by making
important initial settings of all variables. It is used by the
user (as a command at the start of a session) or the program (as
an instruction at the start of execution) to make sure that any
current activity, such as sounds and players, are terminated, and
that the following operations are not affected by previous
settings. It does not affect the word definitions or editor state
and data.

In a multi-part piece, READY is often used in a 'RUN' word,
followed by sound, P(...)P, and a GO instruction – see P(for
details of this use.

related words P (GO

further information

READY does the following:

 * initialises all voices (silencing all sounds)
 * frees all voices from players
 * sets 0 VOICES throughout
 * sets each player to use the same-numbered ensemble
 * stops players 1 to 10, and frees the memory used by them.
 * returns PAUSE and HALT to OFF
 * sets tempo to 48, 125 =T (125 crotchets/min or 100 ticks/sec)
 * discards any sound events and durations waiting to play
 * performs a SCORE to reset player 0's music environment values.

 181

Those parameters of a voice type that apply globally to all voices
of that type, such as overall tuning, are reset by READY, in this
example, to zero. Some voice types may carry out other
initialisations on READY.

RENAME rename word command
 oldnamestring newnamestring RENAME

RENAME changes the name of the word to a new name, in the word
definition itself and wherever it is used in other words. This
command is very useful for changing words to have more meaningful
names once a program is complete.

RENAME will not stop you from using a name that is already in use,
but warns you that a duplicate name now exists. You can use
RENAME again to change it to something else. Until you do,
commands will refer to the renamed one rather than the original,
so for example you cannot use DELETE on the original.

Note that RENAME does not change any editor text.

examples "temp" "part1" RENAME
 "part1" "part1a" RENAME

further information

You can use RENAME with a text editor to make limited global
changes to the contents of words, for example, to change riff to
riff1 riff2 wherever it appears in part1, where these are word
names:

 "riff" "riff1 riff2" RENAME
 "part1"GET
 "riff1 riff2" "riff" RENAME
 MAKE

You can use this to replace any word sequence by first replacing
the sequence by a single dummy word of the same name, for example

 "part1"GET
 "C(EG)" []
 MAKE

to make C(EG) a renamable word.

 182

REP(start indefinite loop [] only

The instructions inside REP(...)REP are carried out an
indefinite number of times.)UNTIL(can be included to leave the
loop when a condition is met.

REP(...)REP is most commonly used to repeat something 'forever',
that is, until the program is stopped by pressing ESCAPE.

'flag)UNTIL(' exits the loop (jumping to the first word after
)REP) if the flag is ON. The flag can be the result of a
condition test, just as with IF(.

The condition and)UNTIL(can be put anywhere in the loop: with
them at the end, the loop acts like the 'REPEAT UNTIL' of other
languages, doing the main contents at least once:

 / \
 ... REP(..main contents.. condition)UNTIL()REP ...
 __________/

With them at the start, it acts like a 'WHILE REPEAT', not doing
the contents at all if the condition is satisfied on entry:

 / \
 ... REP(condition)UNTIL(..main contents..)REP ...
 ______________________________/

You can combine these two by putting the)UNTIL(in the middle,
and you can have more than one)UNTIL(in the same loop – they act
entirely independently.

REP(...)REP can only be used inside words.

examples

"forever" [REP(0:CGd-E Fc/b)REP]

"retwait" [% wait for RETURN press
REP(#IN 13 #=)UNTIL()REP]

"ctrlhold" [% utility command: CTRL holds music, SHIFT exits
REP(
 REP(-2 QKEY)UNTIL(% exit if SHIFT pr essed
 -1 QKEY)UNTIL(% exit if CTRL pressed
 IDLE)REP % until then, idle so players run
 -1 QKEY)UNTIL(% exit main loop if SHIFT pressed
 ON PAUSE % else CTRL was pressed – pause
 REP(-2 QKEY NOT)UNTIL(% wait until CTRL lifted
 IDLE)REP % until then, idle so players run

 183

 OFF PAUSE % when CTRL lifted, release pause
)REP] % return to top
...
RUN % start music playing
ctrlhold % use it

related words FOR()UNTIL(

further information

Up to 23)UNTIL(s are allowed, depending on the number of
structures within the loop.

)UNTIL(treats all non-zero values as ON, so you can directly test
a number for non-equality to zero.

)REP end indefinite loop [] only

REP(...)REP encloses words that are to be executed an indefinite
number of times, with)UNTIL(providing a conditional exit from
the loop.

See REP(for more information.

$REV reverse the order of characters [] only
 string $REV -> reversedstring

$REV reverses the order of the characters in the string, so the
last (right-most) becomes the first (left-most) and so on. One
use is to get access to characters at the right end for operations
such as $CHR.

examples "hello" $REV leaves "olleh"

related words $12

RVOICES set voices range
 startnumber endnumber RVOICES

RVOICES sets the voice range for the current ensemble, that is the
range of voices that will be selected by a future EVERY VOICE
command, and also itself selects all voices in the range. See
VOICES for the operation of the voice range.

RVOICES is used, as is VOICES, to direct future sound settings
such as instruments to all voices in a certain group at once.

 184

whereas VOICES sets a range that starts with voice 1 and goes up
to the number specified, RVOICES allows both the start and finish
number to be specified, so is more useful where there are two
voice sub-groups requiring different seettings. In fact,

 number VOICES is equivalent to 1 number RVOICES

related words VOICES VOICE

example

 3 5 RVOICES briteins % send instrument to voices 3, 4 and 5

further information

The startnumber and endnumber may be any number from l to 12, the
highest-numbered voice position available. If the startnumber is
higher than the endnumber, then 0 VOICES, the empty voice range,
will be set.

SAVE save program command
 string SAVE

SAVE saves all user words as a program file.

If the program is complete, it is usual for it to include a user
word called RUN which runs the program.

example "piece2"SAVE

related words LOAD

further information

SAVE compacts free memory, stops players 1-10 and all sounds, and
resets player 0's music action chain.

SAVE also saves any public editor data present.

SCORE prepare for music words

SCORE resets the players' music environment values, preparing it
for music event words (notes, rests etc.). SCORE is used at the
start of every section of score that uses music words, making sure
that settings made in the previous section are cancelled.

The full effect of SCORE is:

 185

 K()K 0 BAR 1; 48, 0: 64=L 15'L 0@ SIMPLEACT

plus cancellation of any pending effect of +, =, –, ~, !, (, +L
and -L, plus zeroing of the | word's ticks/bar count.

SCORE does not affect the tempo at all, neither resetting it or
cancelling any +T or -T effect in progress.

example SCORE K(+F)K 192 BAR % signature

 "sig" [SCORE K(+F)K 192 BAR]

related words SIMPLEACT K(BAR ; , : =L +L -L 'L @ ACT(

SHARE select voice ensemble
 ensemblenumber SHARE

SHARE selects the ensemble to be used by this player, and carries
out an EVERY VOICE to select all voices in the ensemble's current
range. Though each player initially uses its own ensemble (group
of voices), that is, the ensemble of the same number, SHARE can be
used to select any of ensembles 0 to 10 for the player, causing
sound commands (direct and from music events) to be sent to this
ensemble along with those from any other players that have
selected the same one.

SHARE is commonly used as a command to select a particular player's
ensemble for adjusting its voices while a piece is playing, and as
an instruction to set up players' voices from a single point in
one 'master' player.

examples

 2 SHARE % select ensemble 2 ('player 2' s voices')

 1 SHARE string % change all voices of player 1 to 'string'

 3 SHARE 1 VOICE ins % change player 3's voice 1 only

 PNUM SHARE % return to using this player's ensemble

related words P(PNUM VOICE

further information

Here are some of the advanced uses of SHARE:

 1 Sharing one ensemble between two players which use it for

 186

 alternate passages, as an alternative to merging the scores

 2 Using a single ensemble from more than one player
 simultaneously, for special effects or advanced score
 structures

 3 Switching a player between alternative ensembles for instant
 instrument changes

When a player is created (by its first P(...)P), it uses its own
ensemble, that is, effectively carries out a PNUM SHARE.

When using SHARE for complicated effects, you should remember that
the VOICE setting (voice selection) is associated with the player
(obviously), but the VOICES setting (voice range) is associated
with the ensemble. You will normally only change an ensemble's
VOICES setting from one player (usually the 'owning' one, the one
of the same number), and in particular, not from a command entered
while music is playing.

When arranging two or more players to use a single ensemble,
usually one (often the 'owner') will be elected to set up the
voices with instruments – take care that no other send sounds to
the voices before this stage, making reference to the GO operation
sequence if necessary.

SHOW show user words command

SHOW gives an alphabetical list of the names of the user words,
followed by a count of them.

example

 %SHOW
 RUN act all next
 riff2 riff start sync
 wait
 9 words
 %

related words RENAME DELETE

further information

It is possible for more than one word of the same name to exist in
a single program. RENAME can create this situation. Commands
will access the most recently-created version, and this can be
renamed to allow access to the others.

 187

The user word list is searched in reverse order so that preference
is given to a longer name rather than a leading substring of it.
This ensures that with the words 'fred' and 'freda' on the SHOW
list, the input 'freda' would be interpreted as the word 'freda'
not the Words 'fred' and 'a'.

SIGN test number is negative
 number SIGN -> flag

SIGN takes a number and leaves flag indicating its sign – ON if
negative, OFF if positive or zero.

examples ... SIGN IF(...)IF % do if negative

related words #> #<

further information

SIGN is a faster alternative to 0 #< .

SIMPLEACT remove all music actions

SIMPLEACT removes all music actions on this player. It is used to
initialise the player's music action chain to the initial, empty,
state.

Other words that remove music action include SCORE, which performs
SIMPLEACT and initialises all other music environment values, and
ACT(, which allows an action to be removed individually by
reference to their definitions.

related words SCORE ACT(

further information

SIMPLEACT is useful for clearing all actions without having to
know which are in use and then clearing them individually.

SP print a space

SP prints a space on the screen. It is a shorter and clearer
equivalent to 32 #OUT. SP is commonly used to separate numbers on
one line.

example 5 NOUT SP -4 NOUT prints 5 -4

related words #OUT NL

 188

STOP stop program

STOP stops the program (including players 1-10) and all sounds.

STOP is used either as a command to stop a piece that is playing,
or as an instruction in a word definition to end execution
immediately and return control to the % prompt.

When a piece ends naturally, the memory used by players 1-10 is
not freed (since they could be waiting for further instructions),
but STOP frees this memory, making sure is it available for other
uses.

examples

 %RUN % command to start playing
 %STOP % end piece prematurely

 ... #IN 13 #= IF(STOP)IF % end on RETURN

further information

STOP does the following:

 * silences all sounds
 * stops players 1-10, and frees the memory used by them
 * sets OFF PAUSE and OFF HALT
 * sets player 0's note context to normal
 * sets player 0 to use its own voices (ensemble no. 0)

It does not free voices.

$STR convert number to decimal string represenation [] only
 number $STR -> string

$STR converts a number to the string of characters representing
the number in decimal, including a leading minus sign if the
number is negative. It is commonly used to format or process the
text of a number before printing it, for example to put it in a
fixed size field with $PAD.

examples

 -425 $STR produces "-425"

 "fnout" [% number fieldnumber fnout
 % print number in field of specified width

 189

 #12 $STR % convert to number
 $PAD %pad to specified number of spaces
 $OUT] % print string

related words &$STR VAL $PAD

&$STR convert number to hex string representation [] only
 number &$STR -> string

&$STR converts a number to the string of characters representing
the number in hexadecimal (not including the & sign). It is
commonly used to format or process the text of a number before
printing it, for example to put it in a fixed size field with
$PAD.

examples

 254 &$STR produces "FE"

 "&fnout" [% number fieldnumber fnout
 % print number, with & ,in field of specified width
 #12 &$STR % convert to number
 "&" $+ % add & to start
 $PAD % pad to specified length with spaces
 $OUT] % print string

related words $STR &VAL $PAD

$STRIP remove leading spaces from string [] only
 string1 $STRIP -> string2

$STRIP removes any spaces that are on the start (left end) of the
string.

$STRIP is often used in the processing of string input, in
particular to remove leading spaces from a number in string form,
before converting to numeric form by VAL or &VAL (these do not
strip leading spaces themselves) .

examples

 " hello" $STRIP produces "hello"

 " 10" $STRIP produces "10"

 " 10" VAL produces " 10" OFFflag % no number found
 " 10" $STRIP VAL produces "" 10 ONflag % number found

 190

related words $PAD VAL &VAL

=T set tempo
 number =T

=T sets the tempo in beats per minute. The tempo is the rate at
which musical time passes, that is, a measure of how long a single
timebase tick (one unit of DURATION or ',') lasts. It is global,
that is, applies throughout the system, to all players.

The 'beat' is the current ',' setting, so an =T instruction is
often preceded by a ',' setting to make it complete. In fact, the
final tempo, in ticks per minute, is the beat value (ticks per
beat) mutiplied by the =T number (beats per minute), so either may
be used to control the tempo. One example of this is a sequence
of music events starting with =T – the resulting speed is
independant of the prevailing beat setting:

 number, 125=T XXXX % speed independent of number

=T cancels any +T or -T changes in progress.

READY sets the tempo to '48, 125 =T', which is exactly 100 ticks
per second, or 6,000 ticks per minute.

examples

 READY 100 =T % sets tempo to 100 crotchets per minute

 1, 50000 =T % set tempo to 50000 ticks per minute

 "tempo" [60 =T] % will always set the tempo to 60 beats
 % per minute, regardless of ',' value.

related words , +T -T READY

further information

The range of =T control is 92 to 65535 ticks, or with a beat
setting of '48,' , 2 to 1365 crotchets per minute.

=T issues a tempo sound event which is interpreted by the current
time server. Non-standard time servers may provide alternative
functions for =T.

 191

+T increase tempo changenumber
 beatsnumber +T

+T increases the tempo by the specified amount, over the specified
number of beats (',' units). The change number is exponential in
effect, with 0 giving no change, 64 doubling the tempo and -64
halving it. The range of the change number is -127 to 127.
+T is used for a range of relative tempo changes, both gradual
('accelerando' and 'rallentando') or instantaneous.

The exponential scale ensures that tempo changes of opposite sign
are entirely complimentary - any change can be reversed with a
change of the same magnitude and opposite sign. Also, tempo
changes can be specified as fractions, using one change for the
top number, followed immediately by a second for the bottom.

Each +T instruction cancels any +T or -T effect in progress, and
begins its effect from the tempo reached at that time.

examples

 64 0 +T % instantly double tempo

 20 16 +T % accelerando (gradual speed-up)
 C//D E/c/ % of 20 units over 16 beats
 EFG/ A///

 -37 8 +T % decrease by 50% over 8 beats ('rallentando')
 XXXX XXXX
 XXXX XXXX
 37 0 +T % instantly restore tempo ('a tempo')

related words , =T -T

further information

The new tempo, expressed as a percentage of the old, is given by:

 (changenumber / 64)
 100 x 2

Here is the new tempo for each of a range of change values,

 192

expressed as a percentage of the old:

changenumber relative tempo changenumber relative tempo
 -64 50 0 100
 -56 54.5 8 109
 -48 59.5 16 119
 -40 64.8 24 130
 -32 70.7 32 141
 -24 77.1 40 154
 -16 84.1 48 168
 -8 91.7 56 183
 64 200

A decrease can be achieved either by +T with a negative value, or
-T with positive value.

The precise percentage tempo change is:

 (changenumber / 64)
 100 x 2

The exponential scale allows tempo changes to be combined for
greater or more-convenient control. In addition to changes that
return to the original after a time, the applications include:

 * multiple precision – a second immediate tempo change adds
 extra precision for wide changes
 * fractional changes ('metrical modulations') – one change
 does the top number, and a second does the bottom, for
 example:

 % total tempo change of 3/2
 101 0 +T % x 3
 -64 0 +T % / 2

+T and -T issue tempo sound events which are interpreted by the
current time server. Non-standard time servers may provide
alternative functions for +T and -T.

-T decrease tempo
 changenumber beatsnumber -T

-T decreases the tempo by the specified amount, over the specified
number of beats (',' units). The change number is exponential in
effect, with 0 giving no change, 64 halving the tempo, and -64
doubling it.

-T is used for a range of relative tempo changes, both gradual
('rallentando' and 'accelerando') or instantaneous. Its effect is

 193

identical but opposite to that of +T. See +T for further
information.

related words =T +T

TYPE type word definition on the screen command
 namestring TYPE

TYPE types the contents of the word on the screen, as it would
appear in a text editor. It is useful for quickly examining words
without using the editor, which may have other text in it.

TYPE also works on editable module words, for example, preset
instruments.

example "sig" TYPE

UNTIL(exit from indefinite loop [] only

REP(...)REP encloses words that are to be executed an
indefinite number of times, with)UNTIL(providing a conditional
exit.

See REP(for more information.

 194

UNUSED make voice(s) unused

UNUSED makes the currently selected voice or voices unused,
freeing a voice of that type for use elsewhere. UNUSED voices
make no sound, and do not respond to sound commands or music
events.

UNUSED is used to recover voices when they have been finished
with.

example

 3 VOICES ins1 % three voices
 ...
 3 VOICE UNUSED % free 3 for use elsewhere

 3 VOICES ins1 % three voices
 ...
 ON VOICE UNUSED % free all voices on this player
 2 VOICES ins2 % assign two for smaller chords

related words VOICE VOICES RVOICES

further information

Since, assigning any voice will replace the voice previously in
use, UNUSED can be thought of as a voice type itself, but one
which has no limit on the number in use.

VAL convert string to unsigned decimal number [] only
 string VAL -> remainingstring number ON if found
 -> remainingstring OFF if not found

VAL converts the string representation of a decimal number into a
number on the stack, leaving the remainder of the string. The
number is left with ON on top, or if no number was found, OFF is
left. VAL is used with $IN to let the program accept numbers from
the keyboard while running.

VAL expects the first character of the string to be a decimal
digit: it does not ignore leading spaces or recognise a minus
sign. Leading spaces should be removed beforehand with $STRIP.

examples

 "10 20" VAL produces " 20" 10 ON

 "nin" [% input decimal number
 % nin -> number ON if legal number found

 195

 % nin -> OFF if legal number not found
 $IN % get string
 $STRIP % remove leading spaces
 VAL % convert to number
 $2] % discard remaining string

 "lnin" [% get a line of numbers entered by the user
 % lnin -> number-n ... number2 number1 countnumber
 $IN % get line
 0 % initial count of numbers found
 REP(
 $STRIP VAL % look for number
 NOT)UNTIL(% exit if none found (non-valid, or end of line)
 #12 % swap foud number and count, so count is on top
 1 #+ % increment count
)REP
 $2] % drop remainder of string
 "trylnin" [% test routine
 REP(
 lnin % get list of numbers, with count on top
 FOR(NOUT SP)FOR % print them (in reverse of input order)
 NL)REP] % repeat for ever

related words $STR &VAL

&VAL convert to unsigned hex number [] only
 string &VAL -> remainingstring number ON if found
 -> remainingstring OFF if not found

&VAL converts the string representation of a hexadecimal number
(with no 5) into a number on the stack, leaving the remainder of
the string. The number is left with ON on top, or if no number
was found, OFF is left. &VAL is used with $IN to let the program
accept numbers from the keyboard while running.

&VAL expects the first character of the string to be a hexadecimal
digit: it does not ignore leading spaces or recognise a minus
sign. Leading spaces should be removed beforehand with $STRIP.

examples

 "OF 3C" &VAL produces " 3C" 15 ON

 "&nin" [% input hex number
 % &nin -> number ON if legal number found
 % &nin -> OFF if legal number not found
 $IN $STRIP $VAL $2]

 "dhnin" [% get number input in either form: dddd or &hhhh

 196

 % dhnin -> number ON if legal number found
 % dhnin -> OFF if legal number not found
 $IN $STRIP % get line and strip spaces
 1 $- ASC % get initial character as ascii number
 #11 "&" ASC #= % if it is & ...
 IF(&VAL)ELSE(% treat as hexadecimal
 $CHR $+ % else out the initial characetr back on,
 VAL)IF % and treat as decimal
 $2] % discard remainder of string

related words &$STR &VAL

VOICE select voice(s)
 voicenumber VOICE

VOICE selects the specified voices to receive sound instructions
issued by the player. The voices are numbered from 1 upwards.
VOICE is used to send instruments and individual sound
instructions to a particular voice.

VOICE should not be confused with VOICES, which selects more than
one voice simultaneously.

Note that VOICE selects the voice for sound instructions, not
music events (notes, hits, rests and ties). Music event voice
selection is done using ';'.

The voice selection is only valid for the sound instructions up to
the music event, since these instructions set it back to EVERY
VOICE. You must use VOICE again before the next group of sound
instructions, for example

 ..music.. n VOICE ..sound.. ..music.. n VOICE ..sound..

EVERY VOICE has the special effect of selecting voices in the
current voice range (set by VOICES or RVOICES) simultaneously, so
that the following sound instructions are sent to all of them.

examples

 ... sect1 ON VOICE instru sect2 ... % new instrument

 ... sectl 1 VOICE instr1 2 VOICE instr2 sect2 ...
 % different instruments on each of 2 voices

 3 VOICES tom-tom % 3 voices with the same instrument...
 1 VOICE -7 PITCH % but different variations
 2 VOICE 0 PITCH
 3 VOICE 12 PITCH

 197

related words VOICES RVOICES

further information

The following argument values are allowed:

 OFF select no voices
 1-12 select numbered voice
 EVERY select all voices in current range (set by VOICES/RVOICES)

Each music event achieves its effect by sending sound instructions
which are normally invisible to the user, and it uses UOICE to
direct them to the voice specified by ';'. The event finishes by
executing EVERY VOICE, thereby leaving the voice selection in a
defined state. Because of this, any sound instruction without a
VOICE instruction that lies after a music event will be applied to
all voices in the current range.

Note that SHARE and VOICE can be used together to select any voice
– in effect, SHARE sets the top digit (the ensemble number) and
VOICE the bottom digit of a complete two-digit voice number.

Hore care is needed in using VOICE when DURATION (or '\') is in
use to move up and down musical time. Under these conditions, the
voice selection cannot be relied upon after a DURATION because a
conflicting voice selection could be left in this time interval by
a VOICE from later or earlier in the program. The rigorous method
is to confirm the voice selection with VOICE between each
DURATION and the following sound instruction.

VOICE! set voice settings in frame
 voicenumber VOICE! or EVERY VOICE!

VOICE! sets all non-zero voice values in the current music action
frame to the specified value. In fact, it will operate on any
seven numbers below the current frame pointer, but its use is
usually confined to action frames.

VOICE! is used to set the destination voice prior to calling ACT,
usually from within ACT(...) ACT. The standard music action
frame has three voice values (see ACT for details) each of which
is either OFF, or the the voice number, depending on the event
type (note, rest etc.). VOICE! changes the voice number only,
leaving OFF values unchanged and so preserving the event type.

examples

 ... 2 VOICE! ... % set voice to 2

 198

 "vtop" [% flag vtop
 % redirect each voice to player of the same number
 % i.e. voice 1 to player 1, voice 2 to player 2 etc.
 % used for passage of large chords, for example
 20 AND ACT(
 5 FVAR #? % get event voice (actually, gate voice)
 SHARE % select player
 1 VOICE! % change all voice numbers to 1
 ACT % execute event
)ACT]

related words VOICE ACT(MVAL

VOICES set number of voices
 number VOICES

VOICES sets the 'range' of voices to include those from 1 to the
number given, so that these voices will be selected together by a
future EVERY VOICE command, and also itself selects all voices in
this range. Whenever an EVERY VOICE is used, all voices in the
range set by the previous VOICES will be selected. The range
remains set until the next VOICES, RVOICES or READY.

VOICES is used to direct future sound settings such as instruments
to all voices in a group at once, in particular, to the number of
voices specified, starting with voice 1. It should not be
confused with VOICE which selects voices, but doesn't set the
voice range.

The voice range belongs to the ensemble (the object selected by
SHARE) not the player itself, so VOICES (and RVOICES) is directed
to the ensemble currently selected by the player. This means that
when two players are accessing the same ensemble (after one has
SHAREd the other), they share a common voice range, and one player
could inadvertently change the effect of the other's sound
instructions by altering the voice range. For this reason, when
accessing another player's voices through SHARE, you should not
normally use VOICES (or RVOICES).

examples

 READY 8 VOICES ins1

 ...
 4 VOICES ins1 % four identical voices,
 3 VOICES -12 PITCH % but 1 to 3 have pitch set
 4 VOICES % restore range for future EVERY VOICEs
 ...

 199

related words VOICES VOICE RVOICES

further information

The VOICES number should be in the range 0 – 12.

READY sets the voice range of each ensemble to 0 VOICES.

WIND advance time
 ticksnumber WIND

WIND instantly advances the system’s real time by the number of
timebase units given. Its uses include 'winding on' a piece of
music by a certain amount, and advancing time manually when the
timebase is stopped by HALT.

Note that it is not often useful to use WIND in the ON PAUSE
state, since sound execution is completely halted.

examples

 300 WIND % wind on by 300 ticks

 "bw" [% barsnumber bw % wind on by n 4/4 bars
 48 #* % ticks per beat
 4 #* % beats per bar
 WIND]

 "part9" [% simple 'timebase distortion' adding global 'swing'
 % feel by compressing second half of beat
 SCORE 24, / % move to middle of crotchet beat
 REP(12 WIND % leap through next 12 ticks (vary to taste)
 48,/)REP] % wait for one crotchet to pass
 ...
 "part1" [% demonstration
 SCORE
 4 FOR(48, XXXX)FOR % crotchet hits unaffected
 REP(24, XX XX XX XX)REP % quavers are played as triplets,
 % for example, 12, X/X/ X/X/
 % is played as: 12, X/X X/X

 200

WRITE display text of all words command

WRITE writes the text of all user words to the screen, from where
it can be printed, or sent to a file with *SPOOL. The spooled
text can be converted back to a program using the *EXEC command.

WRITE adds an empty definition for each word before writing the
real definitions in alphabetical order. This ensures when
recreating the program from the text, that a word definition can
use another word (or itself) which may not have been completely
compiled at that point.

examples

 CTRL-B WRITE
 CTRL-C % print program

 *SPOOL text % spool program text to
 WRITE % file 'text' for editing
 *SPOOL % with word processor
 ...
 AMPLE % recreate program after
 *EXEC text % editing text

related words TYPE

X play hit

X plays a 'hit' on the current music voice. X is very like the
note letters A-G except that it does not set the pitch. It is
used to play hits ('beats') in percussion scores and to restrike
the last note in pitched music scores.

The hit takes as its length the basic length (set with ','),
though you can extend it with the hold symbol, /. Many percussion
instruments have a sound that dies away immediately, so this will
only affect the amount of time to the next hit, not the length of
the sound. Holds are used, rather than rests, to mark silent
beats between hits, allowing the sound to die away naturally. A
rest cuts a long sound short.

 X / ^
 | | |
 hit (sounding beat) | |
 hold (non-sounding beat) rest (cuts short previous hit)

Hits can be included in chords exactly like notes, for multi-voice
percussion scores. Alternatively, a user 'hit' word can be
defined for each voice – "y" [n;X] where n is the voice number.

 201

Chord brackets are then only used when more than one hit plays on
the same beat:

 y///z//yy///z(y)///
 | | |
 hit on voice 1 | |
 hit on voice 2 hits on both voices together

The pitch of a percussion instrument is determined as part of its
definition, with PITCH.

Used in normal (pitched) scores, X serves to repeat the last note
on that voice. It is useful for repeating chords using ON; .

examples XXXXX//XX^//X/X/ % rhythm with one short hit
 y///z//yy///z(y)/// % two-voice rhythm
 % with one double hit
 C(GE) EVERY;XXX 1; % repeated chord

related words ;

further information

The length of the hit is added to the bar's total of note lengths
for checking by the next bar line.

X calls the player's current music action list, passing the
following stack frame:

 description value default destination

 pitch voice OFF VOICE
 pitch undefined PITCH
 level voice event voice VOICE
 level calculated level VEL
 gate voice event voice VOICE
 gate ON GATE
 duration ',' setting DURATION

On return from the action list, it executes EVERY VOICE to return
the voice selection to a defined state.

If ~ is applied to X, it reduces it to a hold (with the default
music action) – see ~ for details.

 202

XOR exclusive-OR bits of numbers
 number1 number2 XOR -> number3

XOR performs the logical exclusive-OR operation on the bit
patterns of the two numbers. Each bit in the result is only 1 if
the corresponding bits in the input numbers are different.

XOR is used both as a bit-wise operator for manipulating bit
patterns, and as a logical operator for flags:

 bit1 bit2 bit3 flag1 flag2 flag3
 0 0 0 OFF OFF OFF
 0 1 1 OFF ON ON
 1 0 1 ON OFF ON
 1 1 0 ON ON OFF

examples

 &1234 &FF XOR produces &12CB
 in binary:
 0001001000110100 XOR
 0000000011111111
 produces 0001001011001011

 ... &FFFF XOR ... % invert bits in number (bit-wiseNOT)

 ... 3 XOR ... % toggle 1 -> 2, and 2 -> 1

related words AND OR NOT

 203

 editors 26
 ERRORS 67
 EVERY 143
Index examining modules 22
 example programs 11
 exection control 57
a to g 121 extension 21
A to G 119
ACT 32,121 F (MCAT indicator) 25
ACT(124 FAST 34,143
additional interfaces 56 FCOPY 44,143
ALIGN 55,127 FIND 144
AMPLE 128 fixed modules 25
AMPLE commands 13 flag operators 45
AND 45,59,128 flags 44
arithmetic expressions 39 FOR(144
ARRAY 45,129 FRAME 44,145
ASC 130 FRAME! 44,146
asc 49 FRAME? 44,146
function and status 82
BAR 132 FVAR 32,44,146

calling routines 61 GATE 31,36
characters and strings 55 GO 147
CLEAR 27,133 GVAR 45,148
CODE 61,62,134
communications with HALT 35,149
 user routines 65
command mode 10 IF(152
command utility 21 IF(..)ELSE(..)IF 57
commands 56 IF(..)IF 57
COMPACT 20,134 IF(..FOR(..)FOR..)IF 58
concurrency 59 in-fix 39
condition expressions 58 #IN 53,55
conditionals and loops 58 INDEX 58,153
constants 40 index of words 84
COUNT 58,135 input and output 55
 input and output items 82
DELETE 136 INSTALL
9,23,25,153
dictionary of words 81 introduction 5
DIM 45,137
direct text 19 jukebox 11
DISPLAY 140
DURATION 31,140 K(154
KEY9 11
edit mode 10
editor data 27 LEN 49,155
editor non-text 19 length 29
editor text 19 LOAD 23,24,155
editor types 26 loading modules 23

 204

locating user routines 65 ON VOICE! 32
 OR 45,59,168
M (MCAT indicator) 159 OSCLI 63,168
machine-code OSHWM 63
 programming 61 #OUT 55
MAX 158
MCAT 22,25,159 P (MCAT indicator) 159
MDELETE 24,160 P(170
MEM 20,160 passing numbers 42
Memory usage 20 PAUSE 34,172
MIN 161 PITCH 31,36
MLOAD 23,25,161 pitch 29
MODE 20,55,162 player control
module deletion 24 instructions 60
module functions 21 PNUM 60,173
module load on startup 23 post fix 39
module loading program 9
 by program 24 programs and words 17
module loading by user 24
module memory usage 25 QKEY 55,174
module names 22 QTIME 34,63,175
module words 18 queue control
modules 9 sound word 34
modules and editors 21 QUIT 177
movable modules 25
MPREFIX 22,162 routines in
MSHOW 22,163 language RAM 63
music actions 32 routines in
music and sound 29 operating system RAM 63
music enviroment words 29 routines in ROM 64
music event words 30 RAND 47,177
music interpretation 31 RAND! 47,178
Music words 29 RANDL 47,179
music and sound random numbers 47
 event input 56 reading module word 25
MVAL! 163 READY 63,180
MVAL? 163 RENAME 181
 REP 58
NEW 24,165 REP(182
NL 55,165 RUN 54
NOT 45,59,166 RVOICES 35,183
NOUT 41,55,166
nucleus 9 SAVE 184
nucleus words 18 SCORE 184
numbers 55 Screen display 12
numbers and flags 39 SHARE 35,185
 SHOW 186
OS commands 12 SIGN 45,59,187
OFF 167 signed integers 39
ON 167 SIMPLEACT 32,187

 205

sound events 32 word manipulation 19
SP 187 words 18
stack operators 43 WRITE 200
starting a new session 15
starting the system 9 X 200
STOP 60,188 XOR 45,59,202
stopping execution 60
string operators 49 zero page workspace 6
string stack capacity 54
string stack usage 50
synchronisation 56 % 101
system effects 56 ' 101
system words 18 (102
) 105
T (MCAT indicator) 159 * 105
the number stack 41 + 106
the sound queue 33 , 107
time control 34 - 108
time server 21 0 to 9 117
TYPE 193 : 110
type-global voice event 37 ; 111
 #* 93
U (MCAT indicator) 159 #+ 93
UNTIL 58 #- 94
UNUSED 36,194 #/ 94
user routine #11 95
 applications 61 #12 96
user word formatting 19 #2 96
user words 18 #212 96
using AMPLE 9 #2121 97
using strings(command) 51 #< 97
using strings(players) 53 #= 98
using the computer #> 98
 keyboard 10 #? 99
using the input line 51 #B! 131
 #B12 131
VAL 194 #B? 132
VAL/&VAL 55 #IN 150
variables and storage 45 #OUT 169
VEL 31,36 @ 112
VOICE 35,196 | 119
voice assignment 36 / 109
voice selection 35 = 112
voice server 21 " 92
voice servers 37 ! 93
VOICE! 32,44,197 [113
VOICES 35,198 \ 115
] 116
W (MCAT indicator) 159 ^ 117
WIND 34,199 ^; 118

 206

! 91
$+ 49, 99
$- 49, 99
$12 100
$2 100
$CHR 49,133
$IN 53,55,150
$OUT 55,169
$PAD 49,170
$REV 49,183
$STB 188
$STRIP 49,52,189
& 101
&$STR 189
&NOUT 55,167
&VAL 195
'L 156
)ACT 127
)ELSE(143
)FOR 145
)IF 152
)K 155
)P 172
)REP 183
)UNTIL(193
+L 157
+T 191
-L 158
-T 192

<cr> 90
<space> 90
=L 156
=T 190

