acorn electron

ADVANCED
USER GUIDE

acorn electron

= -GN - - 68 - I8
25 B 2 E o= a

" ACORNS
)

Second EdItIOI‘I

The
Advanced

User
Guide

for the Acorn Electron

Adrian C. Dickens BA,
Churchill College,
Cambridge University

Mark A. Holmes BA,
Fitzwilliam College,
Cambridge University

ACORNSE&FT

Published by Adder Publishing, Cambridge

ADDER

The “Acorn Electron Advanced User Guide” is pubdidrby Adder Publishing for
Acornsoft Limited.

Acornsoft Limited, Betjeman House, 104 Hills Ro&&mbridge, CR2 1LQ,
England. Telephone (0223) 316039
ISBN 0907876 17 X

Copyright© 1984 Adder Publishing

Adder Publishing, PO Box 148, Cambridge, CB1 2EQ
ISBN 0 947929 03 7

First published September 1984
Second edition June 2008

The Authors would like to thank Nigel Dickens, Tim Dobson, Steve Furber, Tim
Gleeson, David Johnson-Davies, Dr John Horton, Zahid Najam, Mark
Plumbley, John Thackeray, Ken Vail, Geoff Vincent, Adrian Warner, Leycester
Whewell, Albert Williams and everyone else who helped in the production of
this book.

All rights reserved. This book is copyright. No part of this book may be copied
or stored by any means whatsoever whether mechanical, photographic or
electronic, except for private or study use as defined in the Copyright Act. All
enquiries should be addressed to the publishers. While every precaution has
been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of information contained herein.

The Authors gratefully acknowledge Acorn Computers Limited for their kind
permission to reproduce the complete Electron circuit diagram. The Authors
would like to point out that Acorn Computers reserve the right to make
improvements in the specification of its products. Therefore the circuit diagram
and other contents of this book may not be in complete agreement with the
product supplied.

Please note that within this text the terms Tube, Econet and Electron are
registered tradenames of Acorn Computers Limited. All references in this book
to the BBC Microcomputer refer to the computer produced for the British
Broadcasting Corporation by Acorn Computers Limited.

This book was prepared using the Acornsoft VIEW wordprocessor on the BBC
Microcomputer and then computer typeset by Parker Typesetting Service,
Leicester.

Printed in Great Britain by The Burlington Press Ltd. Foxton, Cambridge.
Book production by Adder Publishing.

Contents

Introduction

1

The Acorn design philosophy 7

Operating system routines and vectors

2

Operating system calls 9
2.1 OSWRCH Write character routine 10
2.2 Non-vectored OSWRCH 10
2.3 OSRDCH Read character routine 11
2.4 Non-vectored OSRDCH 11
2.5 OSNEWL Write a newline routine 12
2.6 OSASCI Write character routine 12
2.7 GSINIT General string input initialize 13
2.8 GSREAD Read character from string 13
2.9 OSRDRM Read byte from paged ROM 14
2.10 OSEVEN Generate an event 15
2.11 OSCLI Pass string to the CLI 15
OSBYTE calls 16
OSWORD calls 87
Filing system calls 94
5.1 OSFILE Read/write entire file 95
5.2 OSARGS Read/write file attributes 98
5.3 OSBGET Get a single byte 100
5.4 OSBPUT Write a single byte 101
5.5 OSGBPB Read/write a group of bytes 102
5.6 OSFIND Open or close file 105
5.7 OSFSC Misc filing system control 106
Operating system vectors 110
6.1 The User vector 113
6.2 The BRK vector 116
6.3 Interrupt vectors, IRQ1V & IRQ2V 119

3

6.4 The event vector, EVNTV
6.5 User print vector, UPTV

6.6 Econet vector, NETV

6.7 VDU extension vector, VDUV
6.8 Keyboard vector, KEYV

6.9 Buffer maintenance vectors
6.10 Unused vectors

6.11 The default vector table

Interrupts

7.1 Introduction

7.2 Interrupts on the Electron
7.3 Using NMls

7.4 Using IRQs

7.5 Intercepting interrupts

Paged ROM firmware

8

10

11

Paged ROM formats

8.1 Paged ROM header format
8.2 Language entry

8.3 Service entry

8.4 ROM type byte

8.5 Copyright offset pointer
8.6 Binary version number
8.7 Title string

8.8 Version string

8.9 Copyright string

8.10 Tube relocation address

Language ROMs

9.1 Language initialization

9.2 Firm keys

9.3 Language ROM compatibility

Service ROMs

10.1 Paged ROM service calls
10.2 Service ROM example
10.3 Extended vectors

*ROM filing system ROMs

11.1 Converting files to *ROM format
11.2 The header code

11.3 Service call &D

4

119
121
123
124
125
126
134
134

135
135
138
138
138
139

143
144
144
145
145
146
146
146
147
147
148

148
148

149
150

152
152
162
171

172
173
173
174

11.4 Service call &E 175
11.5 *ROM data format 176
11.6 Example 178

Memory usage

12 Memory allocation and usage 183
Hardware
13 An introduction to hardware 201
14 Inside the Electron 204
14.1 The ULA and its registers 204
14.2 The keyboard 216
15 Outside the Electron 217
15.1 Introduction 217
15.2 The expansion connector 217
15.3 Designing circuits 222
15.4 Sideways ROMs 225
15.5 The 1MHz bus 227
15.6 The A to D converter 229
15.7 Disabling the Plus 1 229
Appendices
A VDU code summary 230
B PLOT routine functions 232
C Screen MODE layouts 234
D OS calls and vectors 241
E Plus 1 ROM connector 243
F Complete circuit diagram 250
G Hardware expansions 252
Bibliography 256
Glossary 257
Index 262

Introduction

The Advanced User Guide for the Electron has been designed to
be an invaluable reference guide for users of thetéon
computer. The origindtlectron User Guide provides a
description of BASIC on the Electron and reachespibint at
which programming in Assembly Language is introadlj@ong
with a very brief introduction to the available &m calls. The
Advanced User Guide takes over at this point byiging a
thorough, well indexed and cross referenced desmnipf all the
available facilities and how to use them. This ailow the
serious programmer to make the most of his/her mackvhilst
keeping within the Acorn Guidelines to ensure cotityday with
other machines in the Acorn BBC Micro series.

It is inevitable that a machine like the Electrtwosid be partially
overpowered by itbig brother the BBC Micro. However, many
of the facilities which are provided on the largsgichine can also
be added on to an Electron. A whole new seriegefaiing
system calls have been provided to take accouthisfand are
described within these pages.

What may not at first sight be so apparent isithatany ways the
Electron has more expansion potential than a BB&®iThis is
becausall of the 6502 bus lines are available to expansion
modules via the expansion connector. A full desnipof this
connector, including interfacing details for pag&@Ms and other
devices have therefore been included.

The authors have tried to provide a book which kéllfound by
the side of all enthusiastic Electron programmalismaterial is

in an easily accessible referenced format. Whepeogpiate,
examples are presented and discussed. In partithdse is a
large section concerned with the use of paged RMQiNs.
intended that this will help programmers to buifdthe necessary
skills for producing their own exciting softwareROMSs.

All of the information contained in this book haselm checked on
an Electron fitted with Electron OS 1.00 and BAZIGNhere
appropriate, an Electron Plus 1 expansion modutealso used.

6

1 The Acorn Design
Philosophy

A glance through the back pages of any microcompusgazine
will reveal a large number of machines ‘For Saldiis is a
reflection of the speed at which the industry motes all-new
whizz-bang machine can become yesterday’s micas ilittle as a
year. The manufacturer has to tread a careful jpatithe one
hand he is committed to improving his products,druthe other
he must not render his existing range obsolete.

The Acorn design philosophy has been to produgstamm right
from the start which would allow for growth in bdtie software
and hardware. All users should be aware of thisay wish their
own software and hardware to be compatible withctimaplete
range of available systems, from a humble Eledtigirt up to a
machine with Econet, second processor, hard disk&asuring
compatibility is not hard, it simply requires alétself-discipline
in your approach.

Therules as such are simple. If your software needs to acces
anything outside its own domain (that is the menarg other
resources it has been provided with) then use fliceadly
supported operating system routines. The secoidnske no
assumptions about the environment your programruillunder.
This includes the amount of memory available, ttee@ssor and
any other software / hardware components which tiogtihere.
Run-time enquiries have been built into the sysie@ilow you to
discover these facilities.

Programs which run in RAM, say a simple Basic paogrmay
discover that there is not enough memory availédléhem. A
test for this should be made at the start of tlgm@mm, since they
should not be allowed to crash and should neveangenemory
outside their allocation. Programs placed in ROMuth not
make assumptions about their eventual run-timerenment
either. They may find themselves copied over thieeTand

7

running in RAM on another processor!

One of the most common situations on the BBC mmngauter
where incompatibility arises, is where softwardesigned for use
on non-Econet machines and then used on such neacHihis
ultimately denies the software producer a saledamies the
Econet machine owner use of a particular programs iE a
situation which can be avoided by intelligent s@ftevdesign and
reasonable product testing. The Electron cont@wnef pitfalls in
this respect, but where software is destined for

distribution, the programmer should think aboutatént machine
configurations and potential problems.

2 Operating System
Calls

The list below contains all the Acorn supportedrapieg system
routines and their vectors which exist in the E@ctOS 1.00. See
theUser Guide for a general description of these calls.

2.1 OSWRCH Wkite character routine

Call address &FFEE Indirected through &20E

This routine outputs the character in the accuroulatthe
currently selected output stream(s).

On exit:
A, Xand Y are preserved.
C, N, V and Z are undefined.

The interrupt status is preserved (though intesropay be
enabled during a call).

2.2 Non-vectored OSWRCH

Call address &FFCB

This call is normally made by OSWRCH. This call imasvector
and so cannot be intercepted. Its use is not re@rdad for this
reason.

2.3 OSRDCH Read character routine

Call address &FFEO Indirected through &210

This routine reads a character from the currerglgced input
stream and returns it in the accumulator.

On exit:
C=0 indicates that a valid character has been @ad. indicates
that a character has not been read due to an error.

If an error should occur acknowledgement of therezondition
should be made using OSBYTE &7E.

Xand Y are preserved.
N, V and Z are undefined.

The interrupt status is preserved (though intesropay be
enabled during a call).

2.4 Non-vectored OSRDCH

Call address &FFCS8

This call is normally made by OSRDCH, it is not iéafale for
interception and its use is not recommended by #cor

10

2.5 OSNEWL Write a newline routine
Call address &FFE7 Not indirected

This routine writes a line feed (&A/10) and a cage return
(&D/13) to the current output stream(s) using OSWRC

On exit:
A=&0D (13)
X and Y are preserved.
C, N, V and Z are undefined.

Interrupt status is preserved (though it may bélkeabduring a
call).

2.6 OSASCI Write character routine,
OSNEWL called if A=&0D (13).
Call address &FFE3 Not indirected
This is a write character routine performing theeaaction as
OSWRCH but which outputs a line feed and a carriagen in
response to a carriage return character.
On exit:

A, X and Y are preserved.

C, N, V and Z are undefined.

Interrupt status is preserved (though interruptg beaenabled
during a call).

11

2.7 GSINIT General string input
Initialise routine.

Call address &FFC2

The original intention was that this routine togettvith
GSREAD would provide a standard string input fagior the
use of filing system paged ROMs. It is now felttttias routine is
unsuitable for that purpose and accordingly itsisset
recommended.

This routine initialises a string for input priar teading using
GSREAD.

Entry parameters:
String address stored in &F2 and &F3 plus offeeY i
C=0, if first space, CR or second " terminatesuinp
C=1, if first space does not terminate input

On exit:
Y contains the offset of the first non-blank chaeadrom
the address contained in &F2 and &F3.
A contains the first non-blank character of string
Z flag is set if the string is a null string

2.8 GSREAD Read character from
string input routine.

Call address &FFC5

This routine is used to read characters from aatisping after a
GSINIT call. Control codes and non-ASCII values rbay
introduced into the input string by using an escap@acter, ‘|'.
The escape character followed by a letter givesaaacter value
equal to the ASCII value minus 64 (&40). The esceperacter
followed by a ‘1’ character gives a value of 1289the value of
the next character in the string. An escape charéatiowed by
itself gives the escape character.

12

Entry parameters:
&F2, &F3 and Y set by GSINIT

C=0 String terminated by first space, carriagarrebr
second guotation mark.

C=1 String terminated by carriage return or second
quotation mark.

On exit:
A contains the character read from the string.
Y contains the index for the next character todzelr
C=1 if the end of string is reached.
Xis preserved.

2.9 OSRDRM Read byte from paged
ROM routine.

Call address &FFB9
This call returns a byte read from a paged ROM.
Entry parameters:

ROM number stored in Y.

Address stored in &F6 and &F7.

On exit:
A contains the value of the byte read.

This routine was included for the implementatiorR@M filing

system software in paged ROM and is not recommefated
general use.

13

2.10 OSEVEN Generate an event routine.
Call address &FFBF

The user event may be generated using this ro8ioitware
replacing OS routines should generate the apptepeizents by
making this call.

Entry parameter:
The event number should be placed in Y.

On exit:
C=0 if and only if the event was enabled.

2.11 OSCLI Pass string to the CLI.
Call address &FFF7 Indirected through &208

This routine is implemented on the BBC micro, tiecEon and
the Tube operating system.

This call provides the machine code user with aveaient
method of performing any of the * commands thatsysem
provides from Basic. The command required is placexstring
as normal text and this call is made.

If the string passed to the CLI is not terminatgdatrarriage
return within 255 bytes this routine has undefieffdcts.

The following commands are recognised:

* String escape character rest of command ignored
*, treated as a *CAT command

*/ treated as a *RUN command

*BASIC select BASIC as current language

*CAT iIssue catalogue request to filing system

*CODE passed to user vector (see chapter 6)
*EXEC select text file as input stream

14

*EX issue OSBYTE call (no registers returned)
*HELP issue paged ROM service call 9, see chafier 1
*KEY take rest of line as text for soft key

*LINE passed to user vector (see chapter 6)

*LOAD issue load request to filing system

*MOTOR open/close cassette motor relay

*OPT issue option request to filing system
*ROM select *ROM filing system
*RUN issue load and execute request to filing syste

*SAVE issue save request to filing system
*SPOOL include text file in output stream
*TAPE select tape filing system

*TV ignored by the Electron

These commands may be abbreviated by taking tteféhv
letters and terminating with a ‘.’ character. Pagtens may be
passed in the text following the command.

Otherunrecognised commands are first offered to paged ROMs
(see section 10.1) and are then offered to thentlyrselected
filing system via the filing system control vec{gee chapter 5).

Entry parameters:
X and Y contain the address of a line of text (Xalbyte,
Y=high-byte) terminated by a CR character.

On exit:

A, X, Y, C, N,V and Z are undefined. Interrupttstais preserved
but interrupts may be enabled during a call.

15

3 OSBYTE calls

OSBYTE calls are a powerful and flexible way of@king many
of the available operating system facilities.

OSBYTE calls are specified by the contents of ttueulator (A
register) in the 6502. This means that up to @férent calls can
be made.

The command line interpreter (see section 2.1Xppas
OSBYTE calls in response to *FX commands. This &sathe
user to make OSBYTE calls from the keyboard or wiBBASIC
programs. It should be noted however that no resué returned
by a *FX call and so it is inappropriate to uset@ier OSBYTES in
this way.

OSBYTE Miscellaneous OS functions specified by the
contents of the accumulator.

Call address &FFF4 Indirected through &20A

On entry:
A selects an OSBYTE routine.
X contains an OSBYTE parameter.
Y contains an OSBYTE parameter.

All calls are made to the OSBYTE subroutine at adsli&FFF4.
This is then indirected through the vector at &2A@hich means
that user programs can intercept the OSBYTE callsrb they
get to the operating system if so desired). Thecsedl function is
determined by the accumulator contents. Two pararsmetn be
passed to and from OSBYTE routines by putting @lees to be
passed in the X and Y registers respectively.

16

Example

Using OSBYTE 4 to disable cursor editing.

From BASIC this would be typed as:

*FX 4,1

From assembly language it could be performed as:

LDA #4 \ Load accunulator with 4
LDX #1 \ Sel ect cursor disabled option
JSR &FFF4 \ Make OSBYTE cal |

If an OSBYTE is not recognised by the Electronyilt be offered
to any fitted paged ROMs (see chapters 8 to 119.O8BYTE
will then usually be claimed by the relevant expamsnodule’s
ROM. When OSBYTE is called directly, if none of thaged
ROMs claim it then the call returns with the ovewilflag set. If
the OSBYTE itself was initiated by a *FX commanerithe *FX
handler will generate the ‘Bad command’ error.

When OSBYTE calls are used in a second processpmaon
limited amount of information is returned. For lomvmbered
OSBYTE calls (0 to 127) only the X register is reed and for
high numbered OSBYTE calls only the X and Y regsstand the
carry flag are returned.

All the OSBYTE calls recognised by the operatingtegn are
described on the following pages. The descriptarefch call
includes details of the entry parameters requiretithe state of
the registers on exit. Al OSBYTE calls may be madimg the
*EX command, but it is not always appropriate tosoq(i.e. those
calls returning values in the X and Y registershané it is
appropriate to use a *FX command this has beewcaneil.
Preceding the full OSBYTE descriptions is a congpimmary
of the OSBYTE calls in a list.

17

OSBYTE/*FX Call
Summary

dec. hex. function

0 0 Print operating system version.

1 1 Set the User flag.

2 2 Select input stream.

3 3 Select output stream.

4 4 Enable/disable cursor editing.

5 5 Select printer destination.

6 6 Set character ignored by printer.

7 7 Set RS423 baud rate for receiving data.
8 8 Set RS423 baud rate for data transmission.
9 9 Set flashing colour mark state duration.
10 A Setflashing colour space state duration.
11 B Setkeyboard auto-repeat delay interval.
12 C Set keyboard auto-repeat rate.

13 D Disable events.

14 E Enable events.

15 F Flush selected buffer class.

16 10 Select ADC channels to be sampled.
17 11 Force an ADC conversion.

18 12 Reset soft keys.

19 13 Wait for vertical sync.

20 14 Explode soft character RAM allocation.

21 15 Flush specific buffer.

22 16 Increment paged ROM polling semaphore
23 17 Decrement paged ROM polling semaphore
24 18 Change sound system.

OSBYTE/*FX calls 25 (&19) to 114 (&72) are not usegd OS
1.00.

115 73 Blank/restore palette.

116 74 Reset internal sound system.

117 75 Read VDU status.

118 76 Read keyboard status.

119 77 Close any SPOOL or EXEC files.
120 78 Write to two-key-roll-over locations.

18

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

Perform keyboard scan.

Perform keyboard scan from 16 (&10).
Inform OS, printer driver going dormant.
Clear ESCAPE condition.

Set ESCAPE condition.

Acknowledge detection of ESCAPE condition.
Check for EOF on an open file.

Read ADC channel or get buffer status.
Read key with time limit or key depression.
Read machine high order address.

Read top of OS RAM address (OSHWM).
Read bottom of display RAM address (HIMEM).
Read bottom of display address for a giveyD¥.
Read text cursor position (POS and VPOS).
Read character at cursor position.

Perform *CODE.

Perform *MOTOR.

Insert value into buffer.

Perform *OPT.

Perform *TAPE.

Perform *ROM.

Enter language ROM.

Issue paged ROM service request.

Perform *TV (not implemented).

Get character from buffer.

Read from FRED, 1 MHz bus.

Write to FRED, 1 MHz bus.

Read from JIM, 1 MHz bus.

Write to JIM, 1 MHz bus.

Read from SHEILA, 1 MHz bus.

Write to SHEILA, 1 MHz bus.

Examine buffer status.

Insert character into input buffer.

Reset video flash cycle.

Reserved.

Read/write 6850 control register and copy.
‘Fast Tube BPUT’

Read from speech processor.

Write to speech processor.

Read VDU variable value.

19

OSBYTE/*FX calls 161 (&A1) to 165 (&A5) are not usdy OS
1.00 and are reserved for future expansion.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

186
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

A6
A7
A8
A9
AA
AB
AC
AD
AE

Read start address of OS variables (low)byte
Read start address of OS variables (higa)byt
Read address of ROM pointer table (low byte)
Read address of ROM pointer table (high)byte
Read address of ROM information table (loytef).
Read address of ROM information table (tbgte).
Read address of key translation table (lgte)b
Read address of key translation table (bigk).
Read start address of OS VDU variables {igte).
Read start address of OS VDU variables (high).
Read/write filing system timeout counter.
Read/write input source.

Enable/disable keyboard scanning

Read/write primary OSHWM.

Read/write current OSHWM.

Read/write RS423 mode.

Read character definition explosion state.
Read/write cassette/ROM filing system switch
Undefined.

Read/write timer paged ROM service call
semaphore.

Read/write ROM number active at last BRKdeY.
Read/write number of ROM socket containing
BASIC.

Read current ADC channel.

Read/write maximum ADC channel number.
Read ADC conversion type.

Read/write RS423 use flag.

Read RS423 control flag.

Read/write flash counter.

Read/write space period count.

Read/write mark period count.

Read/write keyboard auto-repeat delay.
Read/write keyboard auto-repeat period.
Read/write *EXEC file handle.

Read/writt SPOOL file handle.

Read/write ESCAPE, BREAK effect.
Read/write Econet keyboard disable.
Read/write keyboard status byte.

20

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

Read/write the ULA interrupt mask.

Read/write Firm key pointer.

Read/write length of current firm key string
Read/write Econet OS call interception statu
Read/write Econet OSRDCH interception status
Read/write Econet OSWRCH interception status
Read/write speech suppression status.
Read/write sound suppression status.
Read/write BELL channel.

Read/write BELL (CTRL G) sound information.
Read/write BELL frequency.

Read/write BELL duration.

Read/write startup message and !BOOT options
Read/write length of soft key string.
Read/write number of lines printed since pase.
Read/write number of items in VDU queue.
Read/write External sound flag.

Read/write ESCAPE character value.
Read/write i/p buffer code interpretatioatss.
Read/write i/p buffer code interpretatioatiss.
Read/write i/p buffer code interpretatioatiss.
Read/write i/p buffer code interpretaticatiss.
Read/write function key status.

Read/write firm key status.

Read/write firm key status.

Read/write CTRL+SHIFT+function key status.
Read/write ESCAPE key status.

Read/write flags determining ESCAPE effects.
Reserved.

Sound semaphore.

Soft key pointer.

Read flag indicating Tube presence.

Read flag indicating speech processor presence.
Read/write write character destination statu
Read/write cursor editing status.

Read/write OS workspace bytes.

Read/write OS workspace bytes.

Read country code.

Read/write user flag location.

Read RAM copy of &FEQ7.

Read timer switch state.

Read/write soft key consistency flag.

21

245 F5 Read/write printer destination flag.

246 F6 Read/write character ignored by printer.

247 F7 Read/write first byte of BREAK intercept eod
248 F8 Read/write second byte of BREAK interceteco
249 F9 Read/write third byte of BREAK intercept eod
250 FA Read/write OS workspace locations.

251 FB Read/write OS workspace locations.

252 FC Read/write current language ROM number.
253 FD Read/write last BREAK type.

254 FE Read/write available RAM.

255 FF Read/write start up options.

OSBYTE &00 (0)

Identify OS version

See OSBYTE &81 for more information regarding OS
identification.

Entry parameters:
X=0 Execute BRK with a message giving the OS wersi
X<>0RTS with OS version returned in X

On exit:
X=0, OS 1.00 or Electron OS 1.00
X=1, OS 1.20 or American OS
A and Y are preserved
C is undefined

22

OSBYTE &01 (1)

Set the user flag

Entry parameters:
The user flag is replaced by X

On exit:
X=old value

This call uses OSBYTE with A=&F1 (241). This OSBYTElIl is
left free for user applications and is not usedh®yoperating
system. The user flag has a default value is 0.

OSBYTE &02 (2)

Select input stream

In the Electron any call with X<>0 will result imanknown
OSBYTE service call being made to the paged ROMs unless a
previous such call was recognised and thus chatingeidput
source.

Entry parameters:
X determines input device(s)

*FX 2,0 X=0 keyboard selected, RS423 disabled
*EX 2,1 X=1 RS423 selected and enabled
*EX 2,2 X=2 keyboard selected, RS423 enabled
Default: *FX 2,0
On exit:
X=0 if previous input was from the keyboard
X= 1 if previous input was from RS423
A is preserved
Y and C are undefined

23

OSBYTE &03 (3)

Select output stream

If RS423 output is selected in the Electron, pa@&iM service
calls are issued. In the absence of a suitabl@nsgpthis output is
sunk (thrown away). The same applies to printer output i
selected.

Bit 3 should not be used to enable the printehesmay conflict
with the Econet protocol of claiming the printer.

Entry parameters:
X determines output device(s)

Bit o/p selected if bit is set

Enables RS423 driver

Disables VDU driver

Disables printer driver

Enables printer, independent of CTRL B or C
Disables spooled output

Not used

Disables printer driver unless the charactereseded
by a VDU 1 (or equivalent)

Not used

~ oulhwWNDEFLO

*EX 3,0 selects the default output options which ar
RS423 disabled
VDU enabled
Printer enabled (if selected by VDU 2)
Spooled output enabled (if selected by *SPOOL)

On exit:
A is preserved
X contains the old output stream status
Y and C are undefined

24

OSBYTE &04 (4)

Enable/disable cursor editing

Entry parameters:
X determines the status of the editing keys

*FX 4,0 X=0 Enable cursor editing (default setting)
*EX 4,1 X=1 Disable cursor editing and make themoume
normal ASCII values like the other keys.

The cursor control keys will return the
following codes:

COPY &87 (135)
LEFT &88 (136)
RIGHT &89 (137)
DOWN &S8A (138)
upP &8B (139)

*FX 4,2 X=2 Disable cursor editing and make thekaygt
as soft keys with the following soft key
associations :

COPY 11
LEFT 12
RIGHT 13
DOWN 14
upP 15

On exit:
A is preserved
X contains the previous status of the editing keys

Y and C are undefined

25

OSBYTE &05 (5)

Select printer destination

Entry parameters:
X determines print destination

*EX 5,0 X=0 Printer sink (printer output ignored)
*EX 5,1 X=1 Parallel output

*FX 5,2 X=2 RS423 output (sink if RS423 enabled)
*EX 5,3 X=3 User printer routine (see section 6.5)
*FX 5,4 X=4 Net printer (see section 6.5)

*EX 5,5 to *FX5,255 User printer routine (see sentb6.5)
Default setting: *FX 5,0

On Exit:
Ais preserved
X contains the previous *FX 5 setting
Y and C are undefined
Interrupts are enabled by this call
This call is not reset to default by a soft break

OSBYTE &06 (6)

Set character ignored by printer

Entry parameters:
X contains the character value to be ignored

*FX 6,10 X=10 This prevents LINE FEED characteesny
sent to the printer, unless preceded by VDU 1
(this is the default setting)

On exit:
A is preserved
X contains the previous *FX 6 setting
Y and C are undefined

This is not reset by soft BREAK.

26

OSBYTE &07 (7)

Set RS423 baud rate for receiving data

This routine is not implemented on the unexpandedtéon. If
this OSBYTE is used on the electronuknown OSBYTE
service call is made to the paged ROMs.

This call is reserved for future expansion.

OSBYTE &08 (8)

Set RS423 baud rate for data transmission

This routine is not implemented on the unexpandedtion. If
this OSBYTE is used on the Electronaknown OSBYTE
service call is made to the paged ROMs.

This call is reserved for future expansion.

OSBYTE &09 (9)

Set duration of the mark state of flashing colours
(Duration of first named colour)

Entry parameters:
X determines duration

*FX 9,0 X=0 Sets mark duration to infinity
Forces mark state if space is set to O
*EX 9,n X=n Sets mark duration to n VSYNC periods
(n=25 is the default setting)

On exit:
Ais preserved
X contains the old mark duration
Y and C are undefined

27

OSBYTE &0A (10)

Set duration of the space state of flashing colours
(Duration of second named colour)

Entry parameters:
X determines duration

*FX 10,0 X=0 Sets space duration to infinity. Fesspace
state if mark is setto 0

*FX10,n X=n Sets space duration to n VSYNC pesiod
(n=25 is the default setting)

On exit:
A is preserved
X contains the old space duration
Y and C are undefined

OSBYTE &0B (11)

Set keyboard auto-repeat delay

Entry parameters:
X determines delay before repeating starts

*FX 11,0 X=0 Disables auto-repeat facility
*EX11,n X=n Sets delay ton centiseconds (n=50és
default setting)

After call,
Ais preserved
X contains the old delay setting
Y and C are undefined

28

OSBYTE &0C (12)

Set keyboard auto-repeat period

Entry parameters:
X determines auto-repeat periodic interval

*FX 12,0 X=0 Resets delay and repeat to defaallies
*EX12,n X=n Sets repeat interval to n centisecofd=8 is
the default value)
On exit:
A'is preserved

X contains the old *FX 12 setting
Y and C are undefined

OSBYTE &0D (13)

Disable events

Entry parameters : X contains the event code, Y=0

*FX 13,0 X=0 Disable output buffer empty event

*FX 13,1 X=1 Disable input buffer full event

*FX 13,2 X=2 Disable character entering buffer even
*FX 13,3 X=3 Disable ADC conversion complete event
*FX 13,4 X=4 Disable start of vertical sync event

*FX 13,5 X=5 Disable interval timer crossing 0 eten
*FX 13,6 X=6 Disable ESCAPE pressed event

*EX 13,7 X=7 Disable RS423 RX error event

*FX 13,8 X=8 Disable network error event

*EX 13,9 X=9 Disable user event

See section 6.4 for information on event handling.

On exit:
A is preserved
X contains the old enable state (O=disabled)
Y and C are undefined

29

OSBYTE &0E (14)

Enable events

Entry parameters: X contains the event code, Y=0

*FX 14,0
*FX 14,1
*FX 14,2
*FX 14,3
*FX 14,4
*FX 14,5
*FX 14,6
*EX 14,7
*FX 14,8
*FX 14,9

After call,

IR RN
ooo~NOWNMPWNELO

Enable output buffer empty event
Enable input buffer full event

Enable character entering buffer event
Enable ADC conversion complete event
Enable start of vertical sync event
Enable interval timer crossing 0 event
Enable ESCAPE pressed event

Enable RS423 RX error event

Enable network error event

Enable user event

A is preserved
X contains the old enable state (>0= enabled)
C is undefined

See section 6.4 for information on event handling.

OSBYTE &OF (15)

Flush selected buffer class

Entry parameters:

X value selects class of buffer

X=0 All buffers flushed
X=1 Input buffer flushed only

See OSBYTE call &16/*FX 21

On exit,

Buffer contents are discarded
A'is preserved
X, Y and C are undefined

30

OSBYTE &10 (16)

Select ADC channels which are to be sampled

This routine is not implemented on the unexpandedtén but is
passed on to paged ROMs asuaknown OSBYTE paged ROM
service call.

On an Electron fitted with the Plus 1 expansiois ttall selects

the number of analogue to digital conversion chinnéhere X is
a number in the range 0 (no channels) to 4 (all éannels).

OSBYTE &11 (17)

Force an ADC conversion

This routine is not implemented on the unexpandedtén but is
passed on to paged ROMs asuaknown OSBYTE paged ROM
service call.

On an Electron fitted with the Plus 1 expansiois tall forces
analogue to digital conversion to restart for clesd to X.

OSBYTE &12 (18)

Reset soft keys

This call clears the soft key buffer so the chamastrings are no
longer available.

No parameters
On exit:

A and Y are preserved
X and C are undefined

31

OSBYTE &13 (19)

Wait for vertical sync
No parameters

This call forces the machine to wait until the stdrthe next
frame of the display. This occurs 50 times per sdam the UK
Electron. Its main use is to help produce flickeefanimation on
the screen. The flickering effect is often dueharges being
made on the screen halfway through a screen refisshg this
OSBYTE call graphics manipulation can be made toade with
the flyback between screen refreshes.

N.B. User trapping of IRQ1 may stop this call frerarking.

On exit:
Ais preserved
X, Y and C are undefined

OSBYTE &14 (20)

Explode soft character RAM allocation
Entry parameters: X value explodes/implodes membogation

In the default state 32 characters may be usenetkfising the
VDU 23 statement from BASIC (or the OSWRCH calmiachine
code). These characters use memory from &C00 toRCF
Printing ASCII codes in the range 128 (&80) to 189F) will
cause these user defined characters to be priptétiese
characters will also be printed out for characteithe range
&A0-&BF, &C0-&DF, &EO0-&FF), In this state the chacter
definitions are said to bhenploded.

If the character definitions assploded then ASCII characters
128 (&80) to 159 (&9F) can be defined as beforag&/DU 23
and memory at &C00. Exploding the character sahdeins
enables the user to uniquely define character&3)(to 255

32

(&FF) in steps of 32 extra characters at a times @perating
system must allocate memory for this which it dogisg memory
starting at the ‘operating system high-water mg@SHWM).
This is the value to which the BASIC variable PAGHisually
set and so if a totally exploded character set Isetused in
BASIC then PAGE must be reset to OSHWM+&600 (i.aGE

= PAGE + &600).

ASCII characters 32 (&20) to 128 (&7F) are defirmdmemory
within the operating system ROM when the charad¢dinitions
are imploded.

See OSBYTE &83 (131) for details about reading O3 ¥bom
machine code.

The memory allocation for ASCII codes in the expahdtate is
as follows:
ASCIl code Memory allocation

*FX 20,0 X=0 &80-&F &CO00 to &CFF (imploded)

*FX 20,1 X=1 &A0-&BF OSHWM to OSHWM+&FF
(+above)

*FX 20,2 X=2 &CO0-&DF OSHWM+&100 to
OSHWM+&1FF (+above)

*FX 20,3 X=3 &EO-&FF OSHWM+&200 to
OSHWM+&2FF (+above)

*FX 20,4 X=4 &20-&3F OSHWM+&300 to
OSHWM+&3FF (+above)

*FX 20,5 X=5 &40-&F OSHWM+&400 to
OSHWM+&4FF (+above)

*FX 20,6 X=6 &60-&7F OSHWM+&500 to
OSHWM+&5FF (+above)

The explosion state can be determined using OSB¥B&
Before the OSHWM is changed during a font explosi@®rvice

call is made to the paged ROMs warning them ofrtipending
change.

33

On exit:
A is preserved
X contains the new OSHWM (high byte)
Y and C are undefined

OSBYTE &15 (21)

Flush specific buffer

While the unexpanded Electron only has a singledalannel
the operating system has been designed to enable th
implementation of an external sound system. Eauh &ny of the
sound buffers are flushed a paged ROM servicasabsued with
A=&17. In the unexpanded Electron there is a sirglective
buffer which may be addressed as any of the foanwéls. Thus
flushing any of the four buffers will extinguishyasound being
produced at that time.

See section 10.1 for more information regardingEleetron
sound paged ROM service calls.

Entry parameters:
X determines the buffer to be cleared

*FX 21,0 X=0 Keyboard buffer emptied

*FX 21,1 X=1 RS423 input buffer emptied

*EX 21,2 X=2 RS423 output buffer emptied
*FX 21,3 X=3 Printer buffer emptied

*FX 21,4 X=4 Sound channel 0 buffer emptied
*EX 21,5 X=5 Sound channel 1 buffer emptied
*FX 21,6 X=6 Sound channel 2 buffer emptied
*EX 21,7 X=7 Sound channel 3 buffer emptied
*FX 21,8 X=8 Speech buffer emptied

See also OSBYTEs &0F (*FX15) and &80 (128).
On exit:

A and X are preserved
Y and C are undefined

34

OSBYTE &16 (22)

Increment paged ROM polling semaphore

This call increments the semaphore which when resn-makes
the operating system issue a paged ROM servicevithllA=&15
at centi-second intervals.

See paged ROM service call &15, chapter 10.

Entry parameters:
None

On exit:
A and X are preserved
Y and C are undefined

Semaphore is incremented once per call.

OSBYTE &17 (23)

Decrement paged ROM polling semaphore
This call decrements the semaphore which when eominakes
the operating system issue a paged ROM servicevitallA=&15
at centi-second intervals.
See paged ROM service call &15, chapter 10.
Entry parameters:
None
On exit:
A and X are preserved
Y and C are undefined

Semaphore is decremented once per call.

35

OSBYTE &18 (24)

Select external sound system

This call is used to select a sound system whiampéemented
by an external hardware/software sound system.

Entry parameters:
X contains an undefined parameter

On exit:

A is preserved
All other registers are undefined

OSBYTE &73 (115)

Blank/restore palette

This call is used to temporarily turn all colounstine palette
black. It should be useful for NMI users who wamgenerate
NMIs with a high resolution screen display. Thidlwnsure that
there is nesnow seen on the screen.

Entry parameters:

X=0 Restores the palette
X<>0 Set palette to all black if in high res. mode
On exit:

All registers undefined

OSBYTE &74 (116)

Reset internal sound system
This call can be used to reset the internal soyatésn.

Entry parameters:
X contains an undefined parameter

On exit:
All registers are undefined

36

OSBYTE &75 (117)
Read VDU status

No entry parameters

On exit the X register contains the VDU statusoinfation is
conveyed in the following bits :

Bit 0 Printer output enabled by a VDU 2

Bit 1 Scrolling disabled e.g. during cursor editing

Bit 2 Paged scrolling selected

Bit 3 Software scrolling selected i.e. text window

Bit 4 reserved

Bit 5 Printing at graphics cursor enabled by VDU 5

Bit 6 Set when input and output cursors are separ@e.
cursor editing mode).

Bit 7 Set if VDU is disabled by a VDU 21

On exit:

A and Y are preserved
C is undefined

OSBYTE &76 (118)

Reflect keyboard status in keyboard LEDs
This routine is hardware dependent and is impleetedifferently

on the BBC microcomputer and the Electron. Thisstabuld not
be used on either machine.

37

OSBYTE &77 (119)
Close any SPOOL or EXEC files

This call closes any open files being used as *SB£@utput or
*EXECed input to be closed. This call is first ofd to paged
ROMSs via a service call with A=&10. If the callegimed then
the operating system takes no further action.dfdall is not
claimed by a paged ROM the operating system clasgEXEC
or SPOOL files itself. This call should be madefibgg systems
if they are deselected.

On exit:
A is preserved
X, Y and C are undefined

OSBYTE &78 (120)

Write current keys pressed information

This call should only be made by filing systemsathiave
recognised a key pressed with BREAK and are instrag
accordingly (see paged ROM service call with A=&88¢tion
10.1). This call should be used to write the olg geessed value
to prevent its entry into the keyboard buffer.

The operating system operates a two key roll-ooekéyboard
input (recognising a second key press even whefirthdey is
still pressed). There are two zero page locatidmshwcontain the
values of the two key-presses which may be recedras any one
time. If no keys are pressed, location &EC cont8@irasd location
&ED contains 0. If one key is pressed, location &Eahtains the
internal key number+128 (see table below for irdekey
numbers) and location &ED contains 0. If a secoeylik pressed
while the original key is held down, location &EGntains the
internal key number+128 of the most recent keygaesand
location &ED contains the internal key number+12&e first
key pressed.

38

Internal Key Numbers

hex.
&00
&01
&02
&03
&04
&05
&06
&07
&08
&09
&10
&11
&12
&13
&14
&15
&16
&17
&18
&19
&20
&21
&22
&23
&24
&25
&26
&27
&28
&29
&30
&31
&32
&33
&34
&35
&36
&37
&38
&39

dec. key hex.
0 SHIFT &40
1 CTRL &41
2 bit0 &42
3 bitl &43
4 Dbit2 &44
5 bit3 &45
6 bit4 &46
7 bits &47
8 bitb &48
9 hit7 &49
16 Q &50
17 3 &51
18 4 &52
19 5 &53
20 f4 &54
21 8 &55
22 f7 &56
23 - &57
24 N &58
25 left cursor &59
32 fO &60
33 W &61
34 E &62
35 T &63
36 7 &64
37 | &65
38 9 &66
39 0 &67
40 &68
41 down cursor &69
48 1 &70
49 2 &71
50 D &72
51 R &73
52 6 &74
53 U &75
54 O &76
5 P &77
56 | &78
57 up cursor

dec. key

64 CAPS LOCK
65 A

66 X

67 F

68 Y

69 J

70 K

71 @

72 .

73 RETURN
80 SHIFT LOCK
81 S

82 C

83 G

84 H

85 N

86 L

87 ;

88 |

89 DELETE
96 TAB

97 Z

98 SPACE
99 V

100 B

101 M

102

103 .

104 /

105 COPY
112 ESCAPE
113 f1

114 f2

115 f3

116 f5

117 f6

118 f8

119 f9

120 \

&79 121 right cursor
39

Bits 0 to 7 refer to the start up option byte. 8&BYTE &FF for
further information about this byte.

To convert these internal key numbers to the INKttivhbers
they should be EOR (Exclusive ORed) with &FF (255).

Entry parameters :
X and Y contain values to be written

Value in X is stored as thatd key information.
Value in Y is stored in theew key information.

See also OSBYTE calls with A=&AC and A=&AD.
On exit:

A, X and Y are preserved
C is undefined

OSBYTE &79 (121)

Keyboard scan

The keyboard is scanned in ascending numerical oftiés call
returns information about the first pressed keyoentered during
the scan. Other keys may also be pressed andheifudll or calls
will be needed to complete the entire keyboard .scan

Entry parameters:
X determines the key to be detected and also detesnthe
range of keys to be scanned.

Key numbers refer to internal key numbers in thidetabove (see
OSBYTE &78).

40

To scan a particular key:
X=key number EOR &80
on exit X<0 if the key is pressed

To scan the matrix starting from a particular keynber:
X=key number

On exit X=key number of any key pressed or &FFafkey
pressed

On exit:
A is preserved

X contains key value (see above)
Y and C are undefined

OSBYTE &7A (122)

Keyboard scan from 16 decimal
No entry parameters

Internal key number (see table above) of the kegs®d is
returned in X.

This call is directly equivalent to an OSBYTE oaith A=&79
and X=16.

On exit:
Ais preserved
X contains key number or zero if none pressed
Y and C are undefined

41

OSBYTE &7B (123)

Inform operating system of printer driver going dormant

Entry parameters:
X should contain the value 3 (printer buffer id)

This OSBYTE call should be made by user printevets when
they go dormant. The operating system will needdke up the
printer driver if more characters are placed ingheter buffer
(see section 6.5).
On exit:

A and X are preserved

Y is preserved
C is undefined

OSBYTE &7C (124)

Clear ESCAPE condition

No entry parameters

This call clears any ESCAPE condition without aasttier action.
See OSBYTE &7E also.

On exit:

A, Xand Y are preserved
C is undefined

42

OSBYTE &7D (125)

Set Escape condition
No entry parameters

This call partially simulates the ESCAPE key bemngssed. The
Tube is informed (if active). An ESCAPE event ig generated.

On exit:

A, X and Y are preserved
C is undefined

OSBYTE &7E (126)

Clear ESCAPE condition with side effects

No entry parameters

This call attempts to clear the ESCAPE conditiolh.aétive
buffers will be flushed, any open EXEC files clostét VDU
paging counter will be reset and the VDU queue balireset.

See OSBYTE &E6 (230) also.

On exit:
X=&FF if the ESCAPE condition cleared
X=0 if no ESCAPE condition found

A is preserved
Y and C are undefined

43

OSBYTE &7F (127)

Check for end-of-file on an opened file
Entry parameters:
X contains file handle

On exit:
X<>0 If end-of-file has been reached
X=0 If end-of-file has not been reached

A and Y are preserved (Y not passed across Tube)
C is undefined

OSBYTE &80 (128)
Read ADC channel (ADVAL) or get buffer status

On the unexpanded Electron this call will geneeatanknown
OSBYTE paged ROM service call when passed a positive value
the X register. If this service call is not claintben the values in
page 2 of memory allocated to storing ADC inforroatare
returned. On an Electron fitted with a Plus 1 tahB is
implemented identically to on the BBC microcomputer

For positive values of X, the call operates theesashon a BBC
microcomputer but information about buffers notser on an
unexpanded Electron will be meaningless.

Entry parameters:
X determines action and buffer or channel number

If X=0 on entry:

Y returns channel number (range 1 to 4) showingiwbhannel
was last used for ADC conversion, Note that OSBYaHls with
A=&10 (16) and A=&11 (17) set this value to 0. Awa of 0
indicates that no conversion has been completesl.0OBand 1 of
X indicate the status of the two ‘fire buttons’.

44

If X=1to 4 on entry:

X and Y contain the 16 bit value (X-low, Y-high)ekfrom
channel specified by X. This call may only be ukedh machine
code (not from a *FX call).

If X<0 and Y=&FF on entry:

If X contains a negative value (in 2's complemeuotation) then
this call will return information about various lerfs.

X=255 (&FF) keyboard buffer
X=254 (&FE) RS423 input buffer
X=253 (&FD) RS423 output buffer
X=252 (&FC) printer buffer
X=251 (&FB) sound channel O
X=250 (&FA) sound channel 1
X=249 (&F9) sound channel 2
X=248 (&F8) sound channel 3
X=249 (&F7) speech buffer

For input buffers X contains the number of chanascie the buffer
and for output buffers the number of spaces remgini

On exit:

Ais preserved
C is undefined

OSBYTE &81 (129)

Read key with time limit (INKEY)

This call is functionally equivalent to the BASI@Ggement
INKEY, It can be used to get a character from tagbloard within

a time limit, scan the keyboard for a particulay keess or return
information about the OS type.

45

(a) Read key with time limit

Entry parameters:
X and Y specify time limit in centiseconds

If a time limit of n centiseconds is required,

X=n AND &FF (LSB)
Y=n DIV &100 (MSB)

Maximum time limit is &7FFF centiseconds (5.5 miesiapprox.)
On exit:
If key press detected, X=ASCII key value, Y=0 & C=0
If key press not detected by timeout then Y=&FF & C
If Escape is pressed then Y=&1B (27) and C=1
(b) Scan keyboard for key press
Entry parameters:
X=negative INKEY value for key to be scanned
Y=&FF
On exit:
X =Y = &FF, C=1 if the key being scanned is pressed.
X =Y =0, C=0if key is not pressed.
(c) Return information about OS type

Entry parameters:

X=0
Y=&FF
On exit:
X=0 BBC 0OS 0.1
X=1 Electron OS 1.00

X=&FF BBC OS 1.00 or OS 1.20
X=&FE US BBC OS 1.20

46

OSBYTE &82 (130)

Read machine high order address
No entry parameters

This call yields the high order address requiredtie most
significant 16 bits of the 32 bit addresses usediliog systems.
The high order address is different in a secondgm®or to that in
an i/o processor. The Tube operating system inpésaais call to
return the second processor high order address.

On exit:
X and Y contain the address (X-high, Y-low)

A is preserved
C is undefined

OSBYTE &83 (131)
Return current OSHWM

The OSHWM (operating system high water mark) regmesthe
top of memory used by the operating system. THisevis set
after the paged ROMs have claimed workspace andioany
explosion carried out. On a second processor #iligewepresents
the OSHWM on the i/o processor.

The OSHWM indicates the start of user memory anthisocall is
made by BASIC to initialise the value of PAGE.

No entry parameters

On exit:
X and Y contain the OSHWM address (X= low-byté =
high-byte)

A is preserved
C is undefined

a7

OSBYTE &84 (132)

Return HIMEM

HIMEM is an address indicating the top of the aafalié user
RAM. This is usually the bottom of screen memorgrads. On a
second processor this will be the bottom addresspicode
copied across from the 1/0O processor and executed.

No entry parameters

On exit:
X and Y contain the HIMEM address (X-low, Y-high)

Ais preserved
C is undefined

OSBYTE &85 (133)

Read bottom of display RAM address for a specifiestie
This call may be used to investigate the conseqseotan
intended MODE change. This enables languages &ordete
whether the selection of a new MODE should be albw

Entry parameters:
X determines mode number

On exit:
X and Y contain the address (X-low byte, Y-highé)yt

A is preserved
C is undefined

48

OSBYTE &86 (134)
Read text cursor position (POS and VPOS)

When in cursor editing mode this call returns thsifion of the
input cursor not the output cursor.

No entry parameters

On exit:
X contains horizontal position of the cursor (POS)
Y contains vertical position of the cursor (VPOS)

A is preserved
C is undefined

OSBYTE &87 (135)

Read character at text cursor position and screen KADE

No entry parameters

On exit:
X contains character value (0 if character not gaczed)
Y contains graphics MODE number

A'is preserved
C is undefined

OSBYTE &88 (136)

Execute code indirected via USERV (*CODE equivalent

This call JSRs to the address contained in thewesgor (USERV
&200). The X and Y registers are passed on to Hee woutine.

See *CODE, section 6.1.

49

OSBYTE &89 (137)

Switch cassette relay (*MOTOR equivalent)

Entry parameters:
X=0 relay off
X=1relay on

The cassette filing system calls this routine wittD for write
operations and Y= 1 for read operations. This ersathie
implementation of a dual cassette system with aufdit hardware
and software

On exit:
Ais preserved
X, Y and C are undefined

OSBYTE &8A (138)

Insert value into buffer

Entry parameters:
X identifies the buffer (See OSBYTE &15)
Y contains the to be value inserted into buffer

On exit:
C=0 if value successfully inserted
C=1 if value not inserted e.qg. if buffer full
A is preserved

OSBYTE &8B (139)

Select file options (*OPT equivalent)

Entry parameters:
X contains file option number Y contains the opti@iue
required

On exit:
A is preserved
C is undefined

50

OSBYTE &8C (140)

Select tape filing system (*TAPE equivalent)
No entry parameters
On exit:

A is preserved
C is undefined

OSBYTE &8D (141)

Select ROM filing system (*ROM equivalent)
No entry parameters
On exit:

A is preserved
X, Y and C are undefined

OSBYTE &S8E (142)

Enter language ROM

Entry parameters:
X determines which paged ROM is entered

The language ROM is entered via its entry poinhwht1.
Locations &FD and &FE in zero page are set to ptarthe
copyright message in the ROM.

There is no exit from this call.

51

OSBYTE &8F (143)

Issue paged ROM service call
See Service ROMs section 10.1.
Entry parameters:
X=reason code
Y=parameter passed with service call
On exit:
Y may contain return argument (if appropriate) X8
paged ROM claimed the service call

A is preserved
C is undefined

OSBYTE &90 (144)

Alter display parameters (*TV equivalent)

On the Electron this call is not implemented artdrres with
registers preserved.

OSBYTE &91 (145)

Get character from buffer
Entry parameters:

X contains buffer number (see OSBYTE &15)
On exit:

Y contains the extracted character.

If the buffer was empty then C= 1 otherwise C=0.

A is preserved

52

OSBYTESs &92 to &97 (146 to 151)

Read or Write to mapped I/0O

Entry parameters:
X contains offset within page
Y contains byte to be written (for write calls)

OSBYTE call Memory addressed Name
read write
&92 (146) &93 (147) &FCO00 to &FCFF FRED
&94 (148) &95 (149) &FD0O0 to &FDFF JIM
&96 (150) &97 (151) &FEO0O to &FEFF SHEILA
Refer to the hardware section for details abowgdtieMHz buses.
On exit:
Read operations return with the value read in
the Y register

Ais preserved
C is undefined

OSBYTE &98 (152)

Examine Buffer status

Entry parameters: X contains buffer number

On exit:
Y=character value read from buffer if buffer notpy
Y is preserved if buffer empty
C=1 if buffer empty otherwise C=0

A and X are preserved

53

OSBYTE &99 (153)

Insert character into input buffer, checking for ESCAPE
Entry parameters:
X contains buffer number (0 or 1 only) Y contaihe t
character value

X=0 keyboard buffer
X=1 RS423 input

If the character is an ESCAPE character and ESCAIREROL
protected (using OSBYTE &C8/*FX 200 or OSBYTE
&E5/*FX229) then an ESCAPE event is generated atstef the
keyboard event.

On exit:

Ais preserved
X, Y and C are undefined

OSBYTE &9A (154)

Reset flash cycle

This call resets the flash cycle to the beginnihthe mark state
(i.e. to the first named colour of the pair) by npamating the
ULA registers.

There are no entry parameters.

On exit:
All registers are undefined

OSBYTE &9B (155)

Write to video ULA palette register and OS copy (BE micro)

On the Electron this call is ignored by immediatekgcuting an
RTS instruction.

54

OSBYTE &9C (156)

Read/update 6850 control register and OS copy (BBficro)
On the Electron this call causes the operatingeaysb issue an

unknown OSBYTE paged ROM service call but makes no further
actions.

OSBYTE &9D (157)

Fast Tube BPUT

The byte to be output is channeled through thedst@hBPUT
routine.

Entry parameters:
X = byte to be output
Y = file handle

On exit:

A is preserved
X, Y and C are undefined

OSBYTE &9E (158)

Read from speech processor
On the Electron this call causes the operatingeaysb issue an

unknown OSBYTE paged ROM service call but makes no further
actions.

OSBYTE &9F (159)

Write to speech processor
On the Electron this call causes the operatingegysb issue an

unknown OSBYTE paged ROM service call but makes no further
actions.

55

OSBYTE &AO0 (160)

Read VDU variable value

This call is implemented on the Electron but isaudily
undefined and may change in future issues of the OS

Entry parameters:
X contains the number of the variable to be read

On exit:
X=low byte of variable A'is preserved
Y=high byte of variable C is undefined

OSBYTE &A3 (163)

Disable/Enable printer and ADC

This call is not implemented on the unexpandedtEac On an
Electron fitted with a Plus 1 interface, the caldbles or disables
input/output through the Plus 1:

*FX163,128,0 - enables printer and ADCs
*FX163,128,1 - disables printer and ADCs

OSBYTESs &A6 (166) and &A7 (167)

Read start address of OS variables
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This call returns the start address of the memeeg by the
operating system to store its internal variables.

On exit:
X=low byte A is preserved
Y=high byte C is undefined

56

OSBYTESs &A8 (168) and &A9 (169)

Read address of ROM pointer table

This call is implemented on the BBC microcomputed ¢he
Electron. When used across the Tube the addressedtrefers
to the 1/O processor's memory.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This table of extended vectors consists of 3 bgtors in the
form Location (2 bytes), ROM no. (1 byte). See REGOM
section 10.3 for a complete description of exteneksztors.

On exit:
X=low byte
Y=high byte
A'is preserved
C is undefined

OSBYTEs &AA (170) and &AB (171)

Read address of ROM information table
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This call returns the origin of a 16 byte tablentaining one byte
per paged ROM. This byte contains the ROM type bgtdained
in location &8006 of the ROM or contains 0O if aidaROM is not
present.

On exit:
X=low byte A is preserved
Y=high byte C is undefined

57

OSBYTEs &AC (172) and &AD (173)

Read address of keyboard translation table

This call is implemented on the BBC microcomputed ¢he
Electron. However it should be noted that this rallardware
specific due to the different keyboard matrix lalyono different
machines. When used across the Tube the addrassegtefers
to the 1/O processor's memory.

Use of this call is not recommended.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

On exit:

X=low byte
Y=high byte

OSBYTEs &AE (174) and &AF (175)

Read VDU variables origin
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This call returns with the address of the tablentdrnal VDU
variables.

On exit:

X=low byte
Y=high byte

58

OSBYTE &BO0 (176)

Read/write CFS timeout counter
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This counter is decremented once every verticat pyitse (50
times per second) which is also used for OSBYTE /&A% 19.
The timeout counter is used to time interblock gaps leader
tones.

OSBYTE &B1 (177)

Read input source flags
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This location should contain O for keyboard inpod & for RS423
input (i.e. contains buffer no.) and is used foBY3E &2.
OSBYTE &2 should be used to change the input scasoeriting
the flag with this call does not enable the reléwaterrupts.

OSBYTE &B2 (178)

Enable/disable keyboard interrupt
*FX178,0,0 Turns off keyboard interrupt
*FX178,255,0 Turns on keyboard interrupt

With keyboard interrupts disabled, the machine sigsificantly
faster, however the keyboard will no longer be seaby the OS.
To detect keypresses it is hecessary to read tidevhee directly
(see Chapter 14).

59

OSBYTE &B3 (179)
Read/write primary OSHWM (for imploded font)

This call should not be used as it has been reatha on other
products in the Acorn-BBC range.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This location contains the OSHWM page value fomaploded
font (even when character definition RAM explosias been
selected) but after paged ROM workspace allocdtambeen

made.

See OSBYTE &B4 and OSBYTE &14.

OSBYTE &B4 (180)

Read OSHWM (similar to OSBYTE &83)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

This call returns the page number of OSHWM in X.

This location is updated by any character definitbAM
explosion which may have been selected and retuthghe high
byte of the OSHWM address (the low byte always dpén

See OSBYTE &14.

60

OSBYTE &B5 (181)

Read/write RS423 mode

On the unexpanded Electron this call will have fieat unless a
suitable hardware and software expansion has beéormed to
implement R5423.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

Flag=0 ESCAPEs are recognised soft keys are exgande
character entering input buffer event generatedarur
editing performed

Flag=1 All characters enter input buffer
(default) character entering buffer event not getesf

OSBYTE &B6 (182)

Read character definition explosion state

Use of this call is not recommended as this OSBYiag been
reallocated on other products in the Acorn BBC eang

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This location contains the state of font explosasrset by
OSBYTE call with A=&14/*FX 20.

61

OSBYTE &B7 (183)

Read cassette/ROM filing system flag
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This location contains 0 for *TAPE selection anfb2*ROM
selection. Other values are meaningless, and smatlde used.

OSBYTE &BS8 (184)

This call is undefined on the Electron.

OSBYTE &B9 (185)

Read/write timer paged ROM service call semaphore
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This location contains a semaphore. If the contehtkis location
are non-zero the operating system will generatageg ROM
service call with a reason code of &15. This sensaplishould
only be read using this call. See OSBYTEs &16 add &or
information about setting semaphore and service RCipter
10 for information about the paged ROM service.call

62

OSBYTE &BA (186)
Read ROM number active at last BRK (error)
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This location contains the ROM number of the pagéM that
was in use at the last BRK.

OSBYTE &BB (187)

Read number of ROM socket containing BASIC
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

BASIC is recognised by the fact that it is a larggu® OM which
does not possess a service entry. This ROM isdéketted by the

*BASIC command. If no BASIC ROM is present thersthi
location contains &FF.

OSBYTE &BC (188)

Read current ADC channel

This call is not implemented in the unexpanded t&bec
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This location contains the number of the ADC cheneently

being converted. This call should not be used tocef@dDC
conversions, use OSBYTE &11/*FX 17.

63

OSBYTE &BD (189)

Read maximum ADC channel number.
This call is not implemented in the unexpanded t&bec
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

The maximum channel number to be used for ADC cmimes in
the range 0 to 4. Set by OSBYTE &16/*FX 10.

OSBYTE &BE (190)

Read ADC conversion type, 12 or 8 bits.
This call is not implemented in the unexpanded t&bec
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old value is returned in X. The contents ofribgt location
are returned in Y.

Set to &00, default (12 bit)

Set to &08, 8 hit conversion
Set to &0C,12 bit conversion

OSBYTE &BF (191)

Read/write RS423 use flag.

This location is reserved for expansion softwaréhenElectron.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

64

OSBYTE &CO (192)

Read RS423 control flag
This location is reserved for expansion softwaréhenElectron.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

OSBYTE &C1 (193)

Read/write flash counter.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This location contains the number of 1/50th sedsumtil the
next change of colour for flashing colours.

OSBYTE &C2 (194)
Read/write space period count.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

Similar to OSBYTE &0A.

65

OSBYTE &C3 (195)

Read/write mark period count.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

Similar to OSBYTE &09.

OSBYTE &C4 (196)
Read/write keyboard auto-repeat delay.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This call is used by OSBYTE &0B.

OSBYTE &C5 (197)
Read/write keyboard auto-repeat period (rate).
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This call is used by OSBYTE &0C.

66

OSBYTE &C6 (198)

Read *EXEC file handle.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This call should be used only to read this locatiemwriting to it

may have undefined effects. This location contaer® if no file
handle has been allocated by the operating system.

OSBYTE &C7 (199)

Read *SPOOL file handle.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This call should be used to read this location omhjis location

contains the file handle of the current SPOOL dileero if not
currently spooling.

67

OSBYTE &C8 (200)
Read/write ESCAPE, BREAK effect
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

bit0=0 Normal ESCAPE action

bit0=1 ESCAPE disabled unless caused by OSBYTE
&7D/125

bits[to 7=0 Normal BREAK action

bitsto7 =1 Memory cleared on BREAK

e.g. A value 000000Ix (binary) will cause memoryptocleared
on BREAK.

OSBYTE &C9 (201)

Read/write keyboard disable.
This call should only be made by the Econet fikhygtem.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

If this location contains 0 then the keyboard @rsted normally
otherwise lock keyboard (all keys ignored excepEBKR).

This call is used by the *REMOTE Econet facility.

68

OSBYTE &CA (202)

Read/write keyboard status byte.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

bit 4=0 if CAPS LOCK active
bit 5=1 if Fn active

bit 6=1 if SHIFT active

bit 7=1 if CTRL active

All bits except the CAPS LOCK bit will only changransiently
and are subsequently unlikely to be of use.

See also OSBYTE with A=&76 (118).

OSBYTE &CB (203)

Read/write the ULA Interrupt Mask

See chapter 7 for a description of the interrupidiiag routine.

OSBYTE &CC (204)

Read/write Firm Key Pointer
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

The value contained in this location is a poinieo ithe currently

expanding firm key. For more information about tine keys see
language ROMs section 9.2.

69

OSBYTE &CD (205)

Read/write Length of current Firm key string.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned K. The contents of the next location
are returned in Y.

This location contains the length of the stringrently being

expanded from a Firm key. For more information adéum keys
see language ROMs section 9.2.

OSBYTE &CE (206)

Read/write Econet OS call interception status.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

If bit 7 of this location is set then all OSBYTEdR®S WORD

calls (except those sent to paged ROMSs) are inedetthrough
the Econet vector (&224) to the Econet. Bits O tré ignored.

OSBYTE &CF (207)

Read/write Econet read character interception stats.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

If bit 7 of this location is set then input is padl from the Econet
vector.

70

OSBYTE &DO (208)

Read/write Econet write character interception statis.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

If bit 7 of this location is set then output isatited to the Econet.

Output may go through the normal write characteredarn from
the Econet code.

OSBYTE &D1 (209)

Read/write speech suppression status.

This location is not used in the unexpanded Elecamd is
reserved for future expansion.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

OSBYTE &D2 (210)

Read/write sound suppression status.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

Setting X to zero allows sound to be generatedirfgeX nonzero
will prevent any further sound being produced.

The old value is returned in X. The contents ofrib&t location
are returned in Y.

71

OSBYTE &D3 (211)

Read/write BELL (CTRL G) channel.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This location contains the channel number to bd fmethe
BELL sound. Default value is 3.

OSBYTE &D4 (212)

Read/write BELL (CTRL G) SOUND information.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This location contains a byte which determinesegithe
amplitude or the ENVELOPE number to be used byBiBEL
sound. If an ENVELOPE is specified then the valueutd be set
to (ENVELOPE no.-1)*8. Similarly an amplitude irethange 15
to 0 must be translated by subtracting 1 and miyiiig by 8.

The least significant three bits of this locati@mtin the H and 5
parameters of the SOUND command (see User Guide).

Note that the internal sound system on the Eleatritimot allow
the amplitude of the sound to be varied.

Default value 144 (&90) on the Electron.

72

OSBYTE &D5 (213)

Read/write bell (CTRL G) frequency.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This value contains the pitch parameter (as usesiyND
command third parameter) used for the BELL sound.

Default value 101 (&65) on the Electron.

OSBYTE &D6 (214)

Read/write bell (CTRL G) duration.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This value contains the duration parameter (aS@UJND
command) used for the BELL sound.

Default value 6 on the Electron.

OSBYTE &D7 (215)

Read/write start up message suppression and !BOOTpbon
status.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

73

bit 0 If clear then ignore OS startup messageetlttsen print up
OS startup message as normal.

bit 7 If set then if an error occurs in a !'BOOefih *ROM,
carry on but if an error is encountered from a dB00T
file because no language has been initialised #ehme
locks up.
If clear then the opposite will occur, i.e. loaks if there is
an error in *ROM.

This can only be over-ridden by a paged ROM onailigiation or
by intercepting BREAK, see OSBYTE calls &F7 to &F9.

OSBYTE &DS (216)

Read/write length of soft key string.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This location contains the number of characterdg/ée read
from the soft key buffer of the current soft ke dlear input
buffer use *FX 15/O0SBYTE &OF.

OSBYTE &D9 (217)

Read/write number of lines since last halt in pagenode.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This location contains the number of lines prirgette the last
page halt. This value is used by the operatingeaysb decide
whether to halt scrolling whepaged mode has been selected.
This location is set to zero during OSWORD call & @revent a
scrolling halt occurring during input.

74

OSBYTE &DA (218)

Read/write number of items in the VDU queue.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This contains the 2’s complement negative numbérytds still
required for the execution of a VDU command.

Writing O to this location can be a useful way béadoning a

VDU queue, otherwise writing to this location isno
recommended.

OSBYTE &DB (219)

Read/write External sound flag
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This location contains a flag indicating that ateemal sound
system has been selected using OSBYTE &18.

75

OSBYTE &DC (220)

Read/write Escape character.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This location contains the ASCII character (and)ketyich will
generate an ESCAPE condition or event.

e.g. *FX 220,32 will make the SPACE bar the ESCAdE.
Default value &1B (27).

OSBYTEs &DD (221) to &E0 (224)

Read/write I/P buffer code interpretation status.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

These locations determine the effect of the charaetlues &CO
(192) to &FF (255) when placed in the input bufféee
OSBYTEs &E1 (225) to &E4 (228) for details aboug tifferent
effects which may be selected. Note that thesesgatannot be
inserted into the input buffer from the keyboar&4R3 input or a
user keyboard handling routine may place theseegahto the
input buffer.

OSBYTE &DD affects interpretation of values &CO&BF
OSBYTE &DE affects interpretation of values &DO&CF
OSBYTE &DF affects interpretation of values &EO&&F
OSBYTE &EO affects interpretation of values &FO&BF

Default values &01, &DO0, &EO and &FO0 (respectively)

76

OSBYTE &E1 (225)

Read/write function key status (soft keys/codes/ni)l

Changes the effect of typing the user-defined fondteys as
follows:

*FX225,0 - ignores the function keys

*FX225,1 - the function keys will generate the icdter
string defined by the user using *KEY

*FX225,2-255 - the function keys will generate aB@ | code
based on the second parameter: f1 generates a
code one more than the second parameter, 2 a
code two more, etc

OSBYTE &E2 (226)

Read/write firm key status (soft key or code).

Changes the effect of typing function keys in thege A to P
(input buffer characters &90 to &9F), as follows:

*FX226,0 - ignores function keys in this range

*FX226,1 - function keys in this range will genexdhe
BASIC keywords marked on their keycaps

*FX226,2-255- function keys in this range will ggate an
ASCII code based on the second parameter
FUNC A produces a code the same as the
second parameter, FUNC B a code one higher,
etc.

OSBYTE &E3 (227)

Read/write firm key status (soft key or code).
Changes the effect of typing the remaining funckegs (Q to Z

plus :; , - . /) (Input buffer characters &A0 tdA&), according to
the same logic as OSBYTE &E2.

77

OSBYTE &E4 (228)

Read/write CTRL+SHIFT+F key Status (soft key or co@).
Input buffer characters &BO0 to &BF.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofriegt location

are returned in Y. These locations determine thierataken by
the OS when a function key is pressed.

value 0 totally ignore key.

value 1 expand as normal soft key.

value 2 to &FF add n (base) to soft key numbenrtwide
ASCII code.

The default settings are:

fn keys alone &01 expand using soft key strings

fn keys+ SHIFT &01 expand using firm key strings

fn keys+CTRL &01 expand using firm key strings

fn keys+SHIFT+CTRL &00 key has no effect

When the BREAK key is pressed a character of v&lDA is
entered into the input buffer. The effect of thimracter may be
set independently of the other soft keys using OBB%DD
(221). One of the other effects of pressing the BRKey is to
reset this call, so the usefulness of this facistiimited.

OSBYTE &ES5 (229)

Read/write status of ESCAPE key (escape action orSCl|
code).

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

If this location contains 0 then the ESCAPE key itaaormal
action. Otherwise treat currently selected ESCAB¥ds an
ASCII code.

78

OSBYTE &E6 (230)

Read/write flags determining ESCAPE effects.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of rle&t location
are returned in Y.

If this location contains O then when an ESCAPE is
acknowledged (using OSBYTE &7E/*FX 126) then :

EXECfile is closed (if open)

Purge all buffers (including input buffer)
Reset paging counter (lines since last halt)
Reset VDU queue

Any current soft key expansion is cleared

If this location contains any value other than entrESCAPE
causes none of these.

OSBYTE &E7 (231)
Read/write IRQ bit mask for the user 6522 (BBC mico)
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of nlegt location
are returned in Y.

This location is reserved for future Acorn expansion the
Electron.

OSBYTE &ES (232)

Read/write sound semaphore
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

This location contains the sound semaphore.

79

OSBYTE &E9 (233)

Read/write soft key pointer
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

This location contains the soft key pointer.

OSBYTE &EA (234)

Read flag indicating Tube presence.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This location contains 0 if a Tube system is nespnt and &FF
if Tube chips and software are installed.

No other values are meaningful or valid.

OSBYTE &EB (235)

Read flag indicating speech processor presence.

This location is used differently on the BBC miemad the
Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This location is reserved for future Acorn expansio the
Electron.

80

OSBYTE &EC (236)

Read/write write character destination status.
<NEW VALUE>=(<OLD VALUE> AND Y) BOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This call is used by OSBYTE &3/*FX 3.

OSBYTE &ED (237)

Read/write cursor editing status.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

This call is used by OSBYTE &4/*FX 4.

OSBYTEs &EE (238) and &EF (239)

Read/write OS workspace bytes.

These locations are reserved for future Acorn esipanon the
Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

81

OSBYTE &F0 (240)

Read country code
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This location contains a value indicating the copfar which
this version of the operating system has beenemritt

country code country
0 United Kingdom
1 United States

OSBYTE &F1 (241)

Read/write User flag location.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This call is not used by the operating system andlikely to be
used by later issues either. This location is kes®as a user flag
for use with *FX 1.

Default value 0.

OSBYTE &F2 (242)

Read RAM copy of location &FEQ7
<NEW VALUE>=(<OLD VALUE> AND Y) BOR X

This location contains a RAM copy of the last valrgten to the
ULA at address &FEOQ7.

The old value is returned in X. The contents ofribgt location
are returned in Y.

82

OSBYTE &F3 (243)

Read timer switch state.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

The OS maintains two internal clocks which are tgdia
alternately, As the OS alternates between the taeks it toggles
this location between values of 5 and 10. Theseegatepresent
offsets within the OS workspace where the clockieslare
stored. This OS workspace location should not texfiered with.

OSBYTE &F4 (244)

Read/write soft key consistency flag.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

If this location contains O then the soft key buffein a consistent
state. A value other than 0 indicates that thelssftbuffer is in

an inconsistent state (the operating system dagsltining soft
key string entries and deletions). If the soft kagesin an
inconsistent state during a soft break then theksyf buffer is
cleared (otherwise it is preserved).

OSBYTE &F5 (245)

Read/write printer destination flag.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y. This call is used by OSBYTE &5X5. Using
this call does not check for the printer previousjected being
inactive or inform the user printer routine. Seetisa 6.1.

83

OSBYTE &F6 (246)

Read/write character ignored by printer.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y. This call is used by OSBYTE &6¥*6.

OSBYTESs &F7 (247), &F8 (248) and
&F9 (249)

Read/write BREAK intercept code.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

The contents of these locations must be a JMRuctgin for
BREAKS to be intercepted (the OS identifies thesprnee of an
intercept by testing the first location contentsado &4C -
JMP). This code is entered twice during each br@akthe first
occasion C=0 and is performed before the resetageds printed
or the Tube initialised. The second call is madi Wi=1 after the
reset message has been printed and the Tubeigsitial

OSBYTESs &FA (250) and &FB (251)

Read/write OS workspace locations.

These locations are reserved for future Acorn esioas on the
Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

84

OSBYTE &FC (252)

Read/write current language ROM number.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This location is set after use of OSBYTE &8E/*FX617 his
ROM is entered following a soft BREAK or a BRK (er).

OSBYTE &FD (253)

Read hard/soft BREAK.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y

This location contains a value indicating the tgpéhe last
BREAK performed.

value 0 - soft BREAK

value 1 - power up reset
value 2 - hard BREAK

OSBYTE &FE (254)

Read/write available RAM (BBC micro)
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofrib&t location
are returned in Y.

This location is reserved for future Acorn expansibefault
value 0 in the unexpanded Electron.

85

OSBYTE &FF (255)

Read/write start up options.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents ofribgt location
are returned in Y.

On the Electron the default value of this locai®&FF (255) and
this OSBYTE is the only way of resetting the stgrtoptions.

bits 0 to 2 screen MODE selected following red&tODE

bit 3

bits 4-5

bit 6

bit 7

number = 3 bit value)

Auto-boot. If this bit is 1, pressingHIFT BREAK

will cause the filing system (eg the ADFS) to auto-
boot (do something with the file ""BOOT') and
pressingBREAK alone will not cause an auto-boot. If
the bit is zero, the action is reversed and prgssist
BREAK will cause the auto-boot action. The default
is SHIFT BREAK to cause an auto-boot.

These select the speed at which the rege/mead of
the disc steps between tracks. The possible vahges

Bit5 Bit 4 Speed (MS)
1 1 6

1 0 12

0 1 20

0 0 30

The default is 6mS, suitable for the built-in driin
the Plus 3 unit (if fitted).

This selects whether write pre-compensatian |
required when writing data to the disc. A valuelof
means it is required and 0 means it isn't. The Blus
drive does require write pre-compensation, and the
default value of the bit is 1.

This is unused by the current Electron opegat
system and by ADFS.

86

4 OSWORD Calls

The OSWORD routines are very similar in concepghto
OSBYTE routines. The major difference arises invlag of
passing parameters. Instead of being passed X amel Y
registers, they are placed in a parameter block,alidress of this
parameter block is sent to the routine in the X (i@ low byte)
and Y (for the high byte) registers.

OSWORD OS call specified by contents of A taking
parameters in a parameter block.

Call address &FFF1 Indirected through &20C

On entry,
A selects an OSWORD routine.
X contains low byte of the parameter block address.
Y contains high byte of the parameter block address

OSWORDs which are called with accumulator valueth@range
&EOQ (224) to &FF (255) are passed to the USERV (820 he
routine indirected through the USERYV is enteredlie register
contents unchanged from the original OSWORD call.

Other unrecognised OSWORD calls are offered tg#ged
ROMs (see service ROMs section 10.1, reason cade 8)

OSWORD summary

Read line from currently selected input intomuey.
Read system clock.

Write system clock.

Read interval timer.

Write interval timer.

Read byte of I/O processor memory.

Write byte of I/O processor memory.

Perform a SOUND command.

Define an ENVELOPE.

>>>>>>>>>
ONOUTRWNRO

87

A=9 Read pixel value.

A=&A Read character definition.

A=&B Read palette value for a given logical colour.
A=&C Write palette value for a given logical colour
A=&D Read previous and current graphics cursortjoss.

OSWORD call with A=&0 Read line from input

This routine takes a specified number of charadters the
currently selected input stream. Input is termiddt#lowing a
RETURN or an ESCAPE. DELETE (&7F/127) deletes the
previous character and CTRL U (&15/21) deletesathigre line.

If characters are presented after the maximumldéingth has been
reached the characters are ignored and a BEL (ABClaracter
IS output.

The parameter block

XY+ 0 Buffer address for input LSB
1 MSB
2 Maximum line length
3 Minimum acceptable ASCII value
4 Maximum acceptable ASCII value

Only characters greater or equal to XY+3 and lbas br equal to
XY+4 will be accepted.

On exit:
C=0 if a carriage return terminated input.
C=1 if an ESCAPE condition terminated input.
Y contains line length, excluding carriage retdrased.

OSWORD call with A=&1 Read system clock

This routine may be used to read the system clos&d for the
TIME function in BASIC). The five byte clock valug written to
the address contained in the X and Y registerss Glioick is
incremented every hundredth of a second and ® €eby a hard
BREAK.

88

OSWORD call with A=&2 Write System Clock

This routine may be used to set the system cloekfiee byte
value contained in memory at the address contam#t X and
Y registers.

OSWORD call with A=&3 Read interval timer
This routine may be used to read the interval tifneed for

events, see section 6.4). The five byte clock vaweritten to the
address contained in the X and Y registers.

OSWORD call with A=&4 Write interval timer

This routine may be used to set the interval titoex five byte
value contained in memory at the address in thadYaregisters.

OSWORD call with A=&5 Read I/O processor memory

A byte of I/O processor memory may be read acttosg tibe
using this call. A 32 bit address should be comim memory at
the address contained in the X and Y registers.

XY+ O LSB of address to be read
1
2
3 MSB of address to be read

If the 1/0O processor uses 16 bit memory addressimyg least
significant two bytes need to be specified.

On exit:
The byte read will be contained in location XY+4.

89

OSWORD call with A=&6 Write 1/0O processor memory

This call permits 1/0O processor memory to be wnitheross the
Tube. A 32-bit address is contained in the paranidtek
addressed by the X and Y registers and the bye taritten
should be placed in XY+4. For compatibility withtdwe products
it is recommended that XY+2 and XY+3 be set to zero

OSWORD call with A=&7 SOUND command

This routine takes an 8 byte parameter block addreby the X
and Y registers. The 8 bytes of the parameter bhoak be
considered as the four parameters used for the SDédxhmand
in BASIC.

e.g. To perform a SOUND 1,-15,200,20

XY+ 0 Channel LSB 1 &01
1 MSB &00
2 Amplitude LSB -15 &F1
3 MSB &FF
4 Pitch LSB 200 &C8
5 MSB &00
6 Duration LSB 20 &14
7 MSB &00

This call has exactly the same effect as the SOdbdibmand.

OSWORD call with A=&8 Define an ENVELOPE

The ENVELOPE parameter block should contain 14 $gfedata
which correspond to the 14 parameters describétein
ENVELOPE command. This call should be entered tiéh
parameter block address contained in the X andyites's.

90

OSWORD call with A=&9 Read pixel value

This routine returns the status of a screen pikalgiven pair of
X and Y co-ordinates. A four byte parameter blackeiquired and
the result is contained in a fifth byte.

XY+ O LSB of the X co-ordinate
1 MSB of the X co-ordinate
2 LSB of the Y co-ordinate
3 MSB of the Y co-ordinate
On exit:

XY+4 contains the logical colour at the point or &F
the point specified was outside the window.

OSWORD call with A=&A Read character definition

The 8 bytes which define the 8 by 8 matrix of eeleharacter
which can be displayed on the screen may be raad tiss call.
The ASCII value of the character definition to bad should be
placed in memory at the address stored in the Xyaregjisters.
After the call the 8 byte definition is containedthe following 8
bytes.

XY+ 0 Character required
1 Top row of character definition
2 Second row of character definition
é Bottom row of character definition

91

OSWORD call with A=&B Read palette

The physical colour associated with each logic&@dwomay be
read using this routine. On entry the logical colisyplaced in the
location at XY and the call returns with 4 bytesred in the
following four locations corresponding to a VDU &f&tement.

e.g. Assuming that a VDU 19,2,3,0,0,0 had previpbsen
issued then OSWORD &B with 1 at XY would yield

XY+ O 2 logical colour
1 3 physical colour
2 0 padding for future expansion
3 0
4 0

OSWORD call with A=&C Write palette

This call performs the same task as a VDU 19 conthfahich
can be used from machine code using OSWRCH). Thanaage
of using this OSWORD call rather than the conventi®MiaU
route is that there is a significant saving in tirheother
advantage is that OSWORD calls can be used irrugteroutines
while VDU routines cannot. This call works in trense way as
OSWORD &B (see above); a parameter block shoulsebep
with the logical colour being defined at XY, theyglctal colour
being assigned to it in XY+1 and XY+2 to XY+4 coniag
padding Os.

92

OSWORD call with A=&D Read last two graphics cursor

positions

The operating system keeps a record of the lasgtaphics
cursor, positions in order to perform triangleiridl if requested.
These cursor positions may be read using thisXahd Y
should provide the address of 8 bytes of memoxywitich the
data may be written.

XY+ O
1

~N o g~ wWN

previous X co-ordinate, low byte
high byte

previous Y co-ordinatelow byte
high byte

current X co-ordinate, low byte
high byte

current Y co-ordinate, low byte
high byte

93

5 Filing System Calls

Any filing system implemented on the Electron ddfés facilities
by intercepting the standard OS filing system cdlle tape and
*ROM filing system code is contained within the cgténg
system ROM. Other filing system software may belemented
in service type paged ROMs. The currently selefilieg) system
must place pointers to relevant routines in theorsgrovided for
this purpose in page two of memory.

The description of the filing system calls giverthirs chapter
covers a general filing system. The actual impletatem will
differ slightly between filing systems dependingtba suitability
of certain calls to their filing system medium.

The filing system calls are:

name call address indirection vector
OSFILE &FFDD &212

OSARGS &FFDA &214

OSBGET &FFD7 &216

OSBPUT &FFD4 &218

OSGBPB &FFD1 &21A

OSFIND &FFCE &21C

OSFSC n/a &21E

Each of these calls should respond in an apprepaiadl relevant
manner as described in the sections below. Evargththe nature
of certain filing systems’ hardware implementatioay appear to
vary widely, the user is presented with a standiing) system
interface wherever possible. Software can be writthich
functions identically using a number of differeiinfy systems.
Where both X and Y are used to point to a paranidtek. X
holds the low byte and Y holds the high byte ofalkdress.

94

5.1 OSFILE Read/write entire file or its attributes
Call address &FFDD Indirected through &212

This routine is used to manipulate an entire fillee precise
function performed by this routine depends on thieie in the
accumulator. This call can be used to load arite memory,
save a file from memory, delete a file and re-witite file’s
attributes (e.g. load address, execution addraesseretc.). Any
information required by the routine to performtask should be
placed in memory. The address of this informatiooutd then be
passed to the routine in the X and Y registers.

Entry parameters:
A contains a value indicating what action is regdir
X+Y contain the address of a parameter block

The format of the information placed in the paranétock
addressed by X and Y is as follows:

&00 - &01 Address of file name
&02 - &05 Load address of file
&06 - &09 Execution address of file

&0A - &0D Start address of data (write operations) ordten
of file (read operations)

&OE - &11 End address of data (read/write operations) or
File attributes (write attributes operation)

The file name should be stored in another partefory (not
sideways ROMs) and be terminated by a carriageretaracter
(&0D) or a space (&20). The least significant bgtehe address
should be stored in the first of the two bytes. &her parameters
are stored in the same order, least significare bidgred first.

95

The file attributes when required should be progidgethe last
four bytes of the parameter block. The least sigarit 8 bits (i.e.
the first byte) have the following meanings:

Bit Meaning if set

not executable by others
not deletable by others

0 not readable by you

1 not writable by you

2 not executable by you

3 not deletable by you

4 not readable by others
5 not writable by others
6

7

The termyou here means the originator of the call and the term
others means other users of a network filing system.

The action codes passed to OSFILE in the accunruiaice the
following effects:

A=0
Save a section of memory as a named file usinghfbemation
supplied in the parameter block.

A=1

Re-write the catalogue information of an existiitg fising the
information provided in the parameter block. iaad and
execution addresses.

A=2
Re-write the load address (only) of an existing fdentified by
the name passed in the parameter block.

A=3

Re-write the execution address (only) of an exgstile identified
by the name passed in the parameter block.

96

A=4
Re-write the file attributes (only) of an existifilg identified by
the name passed in the parameter block.

A=5
Read the named file’s catalogue entry and retugriiki type in
the accumulator. These are as follows:

O returned in A Nothing found
1returned in A File found
2 returned in A Directory found

A=6
Delete the named file.

A=7

Create a file with a catalogue entry representiegparameter
block information but instead of transferring aratalpad with
null characters.

A=&FF

Load the named file into memory. If the first bygtiethe execution
address field of the parameter block is zero tbhed ko the load
address given in the parameter block. If the bsde of the
execution address is non-zero then use the filetsload address.

During this call if an error occurs a BRK instructiwill be
executed which may be trapped if required. Durimg tall
interrupts may be enabled but the interrupt ststpseserved.

On exit:
A contains the file type
Xand Y are preserved
C, N, V and Z are undefined
Information may be written to the parameter block
addressed by X+Y.

97

5.2 OSARGS Read/write open file’s attributes
Return current filing system

Call address &FFDA Indirected through &214

This routine is used to manipulate files which laeéng used for
random access. Files used in this way have to beempusing the
OSFIND call. When data is being written to or réaain the file
OSBPUT, OSBGET and OSGBPB can be used but this call
should be used to move the sequential pointer bigédese calls
when data is not transferred. This call is the avdy of moving
the sequential pointer backwards through a fileARSS may
also be used to force an update of files onto tediam in use i.e.
ensuring that the latest copy of the memory buffeiaved. A
number of other functions are performed by this asldetailed
below.

Entry parameters:
A contains a value determining the call’'s actions
X contains a zero page address of a parameter block
Y contains the file handle (see OSFIND) or zero

The parameter block in zero page should be in se€'s
allocation of zero page. A block of four byteseguired, this will
contain the value of the sequential file pointerriad operations
or should be set up with a value prior to the fmalla write
operation. It should be noted that because filysjesns should
not be languages and so are not copied acrosseooad
processor this parameter block will always exighia /O
processor even when a Tube is active. If calleohftioe second
processor, the parameter block will be copied acmu® the 1/0
processor before the filing system is called.

Interrupts may be enabled during a call but therrapt status will
be preserved.

If Y=0 and A=0 then return the current filing systéen A.

value returned filing system
0 no current filing system
1 1200 baud cassette

98

300 baud cassette

ROM filing system

Disc filing system

Econet filing system
Telesoftware filing system
IEEE filing system

ADFS

Reserved

Acacia RAM filing system

=
QOWONOUITRWN

If Y=0 and A= 1 then return the address in thepfOcessor of
the rest of the command line will be returned ia tivo least
significant bytes of the zero page parameter bldbks enables
software to access the parameters passed*witbmmands.

If Y=0 and A=&FF then update all files onto thdrt system
medium; this ensures that the medium has the letgst of the
buffers.

If Y is non-zero then the value in Y is assumebléa file handle
(see OSFIND). The value passed in A determineadhen on
the open file specified by Y

A=0

Read sequential file pointer (written to the zeagg parameter
block). This pointer is the same as that used b$EAcalled
PTR#.

A=1

Write sequential file pointer.

A=2

Read length of sequential file. This value is thme as that
returned by EXT# in BASIC.

99

A=3

Write length of sequential file. This call is natplemented in all
filing systems but where implemented may be ustgteto
truncate a file or to extend it (in which case il Wwe padded with
zeroes).

A= &FF
Update this file onto the filing system medium.
On exit:

A is preserved except on a call with A=0 and Y=0
Xand Y are preserved

C, N, V and Z are undefined
D=0

5.3 OSBGET Get a single byte from an open file

Call address &FFD7 Indirected through &216

This routine returns the value of a byte read feofite opened for
random access. The file should have been previaysyed

using OSFIND, The file handle required by this edll have
been provided from this OSFIND call.

Entry parameters:
Y contains file handle

A byte is read from that point in the file deterexinby the
sequential file pointer. During each call of OSBTGEe
sequential file pointer is incremented by one. Téuscessive
OSBGET calls can be used to read bytes from the fil
sequentially. This pointer may be read or writteimg the
OSARGS call thus enabling the use of random access.

Interrupts may be enabled during a call but thermapt status will
be preserved.

100

A is returned containing the value of the byte read

On exit:
Xand Y are preserved
C= 1 if the end of file was reached i.e. invalidl ¢an
which case A=&FE.

N, V and Z are undefined

5.4 OSBPUT Write a single byte to an open file
Call address &FFD4 Indirected through &218

This call is the complement to the OSBGET call désd above.
A file handle should be provided from a prior OSBINall and
the sequential file pointer is used to locate thi@tin the file
where the byte is written.

Entry parameters:
A contains the byte to be written to the file.
Y contains the file handle.

During the call a byte will be written to the fied the sequential
pointer will be incremented. If the sequential fileinter reaches
the end of the file the file will be extended te@ammodate any
new data written where possible.

Interrupts may be enabled during a call but therrapt status will
be preserved over a call.

On exit:
A, X and Y are preserved

C, N, V and Z are undefined

101

5.5 OSGBPB Read/write a group of bytes to/from anpen file
Call address &FFD1 Indirected through &21A

This routine enables the transfer of a group oéyo or from an
open file. This routine is implemented particulaidy filing
systems which have a high time overhead assoandtbaach
data transfer e.g. the Econet.

Entry parameters:
A contains a value which determines the action
performed
X+Y contain a pointer to a parameter block in memor

The parameter block should contain informatiorhia following
format:

&00 file handle

&01 - &04 address of data for transfer

&05 - &08 number of bytes to transfer

&09 - &0C sequential file pointer to be used

The bytes in each parameter should be placeddepsficant
byte first.

The address should include a high order addreesqS8YTE
&82) to indicate if the data is in an i/o processoa second
processor.

The sequential file pointer passed in the paranttek will only
replace the old value of this pointer when appitpri

The action codes passed to the routine will hagddhowing
effects:

102

A=1

Write a group of bytes to the open file. The segjaépointer
given will indicate the point in the file where deebytes are put
and this pointer will be incremented by the nunifdrytes
written.

A=2

Write a group of bytes to the open file withoutngsthe
sequential file pointer value given in the parambteck. The
existing value of the pointer will mark the pointthe file where
these bytes are put and the pointer will then beemented by the
number of bytes written.

A=3

Read a group of bytes from an open file. The setplgyointer
given in the parameter block will indicate where tiytes should
be read from within the file. The pointer will thee incremented
by the number of bytes read.

A=4

Read a group of bytes from an open file disregaythe
sequential file pointer value given in the parambteck. The
existing pointer value will be used and subseqyentdremented
by the number of bytes read.

A=5

Return the title associated with the currently\aectnedium and
return boot/startup attribute, This informatiomistten to the
address pointed at by the X and Y registers. Thadbof the data
is:

&00 n, the length of the title string
&01 - n+1 the title string, ASCII characters
n+2 value indicating boot/start up options

The start up information is filing system dependent

103

A=6

Return the currently selected directory and demdeatity. Two
items of data are written to the parameter blotie format of the
data is:

&00 n, the length of the directory name
&01 - n+1 directory name, ASCII string
n+2 m, the length of the device identity

n+3 - n+m+3 the device identity
A=7

Read the currently selected library, and device, d&ta format is
the same as that used for A=6.

A=8

This call is used to read file names from the autrdérectory. The
parameter block should be set up so that the nuofldde names
to transfer is placed in the ‘No. of bytes to tfandield, For the
first call the ‘sequential file pointer’ field shiolbe set to zero.
The sequential file pointer is incremented eacletilms call is
made so that it points to the next file name fansfer.

The data is transferred to the specified addre#tseifiorm of a list
of file names. Each file name takes the form oA&CII string
preceded by a single byte value indicating thetlewd the string.
The number of filenames in this list is determitgdhe value
passed in the parameter block unless the end dfitbetory is
reached.

This call also returns a cycle number in the ‘filndle’ field of

the parameter block. This cycle number represéetatimber of
times the current catalogue has been written to.

104

Exit conditions:
A, X and Y are preserved
N, V and Z are undefined
C=1 if the transfer could not be completed

In the event of a transfer not being completedpdrameter block
contains the following information:

(@) the number of bytes or names not transferrélde ‘number
of bytes to transfer’ field

(b) the ‘address’ field contains the next locatddmemory due
for transfer

(c) the ‘'sequential pointer’ field contains the sextial file
pointer value indicating the next byte in the tilee for
transfer

5.6 OSFIND Open or close file for random access
Call address &FFCE Indirected through &21C

This call is used to allocate a file handle forseduent use by
OSARGS, OSBGET, OSBPUT and OSGBPB. This call should
also be used to close a file when no further acsagsjuired. In
this instance the file handle is released for lecation and the
file medium is updated from the buffers in memory.

The file handle is a single byte value which unlgueentifies an
open file. This provides a less cumbersome methaddressing
the file in question than using the filename eactet The number
of files which can be open at any one time is glgystem
dependent. The actual range of handle values #Hddry each
filing system is different. The ranges which haeet allocated
by Acorn are listed under OSFSC with A=&07.

105

Entry parameters
(a) To open afile

The accumulator contains a code indicating the offsccess for
which the file should be opened:

A=&40 input only
A=&80 output only (i.e. will attempt to delete fiferst)
A=&CO input and output

X and Y contain the address of a file name striag pyte, high
byte). The filename string should be terminated lmarriage
return character (&0D).

The accumulator will be returned containing the hlndle which
has been allocated or zero if the file could nobpened. Note
that if the filename is syntactically bad, or inve$ a non-existent
directory, a BRK ‘Not found’ error may occur.

(b) To close afile

A=0 Y contains the handle of the file to be closed/=0 to
close all currently open files.

On exit:
A returns file handle on opening otherwise presgrve
Xand Y are preserved
C, N, V and Z are preserved
Interrupts may be enabled during call, status pvese
5.7 OSFSC Miscellaneous filing system control
No OS call address Indirected through &21E
This vector contains an entry point into the curféimg system
which may be used to invoke a number of miscellaadiing

system functions. Because there is no direct daltess this call
can only be made from within an 1/O processor anabit

106

available for code running on a second processmnexder many
of the facilities are indirectly available via otH@S calls which
subsequently make calls through this vector.

Entry parameters:

The accumulator contains an action code determiwimgh
control function is performed.

A=0 *OPT command

The operating system makes this call in respon8©©T’ being
submitted to the command line interpreter or ipoese to
OSBYTE &8B. X and Y contain the parameters passitid tive
“*OPT’ command.

A= 1 Check for end of file (EOF)

This call is made by the operating system in respda OSBYTE
&7F. The call is entered with a file handle valndhe X register.
The X register should be returned containing tHaev&FF if an
EOF condition exists, otherwise it should be reddroontaining
zero.

A=2 */" command

The filing system should attempt to *RUN the filb@se name
follows the'/ character. The operating system command line
interpreter will make this call in response to anceand
beginning */’. The X and Y registers contain thedaess of the
file name string (not including the */’ charactgrs

A=3 Unrecognised *command

The operating system issues this call when an ogresed
command has been submitted to the command lingoneter.
This call is made after the ‘unrecognised *commaratjed ROM
service call has been made (see paged ROMs sd€tibh The
command name string is addressed by the X and istees

107

Filing systems will respond to this call by attemgtto *RUN the
file having the command name. The idea behindishig enable
the implementation of command like utilities whigte stored on
the filing system media. However in the case afirgf system
being unable to execute the file without delayftlreg system
should respond to this call with a ‘Bad Commandsesgye
instead.

A=4 *RUN attempted

The operating system passes on the file name gwtera *RUN
command to the current filing system using this.@dle X and Y
registers contain the address of the file namegstiihe filing
system should then load and execute the codedriilehi

A=5 *CAT attempted

This call is made by the operating system in respda a *CAT
command. The X and Y registers contain the addreti®e rest of
the command string where any parameters requiredebsoutine
may be found.

A=6 New filing system selected

This call is issued when the current filing systisrbeing
changed. The deselected filing system should respgrclosing
any *SPOOL or *EXEC files using OSBYTE &77 and paep
itself for the handover.

A=7 Return handle range
This call may be made to determine the range afeséllocated

as file handles by the currently selected filingteyn. Below is a
list of the handle ranges that have been allodayeficorn.

filing system handle range, inclusive
Tape filing system 1 (&01) 2 (&02)
*ROM filing system 3 (&03) 3 (&03)
Teletext filing system 14 (&0E) 15 (&0F)
Disc filing system 17 (&12) 21 (&15)
Network filing system 32 (&20) 39 (&29)

108

Winchester DFS 48 (&30) 57 (&39)

reserved values 64 (&40) 71 (&49)
Acacia RAM filing system 96 (&60) 101 (&65)
IEEE filing system 240 (&F0) 255 (&FF)

The X register is returned with the lowest valuachhmay be
allocated as a file handle and the Y register netdiwith the
highest value used.

A=8 OS *command about to be processed

The operating system makes this call prior to etiegla
*command. Acorn DFS uses this call to implement the
“*ENABLE’ protection mechanism. This call may albe used by
filing systems to output extra messages e.g. ‘Catioa
recommended’ when free space has become highlgnéated on
a disc.

On exit:
Registers returned as described above
Otherwise registers undefined
Status flags undefined
Interrupts may be enabled, status preserved

109

6 Operating System

Vectors

Many of the operating system routines are indicktheough
addresses stored in RAM. This enables other sodtteaintercept
these calls as they are made.

During a reset the operating system stores thesadés of its
internal routines for such things as reading antdngrcharacters
in locations in page two. Thafficial entry point of these routines
point to instructions like JMP (vector). If anotimece of
software replaces the address stored in the vidatareach
subsequent call is passed to the intercepting aoétw

Consider the following example:

This program assembles a routine which interc&tand ‘£’
characters passed to the OSWRCH routine and exebdahgm.

10 DIM code’% 100

20 WRCHV=820E

30 FOR opt%=0 TO 3 STEP3
40 Pr=code’

50 [

60 OPT opt%

70 .init LDA WRCHV

80 STA ret_vec
90 LDA WRCHV+1
100 STA ret_vec+l
110 LDX #intrcpt AND &FF
120 LDY #intrcpt DIV &100
130 SEI

140 STX WRCHV
150 STY WRCHV+1
160 CLI

170 RTS
180 .intrcpt QYP #ASC’E”
19 BEQ pound
200 QP #ASC$”
210 BEQ dollar
220 IMP (ret_vec)

110

\ A=lo byte of vector

\ make a copy

\ A=hi byte of vector

\ make a copy

\ X=lo byte of new routine
\ Y=hi byte of new routine
\ disable interrupts

\ store new routine address
\ in WRCH Vector

\ enable interrupts

\ finished initialisation
\ trying to print a £ ?

\ if so branch

\ trying to print a $?

\ if so branch

\ neither goto old routine

230 .pound LDA #ASC’$” \ replace £ with $

240 IMP (ret_vec) \ goto old routine

250 .dollar LDA #ASC’£” \ replace $ with £

260 IMP (ret_vec) \ goto old routine

270 .ret_vec EQUN © \ space for return vector
280]

299 NEXT

300 CALL init

This program, although not very long, illustrateewa points
regarding the way in which vectors should be irdpted.

One of the most important aspects concerning tieedeption of
calls through vectors is to make sure that theisgdassed on to
the previous owner of the vector. There are ocoasichen a
routine is intended to be the sole replacementvactor but as a
rule it is good programming practice to copy the wtctor
contents to a returning vector. By returning via ¢id vector
contents any number of intercepting routines caddigy chained
into the operating system call.

While the initialising routine is changing the vactontents to
point at the new routine it is wise to disable inipts, It would
obviously be quite catastrophic if the OSWRCH moetwere to
be called when the vector was only half changedingerrupt
handling routine is unlikely to use the WRCHV blgite is no
reason why it should not.

The intention in this section has been to makenaronghers aware
of the problems which may occur when intercepthse vectors.
They have been implemented so that they may betasadert
extra code into some of the operating system reatand
individuals should not be afraid of using themhis end.
However, careful thought is required; take full @act of the
ramifications of altering the operating systemsalisesponse to
calls. If in doubt try out a routine. Play abouttwirivial examples
such as the one given above. There is nothing togb@nd much
to be learnt.

111

OS and filing system calls indirection
vectors

The vector addresses associated with those opgatatem calls
which are indirected are given in the detailed dpson of each
call in chapter 2. The entry conditions with whtble routine
whose address is contained within these vectotdbwilinchanged
from the initial OS call.

Other page 2 vectors

The other vectors reserved for containing the e of other
operating system and miscellaneous routines aided below.
These are:

Name addr. description

USERV &200 The user vector

BRKV &202 The BRK vector

IRQLV &204 Primary interrupt vector
IRQ2V &206 Unrecognised IRQ vector
FSCV &21E File system control entry
EVNTV &220 Event vector

UPTV &222 User print routine

NETV &224 Econet vector

VDUV &226 Unrecognised VDU commands
KEYV &228 Keyboard vector

INSV &22A Insert into buffer vector
REMV &22C Remove from buffer vector
CNPV &22E Count/purge buffer vector

IND1V &230 unused/reserved for future expansion
IND2V &232 unused/reserved for future expansion
IND3V &234 unused/reserved for future expansion

112

6.1 The User Vector &200

The user vector is called by the operating systethree
circumstances:

(a) When *CODE is passed to the command line inétep

The *CODE command takes two parameters which aeegl in
the X and Y registers. The user vector is theredalith an
accumulator value of zero. OSBYTE &88 may also beduto
generate a *CODE command.

(b) When *LINE is passed to the command line intetgr

The *LINE command takes a line of text as a paramédthe user
vector is entered with the X and Y registers contey the address
of this text and A= 1.

(c) When an OSWORD call &EO to &FF has been made.

The user vector is entered with the register valneg were when
the original OSWORD call was made.

The default address stored in this vector poingstoutine which
generates an error with the message ‘Bad commauadeaor
number &FE.

This vector is fully implemented on the BBC micragauter and
the Electron. On a Tube machine only the vectathen/O
processor is offered these calls.

Listed below is a program which assembles a routinetercept
calls made to the user vector. It may be noticatlttiis routine
does not offer the calls back to the original vectwitine, this is
because the default routine generates an errore Bmeuld only
be one user vector handling routine active at argytone.

113

REM

FOR opt’/=0 TO 3 STEP 3

Pl%=code’%
[
OPT opt%

.init

.userrt

.loop

.code

.osword

.loopl

User vector handling routine
DIM code’% &100
OSASCI=&FFE3
USERV=8200

LDX #userrt AND &FF

\ X=lo byte of routine addr.

LDY #userrt DIV &100 \ Y=hi byte of routine addr.

SEI

STX USERV
STY USERV+1
CLI

RTS

ap #1

BCC code
BNE osword
STX &70
STY &71

LDY #&FF
INY

LDA (&70),Y
JSR OSASCI
QP #D

BNE loop
RTS

TXA

JSR prntbt
JSR space
TYA

JSR prntbt
IYP new_1n
PHA

LDX #&FF
INX

LDA string,X
JSR OSASCI
GVP #ASCJJ&)J
BNE loopl
PLA

JSR prntbt
IYP new_1n

\ disable interrupts
\ set up vector with addr.

\ enable interrupts

\ and return

\ compare contents of A withl
\ A<1 then must be *CODE

\ now if A<>1 must be OSWORD
\ *LINE routine

\ store text address in page@
\ set Y as loop counter

\ beginning of loop Y=Y+1

\ load first byte of string
\ print it

\ was character a cr?

\ if not get the next char.
\ if it was return

\ A=X

\ print value of X

\ print a space

\ A=Y

\ print value of Y

\ print newline and return

\ save contents of A

\ set X as loop counter

\ beginning of loop, X=X+1

\ load character from string
\ print it

\ & char. is end of string
\ loop if not end of string
\ reload the value of A

\ print it out in hex

\ print cr and return

450 .space LDA #820 \ A=space character

460 JMP OSASCI \ print space and return

470 .new_1ln LDA #8D \ A=carriage return character
480 JMP OSASCI \ print cr and return

499 .string EQUS “OSWORD & \ string for OSWORD routine

499 *** This routine prints hex number given in A

500 .prntbt PHA \ save copy of accumulator
510 LSR A

520 LSR A

530 LSR A

540 LSR A \ shift nibble hi to lo

550 JSR nibble \ print hi nibble hex digit
560 PLA \ reload accumulator

570 .nibble AND #ROF \ mask out high nibble

580 QP #&OA \ digit or letter?

590 BCC number \ A<10 print number

600 ADC #8006 \ otherwise add 7 (C=1)

610 .number ADC #&30 \ add &30 to convert to ASCII
620 JMP OSASCI \ print character and return
630]

649 NEXT

650 CALL init

Once assembled this routine will respond to *CODREpbnting

out the parameters passed with the command. A *Ldbiamand
will result in the parameter string being repeaiadhe screen and
an OSWORD in the region &EO to &FF will print outet number
of the call.

e.g.

>*CODE 1,2

a1 02

>¥LINE SOME TEXT
SOME TEXT
>N=8EQ:CALL &FFF1
OSWORD &E@

>

115

6.2 The BRK Vector &202

When a BRK instruction (op code value 0) is exedate
interrupt is generated. The operating system stbheeaddress of
the byte following the BRK instruction in &FD and/&, offers
the BRK to paged ROMs with service call &06, stdies ROM
number of the currently active paged ROM for recgwesing
OSBYTE &BA (ROM active at last BRK), restores rdgrs,
selects the current language ROM and then passesliito the
BRKYV code.

The BRK instruction is normally used on Acorn maes to
represent an error condition and the BRK vectotineus an error
handling routine. In BASIC this error handling rimet starts off
by putting its house in order and then prints suéaor message.

In addition to the use of BRKs for the generatibermors it is
often useful in machine code programming to inclB&Ks
(break-points) as a debugging aid.

If a BRK instruction is executed on the Electrdre BRK vector
is entered with the following conditions:

(@) The A, X and Y registers are unchanged frommithe BRK
instruction was executed.

(b) An RTI instruction will return execution to tlaeldress two
bytes after the BRK instruction (i.e. jumps oves thyte following
the BRK). The RTI instruction also restores theéustaegister
value from the stack.

(c) The address of the byte following the BRK instion is
stored in zero page locations &FD and &FE, Thisradsl can
then be used for indexed addressing.

Error handling BRK routines should not return te ttode which
executed the BRK but should reset the stack (Lsin¥S
instruction) and JMP into a suitable reset entipfdn fact the
convention used by Acorn is to follow the BRK ingttion by:

116

a single byte error number
an error message
a zero byte to terminate the message

and the BRK routine prints out the error name. BRK
handling routine should normally be implementedh®sy current
language. Service paged ROMs should copy a BRKuictsbn
followed by the error number and message downRA&M when
wishing to generate an error. This has to be decaudse
otherwise the current language ROM is paged inth@dBRK
handling routine tries to print out the error mggsaom the
wrong ROM. The bottom of page 1 is often used arglite safe
as long as the BRK handling routine resets thekgiamter.

The use of BRKs as break-points in machine codgrproming
can be of great use to the machine code progranirherexample
below shows how a BRK handling routine may be ueqatint
out the register values. This routine could beheirenhanced by
printing out the value of the byte following the RRstruction
which would then give the programmer 256 individial
identifiable break-points.

10 REM Primitive BRK handling routine
20 DIM code% &100

30 OSASCI=&FFE3

40 OSRDCH=&FFEQ

50 BRKV=8202

60 FOR opt%=0 TO 3 STEP 3

70 Pk=code%

80

99 OPT opt%

100 .init LDX #brkrt AND &FF \ load registers with address
110 LDY #brkrt DIV &100

120 SEI \ disable interrupts

130 STX BRKV \ set up BRK vector

140 STY BRKV+1

150 CLI \ enable interrupts and return
160 RTS

170 .brkrt PHA \ save A X and Y not used)
180 STA byte \ store A in workspace

19 LDA #ASC’A” \ register id

200 ISR prntrg \ print register value

210 STX byte \ store X in workspace

220 LDA #ASC’X” \ register id

117

670
680

JSR prntrg
STY byte
LDA #ASC’Y”
JSR prntrg
ISR newln
JSR OSRDCH
PLA

RTI

JSR OSASCI
LDA #ASC”:”
JSR OSASCI
JSR space
LDA #ASC’&”
JSR OSASCI
LDA byte
JSR prntbt
JSR space
JSR space
RTS

LDA #820
JVP OSASCI

.prntrg

.space

LDA #8D
IMP OSASCI
.prntbt PHA

LSR A

LSR A

LSR A

LSR A

JSR nibble

.newln

.nibble

.number

.byte
.test BRK

]
NEXT

CALL init
N=1:X0=8:Y#=&FF :CALL test

\ print register value
\ store Y in workspace
\ register id

\ print register value
\ print carriage return
\ wait for key press

\ restore A

\ return

\ print register id

\ print colon
\ print space

\ print ampersand
\ get register value
\ print hex number

\ print two spaces

\ print space

\ print carriage return
\ for comments refer to
\ previous example

\ workspace byte

\ cause an error

\ RTI returns to next byte
\ Loop X times

\ if X=0 Loop again

6.3 The interrupt vectors, IRQ1V &204 and IRQ2V &206

The interrupt system on the Electron is descrilbechapter 7. The
function of the two interrupt vectors are descritiegte.

6.4 The event vector, EVNTV &220

This vector is called by the operating system duyris interrupt
routine to provide users with an easy to use infgr/A number of
‘events’ may cause the event handling routine todded via this
vector but unlike an interrupt the reason for tak is passed to
the routine. The value in the accumulator indicéttestype of
event:

event no. cause of event

output buffer becomes empty
input buffer becomes full
character entering input buffer
ADC conversion complete
start of VSYNC

interval timer crossing zero
ESCAPE condition detected
RS423 error detected

Econet event

user event

OCO~NOUIRARWNELO

To avoid unnecessary and time consuming callseé@#ent
vector two OSBYTE calls are used to enable andotesthese
event calls being made. These are &D (13) for disgland &E
(14) for enabling events.

The event handling routine should not enable infgsr and not
last for more than about 2 milliseconds. So thanehandling
routines may be daisy chained they should presegisters and
return using the old vector contents.

119

Output buffer empty 0

This event enters the event handling routine withlduffer
number (see OSBYTE &15/*FX21) in X. It is generateden a
buffer becomes empty (i.e. just after the last abiar is
removed).

Input buffer full 1

This event enters the event handling routine withkuffer
number (see OSBYTE &15, *FX 21) in X. It is gen@dtvhen
the operating system fails to enter a characterartiuffer
because it is full. Y contains the character valhich could not
be inserted.

Character entering input buffer 2

This event is normally generated by a key presstiam@SCI|
value of the key is placed in Y. It is generatedieipendently of
the input stream selected.

ADC conversion complete 3

When an ADC conversion is completed on a chanimektent is
generated. The event handling routine is enterdd the channel
number on which the conversion was made in Y. €aent is
generated by the Plus 1 expansion software.

Start of vertical sync 4

This event is generated 50 times per second cantidith
vertical sync. One use of this event is to timedhange to a
video ULA register so that the change to the scomenirs during
fly back and not while the screen is being refresfdis avoids
flickering on the screen.

120

Interval timer crossing zero 5

This event uses the interval timer (see OSWORDB &8l and
&4, in chapter 4). This timer is a 5 byte valueremoented 100
times per second. The event is generated wheimntlee teaches
zero.

ESCAPE condition detected 6

When the ESCAPE key is pressed or an ESCAPE isvestéom
the RS423 (if RS423 ESCAPEs are enabled) this esent
generated.

RS423 error event 7

This event should be generated by software seryiexpansion
RS423 hardware.

Network error event 8

This event is generated when a network event ectksd. If the
net expansion is not present then this could be feseuser
events.

User event 9

This event number has been set aside for the uset,€rhis is
most usefully generated from a user interrupt hagdbutine to
enable other user software to trap an interruptye@sg. an event
generated from an interrupt driven utility in page@M). An
event may be generated using OSEVEN, see section 2.

6.5 User print vector, UPTV &222

A user print routine can be implemented by intetiogpthis
vector, Whenever a change in printer type is maieguOSBYTE
&05 the print vector is called. A user print rowtishould respond
when printer type 3 is called.

121

The operating system will activate the user prinbeitine and
there after call it regularly at intervals of 10limeconds.
Characters will be placed in the printer buffer &nd up to the
user printer routine to remove characters and #ed to the
printer hardware. When the printer routine findst tthe buffer is
empty it should then declare itself inactive. Tipemting system
will then re-activate the routine when charactéast £ntering the
buffer again.

The user printer driver should preserve all regsséad return via
the old UPTV value.

On entry:
X contains the buffer number to be used
Y contains the printer number (i.e. the *FX 5 value

N. B. The routine should only respond if it recags the printer
number as its own.

The accumulator contains a reason code for the call
A=0

When the printer driver is active the operatingesysmakes this
call every 10 ins. The printer driver should exaenis hardware
and if it is ready for another character shouldaeena character
from the assigned buffer and send it to the prirAerall to the
REMV vector should be made to obtain the chargsts section
6.9.2) or use OSBYTE &91, When the printer drivas lemptied
the printer buffer it should then declare itseHdtive by making
an OSBYTE call &7B. This will allow the user to set a new
printer driver using OSBYTE &5, will stop furthealts with A=0
and thereafter when the printer buffer is usedragadll cause a
call with A=1 to be made (see below).

A=1
When a printer driver is inactive this call is madeell the
routine that the printer buffer is no longer emaiyl the printer

driver should now become active. If the printewdriis able to
become active it should remove a character fronasisegned

122

buffer and if the buffer is still not empty it sHdueturn with the
carry flag clear to indicate that it is now actitaving thus
signalled itself as active the printer driver wédceive the 10 ms
calls with A=0.

A=2

When the VDU drivers receive a VDU?2 this call isdaa
Characters may be printed even when this contralacter has
not been received if certain *FX3 options are del@c

A=3

This call is made when a VDU3 is received.

A=5

The selection of a new printer driver will causes all to be

made to the printer vector. Any OSBYTE &5 call casighis call
to be made.

6.6 Econet vector, NETV &224

The Econet vector allows the Network filing systenintercept a
wide range of operating system functions. This eeist called
with a reason code in the accumulator. The condtinder
which this vector is called are:

A=0,1,2,3and 5

These codes are used to control the net print&asdhalls are
made under identical circumstances as for theprgrvector
described above. The net printer is assigned théespnumber 4.

A=4
OSWRCH call made. This call is indirected throulgé het vector
after OSBYTE &DO has been used. The Y registeraiostthe

value originally passed in the accumulator. If exit, the carry
flag is set then the output call is not performed.

123

A=6

OSRDCH call made. This call is indirected throulgé het vector
after OSBYTE &CF has been used. The ASCII valueafkey
read should be returned in the accumulator.

A=7

OSBYTE call made. This indirection is performeccafDSBYTE
&CE has been used. The OSBYTE parameters are stored
locations &EF, &F0 and &F1. If the overflow flag $&t on return
from this call then the OSBYTE call is not perforne

A=8

OSWORD call made. Circumstances as for call witiy A=
A=&0D

After completion of a line of input using OSWORD &¢his call

is made. This is implemented so that the Netwdikgfisystem
doesn’t takeover the RDCH routine in the middidireé input.

6.7 VDU extension vector, VDUV &226

This vector is called when the VDU drivers are pregsd with an
unknown command or a known command in a non-graphic
MODE.

A VDU 23,n command with a value of n in the rang® 31 will
cause a call to be made to this vector with theydéag set. The
accumulator will contain the value n.

An unrecognised PLOT command or the use of a PL&@iincand
in a non-graphics MODE will result in this call hgimade with
the carry flag clear. The accumulator will contthie PLOT
number used.

124

6.8 The keyboard vector, KEYV &228

This vector is used whenever the keyboard is bieioked at.
There are four different calls made through thisteeon the
Electron.

(@) Test SHIFT and CTRL keys On entry: C=0, V=0

Should exit with the N (negative) flag set if th& RL key is
pressed and with the V (overflow) flag set if tHeIST key is
pressed.

(b) Scan keyboard as for OSBYTE &79
On entry: C=1, V=0 other parameters identical ®BOTE &79

Should exit with the appropriate register valuese(©SBYTE
details) but with A=X.

(c) Timer interrupt service with keys active
On entry: C=1, V=1

This entry is actually used for the bulk of all kewrd processing.
After an interrupt the actual keyboard scan isiedrout during
this call. If the user’s program does not requse af the
keyboard, intercepting this call to the KEYV rowiand returning
it speeds up the machine enormously. AlternativelyBYTE

178 may be used to switch off the interrupt altbge{(see
Chapter 3). The keyboard may still be read by tliaecess to it,
see section 14.2.

(d) Timer interrupt service with no keys active

On entry: C=0, V=1

125

6.9 The buffer maintenance vectors

This vector and the two following vectors enable tiser to
intercept or use the operating system buffer maaree routines.

The operating system uses buffers for keyboardtjrip8423
input and output, the printer, the sound systeiloufers) and the
speech system. These buffers contain data whiai¢he
processed by the various routines. Even thougkehacing
routine may not be able to respond to the requasiediately the
calling routine returns (unless the buffer is falf)d is able to get
on with its foreground task. While a buffer consaamqueue of
data for processing, the interrupt routine (thekgamund task)
sees to it that the relevant routines servicedata.

In this way the user is able to type ahead whemthehine is
unable to respond immediately and may initiate dsumhich
then continue while he issues further commands.

Buffers operate on a first in first out (FIFO) sa®r obvious
reasons.

The Acorn BBC range of machines use the followingbers as
buffer IDs:
title number
keyboard buffer
RS423 input buffer
RS423 output buffer
printer buffer
SOUND channel 0 buffer
SOUND channel 1 buffer
SOUND channel 2 buffer
SOUND channel 3 buffer
speech buffer

w
Ououh NFRO

On the BBC microcomputer and the Electron memorgserved
for each of these buffers even though the softwardivare using
the buffer may not be present. The buffer mainteaanalls still
service these buffers but the contents will noptmeessed by the
relevant service routine. The expansion softwardiare will
use the appropriate buffer when installed. Thusnithe speech
expansion is fitted on a BBC microcomputer the shdriffer is

126

used and on an Electron with a Plus 1 the printéfiebis used.

The following OSBYTE calls may also be of interegten
considering the buffer facilities:

Description OSBYTE number
flush selected buffer class &0F (15)

flush particular buffer &15 (21)

get buffer status &80 (128)
insert value into buffer &8A (138)

get character from buffer &91 (145)
examine buffer status &98 (152)

insert value into i/p buffer &99153)
6.9.1 Insert value into buffer vector, INSV &22A

This vector contains the address of a routine whshrts a value
into a selected buffer.

Entry parameters:
A=value to be inserted
X=buffer id

On exit:
A and X are preserved
Y is undefined
C flag is set if insertion failed (i.e. buffer full
6.9.2 Remove value from buffer vector, REMV &22C
This vector contains the address of a routine wheohmoves a
value from the selected buffer. This routine mapdie used to

examine the next character to be removed from febwithout
actually removing it.

127

Entry parameters:
X=buffer ID
V=1 (overflow flag set) if only examination reqted

On exit:
A contains next byte to be removed (examinatiol) cal
(A undefined for removal call)
Xis preserved
Y contains the value of the byte removed from thiédo
(Y undefined for examination call)
C flag is set if buffer empty when call made

6.9.3 Count/purge buffer vector, CNPV &22E

This vector contains the address of a routine whialy be used to
clear the contents of a buffer or to return infotioraabout the
free space or contents of a buffer.

Entry parameters:
X=buffer ID
V=1 (overflow flag set) to purge buffer
V=0 (overflow flag clear) for count operation
C=1 count operation returns amount of free space
C=0 count operation returns length of buffer catge

On exit:
X and Y contain value of count (low byte, high Byte
X and Y are preserved for a purge operation
A is undefined
V and C are preserved

6.9.4 Using the buffer vectors

It should be noted that none of the buffer mainteeaoutines
check for valid buffer IDs. Using a buffer ID owutsithe assigned
range will have undefined effects unless specifiaatercepted.
None of these vectors are implemented on secoragsors and

so none of the buffer maintenance calls are sepsathe Tube.
Calls using the buffer vectors should always beertadcode

128

resident in the 1/O processor. It should be nobed ¢tonsiderable
manipulation of the buffers may be carried out g8 routines
such as OSBYTE, OSWRCH, OSWORD etc. which may &ffec
buffer contents either directly or indirectly. Rmds intercepting
these vectors must always be resident on the Oegsor, ideally
in service type paged ROMs.

The program below illustrates how the buffer vesiwan be
intercepted to implement a much larger printer éuffhe
standard printer buffer is less than &100 bytegland since
printers as a rule tend to be quite sluggish pergls this buffer
rapidly fills up. A buffer is required which willdid a reasonable
sized listing, or a document before filling up aetlsing to
accept further input. Having placed the item fanting in an
enlarged buffer the user may return to word prangss
programming leaving the operating system to gewibim the
printing.

The routine used below creates a buffer of varialde as defined
by the variable ‘size’. The usefulness of this pang is limited.
For the reasons given above it will only work whien on a non-
Tube machine. It will only work as long as its casl@ot
corrupted; this means that renumbering the progfien it has
been run willcrash the machine as BASIC tramples all over the
area originally reserved for the assembled codwgil&@iy another
language ROM is unlikely to allow the routine taiin peace. If
this routine becomes corrupted the machine islyotizgdabled
because each time a key is pressed this routredles.
Experimenting with this example will provide vallalexperience
in the use of critical operating system routinese @ote of
warning however, be sure to save a copy of theramdpefore
trying to run it; it is quite possible for the pragn to corrupt itself
or evencrash the machine irrevocably so that a power on reset is
required (that is, the machine will have to be édroff, then on
again).

This program consists of three main routines wiméércept the
buffer maintenance calls for the printer bufferll€gor any of the
other buffers are carefully handed on to the odbroutines
pointed to by the contents of the buffer vectons.akea of RAM
is reserved for use as a buffer by using a DIMest&int. Four
bytes of zero page memory are used to house tvioat pdinters.

129

One pointer is used as an index for the insertforatues into the
buffer and the other pointer is used as an indeh®removal of
bytes. When a pointer reaches the end of the buffepointed to
the beginning again, In this way the two pointgrsle through
the buffer space. A full buffer is detected by ementing the
input pointer and comparing it to the output painiethe two
pointers are equal the buffer is full, the chanacéanot be
inserted; the input pointer is restored. If aftex temoval of a
character the output pointer becomes equal tonihat ipointer
then the buffer is now empty. By using this systamfull size of
the buffer is always available to contain data.

10 REM user printer buffer routine
20 MODE7

30 size=R2000

40 DIM buffer size

50 DIM code¥% &400

60 INSV~&22A

70 RMW=822C

80 CNPV=R22E

99 ptrblk=R80: !ptrblk=buffer+buffer*&10000
100 ip ptr=ptrblk:op ptr=ptrblk+2
110 FOR I=0 TO 3 STEP 3

120 Pl%=code%

130 [

140 OPT I

150 .init LDA INSV \ make copies of old vector
160 STA retl \ contents to pass on calls
170 LDA INSV+1

180 STA retl+l

190 LDA RW

200 STA ret2

210 LDA RMV+1

220 STA ret2+1

230 LDA CNPV

240 STA ret3

250 LDA CNPV+1

260 STA ret3+1

270 LDX #ins AND &FF \ store address of new
280 LDY #ins DIV &100 \ routines in vectors
299 SEI \ disable interrupts
300 STX INSV

310 STY INSV+1

320 LDX #trem AND &FF

330 LDY #rem DIV 8100

340 STX RWV

350 STY RMV+1

360 LDX #cnp AND &FF

130

370
39
410
420
430
450

470

wrkbt
.retl
.ret2
.ret3

.wrngbfl PLP:PLA:JMP (retl)

LDY #cnp DIV &100

STX CNPV
STY CNPV41
CLI

RTS

EQUB ©
EQUW ©
EQUW ©
EQUW ©

\ enable interrupts

\ finished

\ byte of RAM workspace

\ reserve space for vectors

\restore S & A, call 0S

\New insert char. into buffer routine

.ins

.insfail

.wrngbf2

PHA: PHP

CPX #3

BNE wrngbfl
PLP

LDA ip ptr
PHA

LDA ip ptr+l
PHA

LDY #0

JSR inc_ptr
JSR compare
BEQ insfail
PLA:PLA:PLA
STA (ip_ptr),Y
CLC

RTS

PLA

STA ip ptr+l
PLA

STA ip ptr
PLA

SEC

RTS
PLP:IWP (ret2)

\ save A and status register
\ is buffer id 3 ?

\ if not pass to old routine
\ not passing on, tidy stack
\ A=lo byte of input pointer
\ store on stack

\ A=hi byte of input pointer
\ store on stack

\ Y=0 so ip ptr incremented

\ by the inc_ptr routine

\ compare the two pointers

\ if ptrs equal, buffer full
\ don’t need ip ptr copy now
\ A off stack, insrt in bufr
\ insertion success, C=0

\ finished

\ buffer was full so must

\ restore ip ptr which was

\ stored on the stack

\ insertion fails so C=a
\ finished
\ restore 5, call OS

\New remove char. from buffer routine

.rem

.remsr

PHP

CPX #3

BNE wrngbf2
PLP

BVS examine
JSR compare
BEQ empty
LDY #2

JSR inc_ptr
LDY #0

LDA (op_ptr),Y
TAY

CLC

RTS

131

\ save status register

\ is buffer id 3 ?

\ if not use OS routine

\ restore status register
\ V=1, examine not remove
\ compare i/p and o/p ptrs
\ if the same, buffer empty
\ Y=2 so that increment ptr
\ routine inc’s op ptr

\ Y=0, for next instruction
\ fetch character from bufr
\ return it inY

\ buffer not empty, C=0

\ return

870 .empty
880

899 .examine

900
910
920
930
940
950
960

1000 .wrngbf3 PLP:JMP (ret3)

SEC
RTS

LDA op ptr
PHA

LDA op ptr+l
PHA

JSR remsr
PLA

STA op_ptr+l
PLA

STA op_ptr
TYA

RTS

\ buffer empty, C=a

\ return

\ examine only, so store a
\ copy of the oip pointer
\ on the stack to restore
\ ptr after fetch

\ fetch byte from buffer
\ restore ptr from stack
\ (if buffer was empty

\ C=1 from fetch call)

\ examine requires ch, in A
\ finished
\ restore 5, call OS

1010 \ New count/purge buffer routine

1020 .cnp

1110
1120
1130
1140
1150
1160 .loopl
1170
1180
1190
1200
1210
1220 .no_inc

1230 .finshdl

1240
1250
1260
1270
1280
1290
1300 .len
1310
1320
1330
1340
1350
1360
1370 .loop2

PHP

CPX #3

BNE wrngbf3
PLP

PHP

BVS purge
BCC len

LDA ip ptr
PHA

LDA ip ptr+l
PHA

LDX #0

STX wrkbt
LDY #0

JSR inc_ptr
JSR compare
BEQ finshdl
INX

BNE no_inc
INC wrkbt
IMP loopi
PLA

STA ip ptr+l
PLA

STA ip ptr
LDY wrkbt

PLP
RTS

LDA op ptr
PHA

LDA op ptr+l
PHA

LDX #0

STX wrkbt
LDY #2

JSR compare

\ save status reg. on stack
\ is buffer id 3 ?

\ if not pass to old subr
\ restore status register
\ save again

\ if V=1, purge required

\ if =0, amount in buffer
\ o/w free space request

\ store ip ptr on stack

\ X=0 for use as counter
\ wrkbt=0 for hi counter
\ Y=0, so ip ptr incr’d
\ increment ip ptr

\ does it equal op ptr

\ if so count~free space
\ X=X+1

\ if X=0 don’t inc wrkbt
\ hi byte of count inc’d
\ loop round again

\ restore ip ptr off stack

\ Y=hi byte of free space
\ restore status register
\ finished

\ store op_ptr on stack

\ X=0 for use as counter

\ wrkbt=0 hi byte of count
\ Y=2 so op_ptr incremented
\ are ptrs equal ?

1380 BEQ #nshd2

1390 JSR inc_ptr
1400 INX

1410 BNE no_inc2
1420 INC wrkbt

1430 .no_inc2 IMP loop2
1440 .finshd2 PLA

1450 STA op_ptr+l
1460 PLA

1470 STA op_ptr
1480 LDY wrkbt
1490 PLP

1500 RTS

\ if so buffer empty

\ increment op_ptr

\ increment count

\ if X=0 then increment hi
\ byte of count

\ loop round again

\ restore op _ptr off stack

\ Y=hi byte of length
\ restore status register
\ finished

1510 .purge LDA #buffer AND &FF\ to purge buffer reset

1520 STA ip ptr \ oip and i/p ptrs to
1530 STA op_ptr \ start of buffer

1549 LDA #buffer DIV &100

1550 STA ip ptr+l

1560 STA op_ptr+l

1570 PLP \ restore status register
1580 RTS \ return

1590 \ Increment pointer routine. Y=0 op ptr, Y=2 ip ptr

1600 .inc_ptr CLC \ (=0

1610 LDA ptrblk,Y \ A=?(ptrblk+Y)

1620 ADC #1 \ A=A+1+C

1630 STA ptrblk,Y \ ?(ptrblk+Y)=A

1640 LDA ptrblk+l,Y \ A=?(ptrblk+1+Y)

1650 ADC #9 \ A=A++C

1660 STA ptrblk+1,Y \ ?(ptrblk+1+Y)=A

1670 MP #(buffer+size) DIV &100 \ hi byte end of bufr
1680 BNE home \ not end of buffer

1690 LDA ptrblk,Y \ A=low byte of pointer
1700 MP #(buffer+size) AND &FF \ end of buffer ?
1710 BNE home

1720 LDA #buffer AND &F \ if the end of buffer has
1730 STA ptrblk,Y \ been reached set pointer
1740 LDA #buffer DIV &100 \ to the beginning again
1750 STA ptrblk+1,Y

1760 .home RTS \ return

1770 \ Compare pointers, if equal Z=1 don’t care otherwise
1780 .compare LDA ip ptr+l

1790 QP op ptr+l \ compare ptr high bytes
1800 BNE return \ if not equal return
1810 LDA ip ptr

1820 QP op ptr \ compare pointr low bytes
1830 .return RTS \ return

1840]

1850 NEXT

1860 CALL init

133

This program requires the presence of the Plugparesion to be
of any use. It could however be modified to replaog of the
operating system’s buffers. A paged ROM versiothaf program
can be found in chapter 10.

6.10 Unused vectors, IND1V, IND2V & IND3V &230

These vectors are reserved by Acorn for future esipa.
Software which uses these vectors cannot be gesemd be
compatible with any future versions of operatingteyn software
or other Acorn products.

6.11 The default vector table

The BBC microcomputer operating system (versionoh®ards)
and the Electron operating system contain a tabdiefault values
in a block of data. This may be accessed usingpllmving
addresses:

&FFB6 - contains the length of the data in bytes

&FFB7 - contains the low byte of the data’s address
&FFB8 - contains the high byte of the data’s adslres

134

[Interrupts

7.1 An introduction to interrupts

An interrupt is a hardware signal to the micropesce. It informs
the 6502 that a hardware device, somewhere inldetr&n or on
an expansion module, requires immediate attentéren the
microprocessor receives an interrupt, it susperugaver it was
doing, and executes an interrupt servicing routifgon
completion of the servicing routine, the 6502 resuto whatever
it was doing before the interrupt occurred.

A simple analogy of an interrupt is a man workirggcat his
desk writing a letter (a foreground task). Suddehéy/telephone
rings (an interruption). The man has to stop wgitamd answer
the telephone (the interrupt service routine). Atiempletion of
the call, he has to put the telephone down, anduygachis writing
exactly where he left off (return from interrupt).

In an Electron, the main objective is to performefground tasks
such as running BASIC programs. This is equivalentriting
the letter in the above example. The computer noayeler be
concerned with performing lots of other functionghe
background (equivalent to the man answering trepteine). An
Electron which is running the house heating sydtamexample
would not wish to keep on checking that the temjpeean every
room is correct — this would take up too much sfgtocessing
time. However, if the temperature gets too higkoorlow in any
of the rooms it must do something about it veryciyi. This is
where interrupts come in. The thermostat could ggaen
interrupt, causing the computer to jump quicklyte interrupt
service routine, switch a heater on or off, andrreto the main
program.

There are two basic types of interrupts availalbléhe 6502.
These are maskable interrupts (IRQs) and non-méskabrrupts
(NMils). To distinguish between the two types, there two
separate pins on a 6502. One of these is usethtrae IRQs
(maskable) and the other is used to generate Nibis-(
maskable).

135

7.1.1 Non-Maskable Interrupts

In order to generate a non-maskable interrupteeegpof hardware
must pull the NMI line low. This forces the 6502stop whatever
it was doing, and to start executing the NMI seswvigutine at
&0DO00. NMils are extremely powerful, because theyncd be
turned off under software control. If the ULA isroently
accessing RAM to produce the video display in mdilas3, it is
also forced to give the memory back to the 6502 IN&&n
therefore createsnow on the screen - the urgency of this signal is
such that even the screen cannot take priority theemterrupting
device.

Only very high priority devices, such as the Flojapgc or
Econet interfaces, are allowed to generate NMIgs &hsures that
the 6502 is only interrupted in very urgent sitoasi. These high
priority devices are then guaranteed to get imnteditention
from the 6502. To return to the main program framiNgMI, an
RTI instruction is executed. It is always necessarmgnsure that
all of the 6502 registers are restored to thegioal state before
returning to the main program. If they are modifigee main
program will suddenly find garbage in its registershe middle
of some important processing. It is highly probahlzt a total
systemcrash would result from this.

7.1.2 Maskable Interrupts

Maskable interrupts are similar to non-maskablermipts in most
respects. A hardware device can generate a maskédrieipt to
which the 6502 must normally respond. The diffeesiscthat the
6502 can choose to ignore all maskable interrufptsso desires,
using software control. To disable interrupts (cthlg maskable
ones though), an SEI (set interrupt disable flagdruction is
executed. Interrupts can be re-enabled at a laterusing the CLI
(clear interrupt disable flag) instruction.

When an interrupt is generated, the processor ktioatsan
interrupt must have come from either the ULA, oreapansion
module device. Initially though, it can’t tell wheethe interrupt
has come from. If there was only one device thatdchave
caused the interrupt, then there would be no probléowever,

136

since there is more than one device causing irgesia the
Electron, each device must be interrogated. Eacltelés asked
whether it caused the interrupt. This is normalljte easy,
because all of the standard Electron devices areatled by the
ULA register at address &FEOQO0. Any other devicesnazted to
the expansion bus would have to be interrogatedrasgdy.

When the interrupt processing routine has discaltre source
of a maskable interrupt, it must decide upon tipe tyf action is
required. This usually involves transferring soragado or from
the cassette interface, incrementing the clockashing the
colours on the screen. The interrupt condition nthuesh be
cleared by writing to &FEO5. This is because maeastices
(except the cassette receive and transmit registenginue to
signal an interrupt until they have been serviddw completion
of servicing often has to be signalled by the pssoe writing to a
special register in the device, or, in the casatefrupts from the
ULA, to address &FEOS5.

Interrupts must never affect the interrupted prograAll of the
processor registers and flags must therefore betlgxthe same
after return from an interrupt routine as they weeéore the
interrupt occurred. Thus an interrupt routine maigter not alter
any registers (which is difficult) or restore algister contents to
their original values before returning.

Interrupt routines are entered with interrupts lolisd. An
additional interrupt will therefore not be recogrdswhilst the first
interrupt routine is still processing. If the imgpt service routine
is going to take an appreciable time, this couehta problems.
Other more urgent interrupts may occur, and hawesaio until the
previous one has finished processing. The solusiormally to
ensure that interrupt routines are not too longwveleer, if care is
taken, interrupts can be re-enabled inside a Iotegrupt routine.
In this case, fixed memory locations must not bedus store
variables within the routine, because these lonatwill be
overwritten if another interrupt routine uses th@mindeed if the
same interrupt occurs again!). All variables shdhlketefore be
stored on the stack so they can be restored anithef any
routine.

137

7.2 Interrupts on the Electron

Interrupts are required on the Electron to proedissf the
background operating system tasks. These tasks include
incrementing the clock, processing envelopes,amsfierring keys
pressed to the input buffer. All of these taskstheostinue whilst
the user is typing in, or running his program. \gsimerrupts
gives the impression that there is more than onegssor; one for
the user, one for updating the clock, one for pser® envelopes,
etc.

As was mentioned in the introduction, normal (m

interrupts can be disabled. Interrupts should belylisabled for
critical operations. For example, when changingieebytes of a
vector. If an interrupt occurs in the middle of ttfenge, it might
be indirected to an erroneous address.

When interrupts are disabled, the clock stops,adinother
interrupt activities cease. Interrupts are disablethe SEI
assembler instruction, and re-enabled with CLI. Mievices that
generate interrupts will continue to signal annnipt until it is
serviced. The cassette read register is one exceptiit isn’t
serviced within 2ms, data from the cassette wii@dt certainly
be lost forever.

7.3 Using Non-Maskable Interrupts

Generally, NMIs are reserved for specialised pietdsmrdware
which require very fast response from the 6502. di&te not
used on a standard system. They are used on DISE@ONET
systems. An NMI causes a jump to location &0D0B&amade.

7.4 Using Maskable Interrupts

Most of the interrupts on the Electron are maskaliiés means
that a machine code program can choose to ignermtérrupts
by disabling them. Since all of the operating systeatures such
as scanning the keyboard, updating the clock, anding the
cassette system are run on an interrupt basisrupts should
never be disabled for more than about 2ms.

138

There are two levels of priority for maskable intgts, defined
by two indirection vectors in page &02. The prigraf an
interrupt indicates its relative importance witspect to other
interrupts. If two devices signal an interrupt sitaneously, the
higher priority interrupt is serviced first.

7.5 Intercepting interrupts

Maskable interrupts can be intercepted on the Elecand re-
directed to a user specified address. This int¢ik@eprocess
consists of changing the value of a vector.

There are two interrupt interception vectors calR@1V and
IRQ2V, The first of them is indirected via the vacstored at
&204,5 and the second via &206,7. If either of Weetors stored
in these locations is changed to point at a uggplsd routine,
that user routine will be called when there is raxinterrupt.

Interrupt Request Vector 1 (IRQ1V)
Indirects through &204,5

This is the highest priority vector through whidhraaskable
interrupts are indirected, This is nominally resehyor the system
interrupt processing routine, which copes withoélihe interrupts
from the ULA. Any interrupt which cannot be deaitiwby the
operating system routine (those which are genelateduser
expansion module) are passed on through the sectamdipt
vector, IRQ2V. Occasionally, IRQ1V can be interegbbefore
the operating system gets hold of it. This willyohe necessary
for high priority user interrupts.

Interrupt Request Vector 2 (IRQ2V)

Indirects through &206,7

This vector is normally used to deal with any iniets which
cannot be dealt with by the operating system. Ourexpanded
Electron, the vector simply points to a coupleiné$ of code to

restore the A register from &FC, then return frdma interrupt
service.

139

Several points should be born in mind when prodyciterrupt
service routines.

a) When the vector value is changed to point ahdve user
supplied routine, the previous contents of theareshould be
saved somewhere. This will allow the user routmgd on to
the correct address after it has finished, Notettiia method
of linking into IRQ1V or IRQ2V allows several indepdent
routines to link in separately. Each stores theiptes
contents of the vector (which point to the nexttiroe).

b) Disable interrupts using the SEI instructiondoefchanging
the contents of the interrupt vectors, This is ryesie
precaution to guard against the possibility ofinipts
occurring between writing the low and high bytes$haf
vector If an interrupt were to occur in the middfethis
operation, the indirection vector would be erroree@nd
would probably cause the machine to crash.

c) The conditions which will be in force when theeuroutine is
entered are that; the original 6502 status byteramnatn
address are already stacked on the 6502 stacky(feadn
RTI instruction to resume normal operation). TharkXl Y
registers are still in their original states, bavén’t been
saved anywhere. The original A register contergsrar
location &FC.

d) Operating system calls should not normally belenfaom
within an interrupt service routine, This is becatisey may
not be re-entrant (eg. if any zero page locatioasuaed).
Most OSBYTEs and some OSWORDs are ‘IRQ-proof’.
Avoid *FX0, OSBYTE &81 (positive INKEY), fast Tube
BPUT, OSWORD 0, and all VDU OSWORDs except palette
write/read. Such use of OS calls will often caumse t
foreground task to be disturbed and crash.

e) The user’s interrupt routine shouldrgeentrant. This means
that if there is a possibility of interrupts beiregenabled
during the routine (eg. because it is very longg, ¢ode can
be run again without affecting the first foregrounterrupt.
This can only be done by pushing the X and Y regssplus

140

the contents of &FC onto the stack, and restorivent after the
call. It is also important to ensure that no fixadmory locations
are used for storing variables, since these wilbberwritten by
an interrupting routine.

The following example illustrates most of thesenpi When run,
it will cause the Electron to make a continuousrelasing pitch
tone.

Several points in the program are worthy of notee Tirst is that
IRQ1V is used instead of IRQ2V. On an unexpandedttédn, all
interrupts are serviced by IRQ1V, so the OS doebather to
pass them on to IRQ2V, When the tone is runningicbwthe
listing to page mode (by pressing CTRL N). Then like
program. The sound is totally messed up becauseOtBeis
writing to the ULA as well. This illustrates onetbke reasons why
the official operating system calls should normally be used —to
avoid clashes like that.

10 REM Interrupt utilisation example
20 REM Must operate in mode 6

30 MODE 6

490 REM Allocate space for program

50 DIM M% 100

60 FOR opt¥%= © TO 3 STEP 3

70 PIEML

8 |

9% OPT opt%

10 .init SEI \ Disable interrupts
110 LDA &204 \ Save old IRQ1V vector
120 STA oldv

130 LDA &205

140 STA oldv+1

150 LDA #int MOD 256 \ Low byte of address
160 STA &204 \ IRQ1V Low

170 LDA #int DIV 256 \ High byte of address
180 STA 8205

19 CLI \ Turn interrupts on again
200 RTS \ Exit initialisation routine
205

210 \ This is the interrupt service routine

220 .int TXA \ Save X register

230 PHA

240 TYA \ Save Y register

250 PHA

260 INC &70 \ Counter in zero page
270 LDA &70

141

289 STA &FEQ6 \ Load into ULA counter

299 LDA #&32 \ Set sound mode

300 STA &FEQ7 \ Write to ULA control register
310 PLA \ Restore the registers

320 TAY

330 PLA

340 TAX

350 IWP (oldv) \ Go on to next service routine
355

360 .oldv EQUW © \ Reserve space for old vector

376]

380 NEXT opt%

399 REM Grab the interrupt vector
400 CALL init

410 REM Bleeping should now start
420 END

142

8 Paged ROMs

The Acorn Electron and the BBC micro both supploet toncept
of a number of ROM based programs being resideatrnmachine
in the same address space. Each ROpaged in as required and
thenpaged out as software in another ROM is required.

Paged ROMs work broadly in one of two ways. Theyedtber as
languages such as BASIC and LISP or they act &sagtisuch as
filing systems and device drivers. Languages mayp ahclude
such things as word processors and CAD graphidsagas.

At any one time only one language should be acfiveis most
Electrons will enter BASIC as the default langua@lee current
language has access or control over the user RANNwhHIN turn
may allocate to users e.g. for BASIC programs armwarocessing
text.

While the one language is active any other ROM rofte a
service may be called upon as is appropriate, Véh@guest for a
service is generated the operating system intetesgsach paged
ROM in turn until the request is acknowledged antkéé upon.
Different types of request are indicated to eachVRBy the
operating system entering the service entry pofnthat ROM
with an accumulator value representing the reatbese calls are
called paged ROM service calls. If the service entry points
entered with A=7 this indicates that someone hdsdcgshe
operating system for an OSBYTE call which the opegasystem
failed to recognise and so is now asking the p&@Wls if they
wish to claim it. If a service call is recognisdien the ROM
should act upon it and clear the accumulator befetarning
control back to the operating system. If the ROMsinot wish to
claim the call it should return control to the cgtérg system with
the accumulator value unchanged.

There are two sets of paged ROMs, service ROMslamgliage
ROMs. All language ROMs should respond to paged ROM
service calls and so should be service ROMs as ®ABIC is an
exception to this rule and the operating systenogeises it by
virtue of the fact that it is a language ROM ndedhg a service
entry.

143

8.1 Paged ROM header format

In order to enable the operating system to recegRiSM types
and treat them accordingly, a protocol has beewrdgp for a
standard ROM format.

ROM offset size description

0 3 language entry (JMP address)

3 3 service entry (JMP address)

6 1 ROM type flag

7 1 copyright string offset pointer
(=10+t+v)

8 1 version number (binary)

9 [t] title string

9+t 1 zero byte

10+t [V] version string

10+t+v 1 zero byte

11+t+v [c] copyright string

11+t+v+c 1 zero byte

16+t+v+c 4 2nd Processor relocation
address

16+t+v+c.... rest of ROM, code and data

Below is a full description of each field of thegeal ROM format.

8.2 Language Entry

This should consist of a three byte JMP instructeferring to the
language entry point. This code is called upon wdn&anguage is
initialised, When a Tube is active the language bmgopied
across to the second processor and then enteres) Mlanguage
is copied across the tube it may be relocateddifferent address
(see section 8.4 below).

If a ROM is not a language ROM this field shoulehtzon zeros.

144

8.3 Service Entry

This should consist of a three byte JMP instructeferring to the
service entry point. This should point to code Whiesponds to
paged ROM service calls acting if and when appeteri

If a ROM is not a service ROM this field may contaiser code.

8.4 ROM Type Byte

The value of this byte gives information to the igpi@g system
about the nature of the ROM. The setting of eatindicates a
separate thing.

Bit No. Meaning if set

processor/language bit

ditto

ditto

ditto

Controls Electron firm key expansions
Indicates that ROM has a relocation address
Indicates that this is a language ROM
Indicates that this ROM has a service entry

~Nooh~hwWNEFLO

The first 4 bits indicate the processor type forahtthe code is
intended, This is of importance to second processtio may get
languages copied across to them. A second procedstmok for
the correct value of these bits before attemptingin the
language. The following values have been assigned:

6502 BASIC

reserved

6502 code (not BASIC)
68000 code

Z80 code

16032 (or 32016)

O©oowNhEFk O

145

If bit 5 is set this indicates that the language code s\RI®M has
been assembled at a different address and the ROMdsbe
copied across the Tube to the second processhistaddress.
Service routines are not executed from the Tubg.cop

If bit 6 is set this indicates that this is noaaguage ROM. This
does not mean that the ROM cannot have a langudgepoint.
If this bit is not set a language will not be calesed for
initialisation following a hard reset. Howevertlie language is
entered via a service call (i.e. *<name>) a sedet will
reinitialise that language.

8.5 Copyright Offset Pointer

This is an offset value from the beginning of tt@NRto the zero
byte preceding the copyright string, It is impotttrat this points
to a zero byte followed by ‘(’, ‘C’ ang’ ASCII character values
because the operating system uses this fact tondetewhether a
ROM physically exists in a ROM position.

8.6 Binary Version Number

This eight bit version number of the software corgd in a ROM
helps identify software. This byte is not used hy aperating
system and need not correspond to the versiorgstrin

8.7 Title String

This is a string which is printed out as the opgegasystem enters
the ROM as a language.

146

8.8 Version String (optional)

This should be a string identifying the release benof the
software. The format of this string should be A.BBere A and B
are ASCII characters of decimal digits.

On entry to a language the error pointer is sétiwoor if there is
no version string the error pointer is directedh® copyright
string.

8.9 Copyright String

This string is essential for the operating systeoognition of a
paged ROM (see section &bove). The copyright string should
always be preceded by a zero byte and start watlcltlaracters
‘(C).

8.10 The Tube Relocation address

This is the address which is used when a ROM xatéd when
copying across the Tube to a second processor.

The language code should be assembled to runtadteess but
the service code should be assembled to run fro60&&s it will
be executed within the ROM in the I/O processor.

Executing Software in Paged ROMs

It is possible to execute machine code in a padgei i one of
three ways, via the language entry point aftersatrevia the
service entry point when the operating system per$ca service
call or via an extended vector (which is usuallywgeby a paged
ROM in response to a service call). The following tchapters
describe how the two types of paged ROMs may béeim@nted.

147

9 Language ROMs

The termlanguage ROM is something of a misnomer given most
peoples’ idea of what a language is. In the cordépaiged ROM
software the language is the primary paged ROMeQthged
ROMs may perform functions transiently but contsathen
returned to the current language ROM. The lang&(@!
receives a large allocation of zero page workspackis allocated
pages 4 through to 7 as private workspace. In iatdiv this the
language has control of tiuser RAM which may or may not be
used as additional workspace. BASIC, for exam@esla
variable portion of theser RAM (from LOMEM to HIMEM) for
the storage of program variables.

Languages are most typically implemented in langlRQMs as
would be expected. Thus BASIC, FORTH, LISP and B@Rdiall
language ROMSs but other software implemented apukge
ROMs include word processors and terminal emulators

No paged ROM software should be executed unlessvics call
has been performed first with the possible exceptiva language
entered following a reset. The language enterext afhard reset
will be the language ROM identified by the ROM typge in its
header occupying the highest priority socket. Rualhg a soft
reset the language active when the reset occuritedew
reinitialised. Any language should respond t@ammand to
enable its activation when this command is isstiegs
mechanism allows the user to switch between langgiathis
command would be unrecognised by the operating@systhich
would then issue amrecognised * command paged ROM service
call to which the language ROM would respond \sasirvice
entry point.

9.1 Language initialisation

A language ROM will be entered via the languageygooint
with an accumulator value of &01 when the languiageelected.
The language is entered with a JMP instructionranceturn is
expected. The stack pointer should be reinitialeethe stack
state is undefined on entry.

148

The language ROM should also be able to resposdriace calls
which may affect it (see below) e.g. be able tpoesl to the
service call which warns of a changing OSHWM duéotd
explosion.

9.2 Firm keys

On the Electron the function keys are implemented a
combination key press requiring the use of the CAR&UNC
key with the number keys. In addition to these kefts there are
a number of non-programmalflem keys which also produce text
strings when pressed. The other character keys @plus the
comma, full stop and slash keys) pressed in cortibmavith the
CAPS LOCK/FUNC key constitute thierm keys.

A language ROM indicates that it has the facildyekpand these
keys by bit 4 of the ROM type byte being set (sssisn 8.4).

When the operating system detects that a firm lesyleen
pressed it calls the language via its entry painetuest the
expansion of the key. The language should thewl yied firm key
string one character at a time in response toduthlls.

The two calls made through the language entry @oet

A=2 This call expects the next key in the firm lespansion to be
returned in Y.

A=3, Y=firm key code This call is an initialisinglt. The
language should return the length of the firm keyng in Y.

149

The key values passed to the language with thiscel

&90 to &A9 FUNC+A to FUNC+Z

&AA FUNC+:
&AB FUNCH+,
&AC FUNC+,
&AD FUNC+=
&AE FUNC+.
&AF FUNC+/

The operating system inserts these key valueghetanput buffer
as they are received.

OSBYTE &CC (204) may be used to read or write ti&dOpy of
its firm key pointer and OSBYTE &CD (205) may besddo read
or write the length of the current firm key stribging expanded.

9.3 Language ROM compatibility

It is quite feasible to write a language ROM whiall work with
the entire range of Acorn machines supporting p&f@eis in all
their configurations.

The first question that a programmer should comd)déore
implementing software in a Language type ROM istivbeit
actually needs to be a language ROM? Many utildresonly
required transiently and it is better to implemigm as service
type ROMSs. A routine in a service type ROM can therused
from the language environment.

As has been mentioned above the language shouddehservice
entry point so that it may be selected by a *comufreand be able
to respond to changes in OSHWM. For informationualservice
type ROMs read the next chapter. It must be remesddeowever
that a language ROM is copied across to the segmwbssor
when a Tube is active. Therefore, when executhmgldanguage
must not rely on receiving service calls (i.e. oimdy

150

ones théanguage code should respond to are those of relevance
when on an 1/O processor such asftmt explosion warning).
Theservice code should not share or use the language worlkespac
(&400-&7FF or language zero page) because thesepade is
executed in the I/O processor of a Tube machingenine Tube
code has the status of the current ‘language’ baedctual
language is across on the second processor. Thedge code
should not attempt to perform any manipulation arfdware by
direct poking because this would make it machirgeddent. The
programmer may wish to implement hardware dependerines

in the service section of the ROM. The languagesatbuld
communicate with the service code usimgnown OSBYTE calls
etc. for this purpose.

It is always easier to write ROM code to creatdvearfe with
limited compatibility. It is often the case thafteeare written
originally with just one machine or configuratianmind will be
just as useful on another machine. A programmeuldhedways
have confidence in his or her skills such that tbaysider the
extra effort worthwhile. The discipline in thouglejuired to
adhere to the compatibility protocols represemisodessional
attitude. The Electron and other Acorn productsewsigned by
experts, and while ultimately human and thus fldlibave put
great consideration into making it possible to software over a
wide a range of machines.

151

10 Service ROMSs

Service ROMs are ROMs which contain code whichiered via
theservice entry point. Service ROM code will always be
executed in the ROM itself i.e. always in the I/@gessor c.f.
language ROMs. The calls made by the operating@sysh
service ROMs are callgahged ROM service calls but will usually
be referred to as just ‘service calls’.

The type of software which might be implementedervice type
ROMs are filing systems, user printer drivers, agien VDU
commands and languages; in fact just about anythtisgould be
noted that extreme care should be taken to implenoeitines in
service ROMs correctly.

To understand how software can be incorporatedarmaged
ROM, be interfaced correctly with the operatingtegs and thus
executed at the appropriate time an understandipgged

ROM service calls is essential.

When a hard reset occurs the operating system naahkete of
where physical ROMs exist in paged ROM socketss8qgbently
as the machine carries out its various tasks eaxehgomething
which may be of significance to software in page€M& occurs
these ROMs are given an opportunity to respond.

10.1 Paged ROM service calls

The mechanism by which this is performed is a®fedl. The
operating system pages in each paged ROM in tartirgj with
that ROM in the highest priority socket (pagingé&formed by
writing a value to a hardware latch, the hardwasponds to the
value written to this location and performs theevaint switching
of the chipselect signals). If the ROM has a service entryioi
this code is executed. Before entering the codathamulator is
loaded with aeason code, the X register will contain the current
ROM number (a ROM is thus able to tell which soaket in)
and the Y register will be loaded with any furthelevant
information. The paged ROM can return control ® dperating
system following an RTS instruction. If the ROM hasponded

152

and does not wish any further action to be takesaccumulator
should be set to zero ttaimthe call otherwise all registers
should be unchanged.

Below is a list of the reason codes which may les@nted to a
paged ROM when a service call is performed.

Reason code &00: No operation

No operation, this service call should be ignoredduse a higher
priority ROM has already claimed it.

Reason code &01: Absolute filing system space claim

This call is made during a reset. The operatingesyss
interrogating each ROM to determine how much waoaksp
memory would be required if that ROM was calledisTh
workspace is available temporarily while the filisgstem ROM
is active. Pages &EO00 and above are availablefiasgarea on
the BBC microand the Electron. Each paged ROM is entered with
A=&01 , X=ROM number and Y=top of fixed area. Fbet
highest priority ROM on a BBC micro the Y registatl contain
&E. The Y register value should be increased iroetance to the
requirements of the ROM. If the Y register setlimgufficient or
greater than required then the service routineldheturn the Y
register unaltered.

Before using this workspace, the new filing sys®@M should
deselect the old filing system with OSFSC with Axg&lirected
through (&20E), see section 5.7); and the workspagst be
claimed with OSBYTE &8F, X=&0A (see Reason Code &0A
this section).

Reason code &02: Relative space claim

This call is made by the operating system duringsat to
determine how much private RAM workspace is requbg each
ROM. The position of this private area will staxirh the top of
the absolute space claimed by the ROMs and orethgve

153

space claimed by higher priority ROMSs. This caliiade with the
Y register containing the value of the first aviaieapage. This
value should be stored in the ROM workspace tatdeDd0 to
&DFF (for ROMs 0 to 15 respectively) and the Y s#gr returned
increased by the number of pages of private wodepaquired.

Reason code &03: Auto-boot call

This call is issued during a reset to allow eachise ROM to
initialise itself. This enables the highest prigfiting system to
set up its vectors automatically rather than regaxplicit
selection with a *command. To allow lower priorggrvices to be
selected the service ROM should examine the keybara
initialise only if either no key is pressed ort§ own ROM
specific key is being pressed (e.g. D+BREAK for ACDFS). If
the ROM initialises it should attempt to look fobaot file
(typically 'BOOT) to RUN, EXEC or LOAD if the Y regter
contains zero. This call is made during a reser dffie start-up
messages have been printed.

Reason code &04: Unrecognised *command

When a line of text is offered to the command Imerpreter
(CLI) the operating system will pass on any unreiseg
command firstly to each of the paged ROMs and thstill
unrecognised to the currently active filing syst&khen the
unrecognised command is offered to the paged R@Mseérvice
call is made.

Entry parameters:
A=&04
X=ROM number
Y contains an offset which if added to the contefit&F2 and
&F3 point to the beginning of the text with theaatgk and
leading spaces stripped off and terminated withraage
return

On exit:
Registers restored
A=0 if recognized

154

Filing systems should not intercept filing systemmenands
(which will be common to all filing systems) usitigs service
call but may intercept some filing system utilit(@sg. *DISC,
*NET).

Reason code &05: Unknown interrupt

An interrupt which is not recognised by the opergsystem or
which has been masked out by software will resuthis call
being generated. A service ROM which services @éswehich
might cause interrupts should interrogate suchadsvio
determine if they have generated this interruphéfinterrupt has
been recognised and processed the accumulatodsbewéturned
with zero to prevent other ROMs being offered thterrupt. The
routine should terminate with an RTS not an RTI.

Reason code &06: BRK has been executed

If a BRK instruction is encountered this call wak generated
before indirecting through the BRK vector (BRKV, 82). BRKs
are usually used to indicate that an error conulitias occurred,
service ROMs are informed before the current laggua able to
respond to the BRK via BRKV.

Entry parameters:
A=&06
X=ROM number
Y is undefined but should be preserved.
&FO0 contains the value of the stack pointer.
&FD and &FE point to the error number which is not
necessarily in the current ROM (OSBYTE &BA vyields
this ROM number)

On exit:
All registers should be preserved

155

Reason code &0: Unrecognised OSBYTE call

When an OSBYTE call has been made and is not resedjby
the operating system it is offered to the paged R®WIthis
service call. The contents of the A, X and Y registat the time
of the OSBYTE call are stored in locations &EF, &&itd &F1
respectively.

Reason code &08: Unrecognised OSWORD call

This service call is performed in response to ter issuing an
OSWORD call not catered for in the operating systéhe
contents of the A, X and Y registers at the timéhefcall are
stored in locations &EF, &F0 and &F1 respectively.
Unrecognised OSWORD calls with accumulator valuegigr
than or equal to &EO are offered to the user ve@i@ERYV,
&200). An OSWORD call with A=7 (equivalent to th©E8ND
command in BASIC) given an unrecognised channélalsb
generate this service call.

Reason code &09: *HELP command interception

When the *HELP command is passed through the Gklgérvice
call is generated. The remainder of the commarediirpointed to
by the address stored in locations &F2 and &F3 plusffset in
Y. Each ROM is required to respond to this calthé remainder
of the command line is blank the ROM should pristname and
version number followed by a list of subheadingw/tach the
ROM will respond.

e.g. Acorn DFS (version 0.90) outputs:

DFS 0.90
DFS
UTILS

Indicating that this ROM responds to *HELP DFS &HdELP
UTILS

156

If the rest of the command line is not blank thevise routine
should compare it against its subheadings anan&ih occurs
should output the information under that subheading

e.g. Acorn DFS responds to *HELP UTILS with:

DFS 0.90
BUILD <fsp>
DISC
DUMP <fsp>
TYPE <fsp>

If there is more than one item on a line then tRRshould deal
with them individually. All registers should be pegved across
the service routine.

Reason code &0A: Claim absolute workspace

This service call originates from a paged ROM whietpires the
use of the absolute workspace. When a filing sys€@M is
active and requires use of this workspace it shpaltorm an
OSBYTE call &8E with X=&0A which will generate thiservice
call. The previous owner of the absolute workspadken able to
save any valuable contents of this memory in ite pwvate data
area in the relative workspace. The previous owheuld also
update a flag within its private data area indiagtihat it no
longer owns the absolute workspace.

The active filing system is selected independeuitihe
ownership of the absolute workspace. Thus whiléragfsystem
ROM may have ownership of this workspace the tdjpeyf
system may be selected (the tape FS does not eesquyrabsolute
workspace). Problems may arise when the activegfdiystem
paged ROM is called upon but does not have owneisithe
absolute workspace. The active filing system shthud issue
this service call to obtain the use of the absoldekspace. This
call should only be made by a filing system star{isee also
Reason code &01).

157

Reason code &0B: NMI released

This service call also originates from paged RONI$ should be
generated by performing an OSBYTE call &8F. Thik should
be issued when a ROM no longer requires the NMik Tdleases
the zero page locations &A0 to &A7 and the spacdife NML
routine in page &D00. On entry the Y register camgdhe filing
system number of the previous owner (see OSARGHPBRE.2)
and this should be compared to the ROM'’s own idgbtfore
reasserting control of the NMI.

Reason code &0C: NMI claim

This call should be generated by a paged ROM u3BBYTE
&8F when it wishes to take possession of the NNMe Service
call should be generated passing &FF in the Y tegise.
OSBYTE A=&8F, X=&0C and Y=&FF). The current owner
should relinquish control returning its filing sgst number in the
Y register in response to this call.

Reason code &0D: ROM filing system initialise

When the ROM filing system (RFS) is activated isp@ense to a
*ROM command this call will be issued when a fdedeing
searched for. On entry the Y register contains fusithe ROM
number of the next ROM to be scanned. If this RQlvhber is
less than the current ROM’s ID this call shoulddpeored.
Otherwise the active ROM number should be store&H& (in
the form 15-ROM number) where the RFS active RONhber is
stored. The current ROM should indicate that theise call has
been claimed by returning zero in the accumulatadrshould
store a pointer to the data stored within the R@Nbcations &F6
and &F7 set aside for use by the RFS.

See chapter 11.

158

Reason code &0E: ROM filing system get byte

This service call may be issued after a ROM comgiRFS data
has been initialised with service call &0D, A RONibsild
respond only if it is the active RFS ROM as indéchby the value
in location &F5 (stored in the form 15-ROM numbérhe
fetched byte should be returned in the Y register.

See chapter 11.

Reason code &O0OF: Vectors claimed

This service call should be generated by any p&§ehlll (using
OSBYTE &8F) which has been initialised and thennded any
operating system vector. This call warns paged R@ldsa
vector change has occurred.

Reason code &10: SPOOL/EXEC file closure warning

This service call should be produced by the opayatystem prior
to closure of any SPOOL or EXEC files when thera change of
the current filing system. This enables any pag@di/Rising such
a file to respond to the possibly premature closiithese files.
SPOOL/EXEC file closure may be prevented by rengra zero
in the accumulator otherwise all registers shoelgkeserved.

Reason code & 11 : Font implosion/explosion warning

When OSBYTE &14 is used to change the RAM allocafir
user defined characters this service call is isstibi call is
issued to warn languages that the OSHWM has besamgeld and
thus the user RAM allocation has changed.

159

Reason code &12: Initialise filing system

This call enables third party software to switctween one or
more filing systems without having to issue *comsnA
program may want to switch between two filing systen order
to transfer files. A filing system ROM should resgdo this call
if the value in the Y register corresponds toiliad system
number. All filing systems should allow files to bpen while
inactive and so on receiving this call should nessany such files.

Reason code &13: Character placed in RS423 buffer

This call is made when the Electron OS has placgtheacter in
the RS423 buffer. Expansion software handling RS#t8ware
should respond to this call. If not claimed therapiag system
purges the RS423 bulffer.

Reason code &14: Character placed in printer buffer

This call is made when the Electron OS has placgtheacter in
the printer buffer. Expansion software controllprinter
hardware should respond to this call.

Reason code &15: 100 Hz poll

The Electron operating system will provide a 100gd#ing call
for the use of paged ROMs. A paged ROM requiring ¢all
should increment the polling semaphore using OSB¥IE (22)
on initialisation and decrement it using OSBYTE &238) when
it no longer requires polling. The operating systeithissue this
service call when the semaphore is non-zero. Timagkore itself
may be read using OSBYTE &B9 (185). This faciliy i
implemented mainly so that hardware devices masupgorted
as a background task without being interrupt drividns would
be suitable for hardware not requiring particulangent
servicing.

160

The Y register contains the semaphore value, aodldlbe
decremented by the service routine if it is beintiga. If a
service routine finds it has decremented the Ystegito zero, it
should claim the call (set A to 0) to improve maehspeed (there
are no more ROMs which require polling).

Reason code &16: A BEL request has been made

When the external sound flag (OSBYTE &DB/219}¥et this call
is issued by the OS in response to an ASCII BEledmeing
output (VDU 7). This is to enable the external sbagstem to
respond appropriately.

Reason code &17: SOUND buffer purged

This call is made when an external sound systditagged on the
Electron and an attempt has been made to purgefahg
SOUND buffers.

Reason code &FE: Post initialisation Tube system da

The operating system makes this call during a rafset the
OSHWM has been set. The Tube service ROM respanitisst by
exploding the user defined character RAM allocation

Reason code &FF: Tube system main initialisation

This call is issued only the Tube hardware has been detected.
This call is made prior to message generation #ingd system
initialisation.

The fact that these calls are shared by all theceeROMs can
lead to wide spread consequences if a servicésaalisused by
one of the ROMs. The programmer should consider the
consequences of his ROM claiming calls (or notneiag calls)
when present.

161

10.2 Service ROM example

The program below is a ROM based version of tharged
printer buffer program originally described in chexs, and will
only be of use to machines with the Plus 1 expansios short
by paged ROM standards but the assembler prograot & short
example.

This program should only be taken as an illustratibthe use of
some of the service calls described above : it doésonform to
paged service ROM standards, as it uses Econepagm
workspace. This may be of little consequence tosetst majority
of Electrons, but properly implemented service RGifisuld
never assume that they won’t be used with any particgsjyatem
configuration.

10 REM Assembler program printer buffer ROM
20 DIM code% 8400

30 INSV=R22A:nI=82A/2
40 RMV=822C:nR=82C/2
50 CNPV=R22F:nC=82E/2
60 ptrblk=R90

70 1ip ptr=ptrblk+2

80 op ptr=ptrblk+4

99 old bfr=8880

100 begin=o0ld bfr

110 end=0ld bfr+2

120 wrkbt=0ld bfr+4
130 size=old bfr+5

149 vec_cpy=0ld bfr+6
150 line=&F2

160 OSASCI=&FFE3

170 OSBYTE=&FFF4

189 FOR I=4 TO 7 STEP 3
199 P7~8000: 0Y=code’

200 [

210 OPT 1

220 .romstrt EQUB © \ null language entry point
230 EQUB 0

240 EQUB ©

250 IJVP service \ service entry point

260 EQUB &82 \ ROM type byte, service ROM
270 EQUB (copyr—romstrt)\ offset to copyright string

162

280
299 .title
300
310
320
330
340 .copyr
350
360

EQUB ©
EQUB &A

EQUS “BUFFER”
EQUB &0

EQUS “1.00”
EQUB &D

EQUB ©

\ null byte
\ title string

\ null byte

\ version string
\ carriage return
\ terminator byte

EQUS “(C)1984 Mark Holmes™\ copyright message

EQUB ©

\ terminator byte

370 \ End of ROM header, start of code

380 .name

EQUS “REFFUB”

\ command name

399 \ Service handling code, A=reason code, X=ROM id & Y=data

400 .service
410
420
430
449
450
460
470
480
490 .notboot

awp #4

BEQ command
QP #9

BEQ help
aP #2

BEQ wkspclm
aP #3

BNE notboot
JMP autorun
RTS

\ is reason unknown command?
\ if so goto ‘command’

\ is reason *HELP

\ if so goto ‘help’

\ is reason private wrkspace
\ if so goto ‘wkspclm’

\ is reason autoboot call

\ if NOT goto ‘notboot’

\ BEQ autorun, out of range
\ other reason, pass on

500 \ Unknown command, is it *BUFFER ?
510 \ (comand line address in &F2,&F3 (line) + offset Y)

520 .command
registers
530

540 .loopl
550

560

570

580

590

600

610 .notme
620

630

LDX #6

LDA (Line),Y
CMP name-1,X
BNE notme

PLA:TAX:PLA:TAY
LDA #4
RTS

TYA:PHA:TXA:PHA \ save

\ X=length of name

\ A=next Letter of command
\ compare with my name

\ not equal, goto ‘notme’

\ for next letter of command
\ for next Letter of name

\ if X<>@ round again

\ 6 Letters matched, do jump
\ no match, restore registrs
\ restore reason code

\ pass on call

640 \ *HELP response (parameters as for call above)

650 .he;p
670 .loop2

700 .overl

TYA:PHA: TXA:PHA
LDX #0

LDA title,X

BNE overl

LDA #8&20

JSR OSASCI

\ save registers

\ use X as index counter

\ A=next Letter from title $
\ if A<>@ jump next instrctn
\ replace © by space char.

\ write character

INX

CPX #(copyr—titLe)
BNE loop2
PLA:TAX:PLA:TAY
LDA #9

RTS

increment index counter

end of title ?

\ if not get another char.
\ restore registers

\ restore A

\ pass on *HELP call

~ =

\ Opportunity to claim private workspace
\ (Y=1st page free, call inc’s Y by no. pages claimed)

.wkspclm

.softrst

TYA

STA 8&DF0Q,X
PHA

LDA #&FD
LDX #0

LDY #&FF
JSR OSBYTE
CPX #9

BEQ softrst
LDA #8

STA size
CLC

PLA

ADC size
TAY

LDX &F4
LDA #2

RTS

\ copy page no. to A

\ table for ROMs’ workspace

\ save page no. on stack

\ OSBYTE call to read last

\ BREAK type
\ X=0 after soft reset

\ soft brk, dont reset size
\ 8 pages for printer buffr
\ location for buffer size

\ clear carry, for add

\ original Y on stack

\ A=A+?size

\ Y=A

\ X=ROMid

\ restore A (reason code)
\ pass on workspace call

\ *BUFFER command issued, reset buffer size

.parmch

.ok _init

.default

.prntmes

LDA (line),Y
awp #D

BNE ok init
LDA #1

IWP default
INY

QP #820
BEQ parmch
SEC

SBC #830
awp #o

BEQ deinit
BMI rngerr
aw #o6

BPL rngerr
CLC

ASL A:ASL A:ASL A
STA size
LDA #87
JSR OSBYTE

\ get char. from cnnd line
\ car.ret.? end of line ?
\ if not, cont. line input
\ no parameters so set

\ default buffer size

\ increment index counter
\ was char. a space?

\ if so get next character
\ set carry for subrtact
\ A=A-ASC’@”

\ was character zero

\ if so, switch off

\ char.<0, out of range
\ compare char. to 6

\ A>=6, out of range

\ clear carry for ASL

\ A=A*8

\ store for buffer size
\ Use OSBYTE &87 to read
\ current screen MODE

164

1600

1610
1620
1630
1640

TYA \ A=Y
TAX \ X=A
LDY #&F8 \ Use OSBYTE &FF to write
LDA #&FF \ MODE selected on reset
JSR OSBYTE \ (i.e. MODE preserved)
TAX \ X=&FF
.loop6 INX \ increment index counter
LDA message,X \ A=next byte of message
JSR OSASCI \ print character
QP #8D \ was it carriage return
BNE loop6 \ if not get next character
PLA: TAX:PLA: TAY \ restore registers
LDA #09 \ claim call, @ reason code
RTS \ return
.message EQUB &A \ message string
EQUS “Press BREAK to change buffer size”
EQUB &D
.rngerr DX #&FF \ set index counter
.loop7 INX \ increment index counter
LDA errdata,X \ A=character from string
STA &100,X \ copy to bottom of stack
QP #H&FF \ was byte terminator
BNE loop7 \ if not Loop again
VP &100 \ goto &109 CBRK)
.errdata EQUB © \ BRK opcode
EQUB © \ error number ©
EQUS “Invalid buffer size” \error message
EQUB © \ message string end
EQUB &FF \ terminator byte
\ Routine for deselecting buffer ROM routines
.deinit LDA #3 \ WDU3, just in case
JSR OSASCI
SEI \ disable interrupts
LDY #9
STY size \ size=0
.loop8 LDA vec cpy,Y \ Load old vector contents
STA INSV,Y \ store in vector
INY \ increment index counter
CPY #6 \ copied 6 bytes yet
BNE loop8 \ if not Loop again
CLI \ enable interrupts
IMP prntmes \ print message + return

\ Initialise buffer routines automaticallLy

.autorun

TYA:PHA: TXA:PHA
LDA size

BEQ no_init

LDA #8384

\ preserve registers

\ A=buffer size in pages
\ A=9, don’t initialise
\ HIMEM OSBYTE number

.room
.nho_init

.init

.loop3

JSR OSBYTE

STY end

LDA #883

JSR OSBYTE

CPY end

BCC room

JMP no_room
JSR init

PLA: TAX:PLA: TAY
LDA #3

RTS

LDA #RA3

LDX #0

LDY #&FF

JSR OSBYTE

STX ptrblk
STY ptrblk+l
LDY #3*nI

LDA #ins AND &FF
SEI

STA (ptrblk),Y
INY

LDA #ins DIV &109
STA (ptrblk),Y
INY

LDA &F4

STA (ptrblk),Y
INY

LDA #rem AND &FF
STA (ptrblk),Y
INY

LDA #rem DIV &109
STA (ptrblk),Y
INY

LDA &F4

STA (ptrblk),Y
INY

LDA #cnp AND &FF
STA (ptrblk),Y
INY

LDA #cnp DIV &100
STA (ptrblk),Y
INY

LDA &F4

STA (ptrblk),Y
TAX

LDY #9

LDA INSV,Y
STA vec_cpy,Y
INY

CPY #6

\ make call

\ store page address

\ OSHAM OSBYTE number

\ make call

\ is OSHAM > HIMEM

\ if so continue

\ no room so cause error
\ call initialise routine
\ restore registers

\ restore A

\ return

\ OSBYTE to read address of
\ extended vector table

\ set up zero page Locations
\ for indirect indexed adr.
\ offset into table CINSV)
\ address of new routine

\ disable interrupts

\ copy address to vector

\ Y=Y+l

\ high byte of address

\ copy to extended vector

\ Y=Y+l

\ A=ROMid

\ complete extended vector
\ Y=Y+l

\ REMV new routine address
\ lo byte to extended vector
\ Yy+1

\ Hi byte of new routine

\ place in extended vector
\ Y=Y+l

\ A=ROMid

\ complete REMV 3 byte vect.
\ Y=Y+l

\ repeat, store address of
\ new CNPV routine in the

\ extended vector together
\ with ROM number.

\ X=ROMid

\ Y=0

\ A=0ld vector contents
\ copy to workspace

\ Y=Y+l

\ copied 6 bytes yet ?

2540

2550
2560
2570
2580
2590

2610

2620

2630
2640

BNE Loop3
LDA &DF@,X
STA begin+l
CLC

ADC size
STA end+1:DEC end+1
LDY #&10
STY begin
LDY #&FF
STY end

JSR rstptrs
LDA #nI*3
STA INSV
LDA #nR*3
STA RWV
LDA #nC*3
STA CNPV
LDA #&FF
STA INSV+1
STA RMV+1
STA CNPV+1
CLI

RTS

CLI

LDA nrmerr,X
STA &109,X
INX

CMP #&FF
BNE loop9
IMP &100
EQUB ©
EQUB ©

.noroom
.loop9

nrmerr

\ if not loop again

\ A=workspace addr. hi byte
\ store in zero page

\ clear carry for add

\ add begin+size

\ store in zero page, -1

\ lo byte of begin

\(room for return vect’s)
\ lo byte of end

\ store in zero page

\ reset ip+op ptrs

\ for the extended vector
\ system the vectors must
\ now point to &FFE0 +

\ vector number*3

\ enable interrupts

\ return

\ clear interrupts

\ fetch next byte of data
\ store at bottom of stack
\ increment index counter
\ reached terminator ?

\ if not loop again

\ execute BRK (not in ROM)
\ BRK instruction opcode
\ error number @

EQUS “Not enough room for print buffer, Press BREAK”

EQUB ©
EQUB &FF

\ string terminator
\ data end

\ Purge buffer by setting i/p + o/p ptrs to buffer start

.rstptrs LDA begin

STA ip ptr
STA op_ptr
LDA begin+l
STA ip ptr+l
STA op_ptr+l
RTS

.wrngbfl

\ lo byte bufr start address
\ store input pointer

\ store output pointer

\ hi byte of buffer start

\ store input pointer

\ store output pointer

\ return

PLA:PLP:JMP (vec_cpy)\ old INSV routine

\ New insert char. into buffer routine

.ins PHP:PHA

167

\ save 5 and A on stack

.insfail

CPX #3
BNE wrngbfl
PLA:PLP:PHA

LDA ip ptr
PHA

LDA ip ptr+l
PHA

LDY #0

JSR inc_ptr
JSR compare
BEQ insfail
PLA:PLA:PLA
STA (ip_ptr),Y
CLC

RTS

PLA

STA ip ptr+l
PLA

STA ip ptr
PLA

SEC
RTS

\ is buffer id 3 ?

\ if not pass to old routine
\ not passing on, tidy stack
\ Alo byte of input pointer
\ store on stack

\ Ahi byte of input pointer
\ store on stack

\ YO so ip ptr incremented

\ by the inc_ptr routine

\ compare the two pointers

\ if ptrs equal, buffer full
\ don’t need ip ptr copy now
\ A off stack, insrt in bufr
\ insertion success, C=0

\ finished

\ buffer was full so must

\ restore ip ptr which was

\ stored on the stack

\ insertion failes so C=1
\ finished

.wrngbf2 PLP:IMP (vec_cpy+2) \ old REMV routine

\ New remove char. from buffer routine

.rem

.remsr

.empty

.examine

PHP

CPX #3

BNE wrngbf2
PLP

BVS examine
JSR compare
BEQ empty
LDY #2

JSR inc_ptr
LDY #0

LDA (op_ptr),Y
TAY

CLC

RTS

SEC

RTS

LDA opptr
PHA

LDA op ptr+l
PHA

JSR remsr
PLA

STA op_ptr+l
PLA

\ save status register

\ is buffer id 3 ?

\ if not use OS routine

\ restore status register
\ V1, examine not remove
\ compare i/p and o/p ptrs
\ if the same, buffer empty
\ Y2 so that increment ptr
\ routine inc’s op_ptr

\ YO, for next instruction
\ fetch character from bufr
\ return it in Y

\ buffer not empty, C=0

\ return

\ buffer empty, C=1

\ return

\ examine only, so store a
\ copy of the o/p pointer
\ on the stack to restore
\ ptr after fetch

\ fetch byte from buffer

\ restore ptr from stack

\ (if buffer was empty

\ C1 from fetch call)

3130
3140
3150
3160
3170
3180
319
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330

3350
3360
3370
3380
339

3410
3420
3430

3450

3470

3490
3500
3510
3520
3530

3550
3560
3570
3580
3590
3600

STA op_ptr
TYA

RTS

\ examine requires ch, in A
\ finished

.wrngbf3 PLP:IMP (vec_cpy+4) \ old CNPV routine
\ New count/purge buffer routine

.cnp

.loopl

.no_inc
.finshdl

.len

.loop2

.no_inc2
.finshd2

PHP

CPX #3

BNE wrngbf3
PLP

PHP

BVS purge
BCC len
LDA ip ptr
PHA

LDA ip ptr+l
PHA

LDX #0

STX wrkbt
LDY #0

JSR inc_ptr
JSR compare
BEQ finshdl
INX

BNE noinc
INC wrkbt
JVP loopl
PLA

STA ip ptr+l
PLA

STA ip ptr
LDY wrkbt

PLP

RTS

LDA opptr
PHA

LDA op ptr+l
PHA

LDX #0

STX wrkbt
LDY #2

JSR compare
BEQ finshd2
JSR inc_ptr
INX

BNE no_inc2
INC wrkbt
IJWP Loop?
PLA

\ save status reg. on stack
\ is buffer id 3 ?

\ if not pass to old subr
\ restore status register
\ save again

\ if V=1, purge required

\ if (=0, amount in buffer
\ o/w free space request

\ store ipptr on stack

\ X=0 for use as counter
\ wrkbt@ for hi counter
\ Y=0, so ip ptr incr’d
\ increment ipptr

\ does it equal op ptr
\ if so countfree space
\ X6+l

\ if X=0 don’t inc wrkbt
\ hi byte of count inc’d
\ Loop round again

\ restore ip ptr off stack

\ Y=hi byte of free space
\ restore status register
\ finished

\ store op_ptr on stack

\ X=0 for use as counter

\ wrkbt@ hi byte of count
\ Y=2 so op_ptr incremented
\ are ptrs equal ?

\ if so buffer empty

\ increment op_ptr

\ increment count

\ if X=0 then increment hi
\ byte of count

\ loop round again

\ restore op ptr off stack

STA op_ptr+l
PLA

3620

3630 STA op_ptr

3640 LDY wrkbt \ Yhi byte of length

3650 PLP \ restore status register
3660 RTS \ finished

3670 .purge ISR rstptrs \ reset i/p & o/p pointers
3680 PLP \ restore status register
3690 RTS \ return

3700 \ Increment pointer routine. Y=0 op ptr, Y=2 ipptr

3710 .inc_ptr CLC \ clear carry for add
3720 LDA ip ptr,Y

3730 ADC #1

3740 STA ip ptr,Y

3750 LDA ip ptr+l,Y

3760 ADC #0

3770 STA ip ptr+l,Y \ pointerpointer+l

3780 QP end+1 \ hi byte reached buffr end?
3790 BNE home \ if not finish

3800 LDA ip ptr,Y

3810 QP end \ Lo byte reached end ?
3820 BNE home \ if not finish

3830 LDA begin \ reached end of buffer
3840 STA ip ptr,Y \ so reset pointer to
3850 LDA begin+l \ start address of buffer
3860 STA ip ptr+l,Y

3870 .home RTS \ return

3880 \ Compare pointers, if equal Z=1 don’t care otherwise

3899 .compare LDA ip ptr+l

3900 QP opptr+l \ compare ptr high bytes
3910 BNE return \ if not equal return
3920 LDA ipptr

3930 QP op _ptr \ compare pointr low bytes
3949 .return RTS \ return

3950]

3960 NEXT

3970 OSCL1”*S.BRM “4STR$~codelst” “+STRE~M%

When this program is run, the ROM image blown &toEPROM
and then inserted in an Electron with a Plus 1 esioa an
enlarged printer buffer of 2k is automatically ialised.

170

Typing *BUFFERN’ with n from 1 to 5 selects a beffsize of
n*2K at the next BREAK. *BUFFERQO’ deselects thdanged
buffer and re-initialises the normal OS routinéBUFFER’ (no
parameters) reselects the default buffer size (2K).

10.3 Extended Vectors

In the example above the operating system buffenteraance
vectors had to be set to point to routines helthiwithe service
ROM. The operating system supports a system ohdete
vectors to enable each of the OS vectors to poirdutines held
in paged ROMSs.

Each OS vector is identified by a number which mayalculated
by subtracting &200 (the vector space base addhesn)the
vector address and dividing by two (each vecttwisbytes).

The operating system vector should be pointedroutine at
&FFO00 plus the vector number multiplied by 3. Ttostine will
use a three byte vector stored in the extendedwrsptace (this
address returned by OSBYTE &A8) with an offsettod buffer
number multiplied by 3. This vector should contéie address of
the routine in the paged ROM followed by its ROMmher.

The procedure for a paged ROM to intercept a vastor

(@) Determine buffer number n

(b) Establish extended vector space, V using OSB%ARB
(c) Store new routine’s address in (V+3*n)

(d) Store ROM number following address

(e) Make copy of OS vectors contents if requiradréurn
() Store address (&FF00+3*n) in OS vector (&200mpP*

It is usually a good idea to disable interruptsmyithis change-

over so that an interrupt routine is not able te e vector in the
middle of the change.

171

11 Serially accessed
ROMs and the *ROM
filing system

The Electron has been designed to use softwaraioexdtin
ROM cartridge packs. The ROM packs which plug thi® Plus 1
expansion may contain up to two paged ROMs. The R@bk
paged ROMs may contain up to about 16K of datacand/
programs which is paged into memory as requiredth@rBBC
microcomputer the facility also extends to phra€avig
(PHROMS) associated with the speech upgrade. WHeen t
programs or data stored in these ROM packs areregbjii may
be loaded into user RAM in the same way as prog@nista
may be loaded off tape or disc.

These ROM packs are intended to provide a reliabterapidly
accessible medium for the distribution of prografitee market
for such a product being amongst owners of tapedaschines
who would otherwise have to rely upon the much sloand
inherently less reliable medium.

The advantage to the software producer is thaetisemo need for
a special version of the program to be writtenystem is
required for the formatting of the program for umgibn in a ROM
pack but no modification of the program itselfesjuired.

The *ROM filing system is a subset of the tapenfilisystem.
Paged ROMs are interrogated to determine whetlegrdantain
information intended for this filing system and #nen serially
accessed by the *ROM filing system.

Paged ROMs containing information intended for ascga the
*ROM filing system are no different from other pageOMs.
They are service type ROMs and as such have sermicg
points. They are distinguishable as *ROM filing teys ROMs
only by their response to paged ROM service caflaad by the
*ROM filing system. When the user selects the *R@IMg

172

system any further requests for files result in*"lROM filing
system section of the operating system scanningabed ROMs
for these files. A paged ROM containing files irded for the
*ROM filing system should respond to one of two ddROM
service calls.

The two service calls and the responses expeated ROMs
containing *ROM data are described in detail bel®me call
expects the ROM to prepare to yield any data itamakthe
second call is used to extract this data, one &tyéetime. The data
should be formatted in a similar way to the dataest on tape but
is modified in such a way as to minimise the steragerheads
involved in using such a format. The reason forpdicig this
format is to minimise the requirements for extrdem the
operating system while utilising the exhaustiv@eaohecking
already in existence. Accompanying these advanthges is a
concurrent reduction in response time performamtehis is of
little importance to the users of tape based mashivho are still
able to appreciate a substantial improvement an slgetem’s
existing performance.

11.1 Converting files to *ROM format

In order to produce a ROM containing files whichl e
recognised by the *ROM filing system it is neceggarfulfill two
criteria. The first requirement is for some heaztte which will
recognise the *ROM filing system paged ROM sergaks and
respond accordingly. The second requirement isttieatlata
which makes up the files is formatted in the mannevhich the
*ROM filing system expects to find it.

11.2 The header code

As has been stated above a paged ROM which is tedognised
by the *ROM filing system is a perfectly standaaypd ROM
which responds to the appropriate service callsa Assult of this
requirement the first part of each *ROM filing st ROM
consists of a standard format paged ROM headawelll by a
small amount of code which responds to the necgssavice
calls. By convention *ROM paged ROMs do not resptmthe

173

*HELP service call but should these ROMs annouhe@ t
presence in this way it would obviously leave Igsace for
programs and data.

The two paged ROM service calls which should eaadiesponse
from *ROM paged ROMs are described in the next two
paragraphs.

11.3 Paged ROM service call with A=&D

This call is the *ROM filing system initialise calWhen the filing
system is active and wishes to scan the next RQdvcHil is
issued.

The initialise service call is made with the ROMmher of the
next ROM to be scanned in the Y register. Havirgireed this
service call a filing system ROM should only respants own
ROM ID (stored in location &F4) is greater thanegual to the
ROM number passed in the Y register.

Having decided to claim this service call the ROM$d place
its own ROM number in location &F5 which marks stthe
currently active *ROM filing system ROM. It shoullden write
the address of the start of the data it contairsdations &F6 and
&F7. This provides a zero page pointer which idusgthe filing
system code to extract bytes of data serially fioenROM.

Having performed these two operations the servoaéne should
return with the accumulator containing zero to catk that the
call has been claimed, In the case of the paged RDbking less
than the ROM number in the Y register the servozgine should
exit with &D in the accumulator and the operatiygtem will
then offer the call to the next ROM.

The actual mode in which the *ROM filing system R@Mmbers
are represented differs from the way in which tagge ROM IDs
are usually represented (i.e. as stored in &F4jmaber 0 to 15).
The filing system ROM numbers are represented \gl@e which
is 15 minus the physical paged ROM number. Oneafay
converting numbers from one form to another isegithe
number to be converted in the accumulator,

174

EOR #&FF
AND #&F

which returns the inverted number in the accumuldtbese
instructions will always convert a number into tther
representation.

11.4 Paged ROM service call with A=&E

Having obtained a response from a paged ROM tacgecall &D
the *ROM filing system will use this service call tead bytes
from the data contained in the ROM.

There is a difference in how the service routine loa
implemented on the BBC Microcomputer OS 1.00 atef @S
versions (including the Electron). The actual remsgorequired
from the service call is essentially the same h@awrev

When called by OS 1.00 a paged ROM should onlyaredspo
this call if its own ROM ID is the same as the eatr*ROM
filing system ROM number. A comparison of the comgeof
memory location &F4 (current paged ROM) should elenwith
the inverted contents of &F5 (current *ROM) If tleesre not the
same the call should be returned unclaimed.

The service routine for OS 1.00 should return tyte bf data
pointed to by the pointer in &F6 and &F7 in the &fjister (e.g.
LDA (&F6),Y:TAY) and increment this pointer so thiais ready
for the next call.

Later operating system versions contain a routdeRDRM)
which given the paged ROM ID of the current *RON/
system ROM in the Y register will read a byte fridns paged
ROM using the pointer at &F6+&F7. Thus this pageoNR
service call may be serviced by the highest pyidgfROM filing
system ROM and the operating system does not loesean all
the ROMs before getting a response. This leadsstgraficant
improvement in performance of the *ROM filing syste

175

The service routines are able to determine whi@raipg system
has called them by the value of the Y register gsgth this
service call. On operating systems supporting t8& DRM call
the Y register contains a negative value while oteesions of the
operating system make this call with a positivaieah the Y
register.

The example given at the end of this section shHwvsthe
service routine at the head of a *ROM filing syste@M detects
the operating system type and responds appropridieis
example will function on both types of operatingtgyn but will
take advantage of OSRDRM routine if available. *R@ivhg
system ROMs designed for use on the earlier opgyaystems
will still work with later versions.

11.5 *ROM data format

The format in which data should be stored in *ROId system
ROMs is very similar to the tape data format. Th&ads divided
into blocks which may be up to 28%tes long. Each block of data
is preceded by a header which contains informadtmout the
block. Both the block of data itself and the heaaterfollowed by
a 16 bit cyclic redundancy check (CRC) value, Tilwegf system
calculates its own values for these CRCs durindahéding
process and compares them. If the filing systeralaerdiffers
from the stored value then the filing system flagserror and
rejects the data. (A routine for calculating CREscluded in the
example at the end of this section.)

176

The *ROM filing system data format is as follows:
offset description length

Block Header

0 &2A, a synchronisation byte 1
1 a file name (1 to 10 chars.) n
1+n &00, a file name terminator 1
2+n load address (low byte first) 4
6+n execution address 4
10+n block number (low byte first) 2
12+n block length (in bytes) 2
14+n block flag (see below) 1
15+n address of next file 2
17+n header CRC(1 to n + 16 incl.) 2
Block Data
19+n data m
19+n+m data block CRC 2
(next blocks)
z &2B - end of ROM marker 1

The block flag:

bit 0 Protection bit (file only allowed to be *RUN)
bit6 Set if block contains no data
bit 7 Set if this is the last block of the file

For the *ROM filing system the headers for all th first and
last blocks may be replaced by a single byte heaidealue &23
(‘#) with no CRC. This is implemented to reduce themory
overheads inherent with the tape style data format.

177

By convention the first file in a *ROM filing syste ROM should
be a title file. This is a file of zero length whiserves to identify
the ROM. The name of this file will appear on cagpie listings
of the ROM. The file name of this title file showddnsist of a
name and a version number preceded and followethlasterisk
e.g. *Mon00* or *GAMESO05*'.

11.6 An example of a *ROM filing system ROM

The program below is written in BASIC 2 to assendbROM
image which can be ‘blown’ into an EPROM and plaited BBC
microcomputer paged ROM socket or into a ROM ddgislot
on the Electron Plus 1 expansion.

Included in the program below is a routine for adting CRC
values (FNdocrc). The actual CRC values requiredhis ROM
image are included in the comments so that theabealues may
be inserted directly if someone wanted to reduedyhing load
when trying out this example.

10 REM

20 REM * *
30 REM * *ROM filing system ROM example *
40 REM * *

60 REM Assemble CRC calculating routine
70 DIM MC% &100:PROCassm
80 REM Set up constants required for ROM assembly

99 serROM=&F5
100 ROMid=8F4
110 ROMptr=8&F6
120 OSRDRV=&FFB9
130 version=9

140 REM Reserve space for ROM image and prepare to assemble
150 DIM code¥ &4000
160 FOR I=4 TO 7 STEP3

170 P%=88000:0%=code%
180 [

178

\ null language entry

\ service entry point

\ ROM type, service ROM
\ offset to copyrights

\ binary version number
\ ROM title string

\ ROM version string

EQUS “(C) 1982 Acorn Computers™ \ copyright$

\ end of paged ROM header
\ service routine
\ initialise call?

\ read byte call?
\ not my call

\ save accumulator

\ invert *ROM number

\ compare with ROM id

\ if *ROM > me, not my call
\ low byte of data address
\ store in pointer location
\ high byte of data address
\ store in pointer location
\ get my paged ROM number
\ invert it

\ make me current *ROM

\ restore accumulator/stack
\ service call claimed

\ finished

\ call not claimed restore
\ accumulator and return

\ save accumulator
\ copy Y to A
\ if Y —ye 0S has OSRDRM

\ invert *ROM number
\ is it my paged ROM no.
\ if not do not claim call

199 OPT I
200 .ROMstart EQUB ©
210 EQUB @
220 EQUB @
230 IMP service
240 EQUB &82
250 EQUB copyr—ROMstart
260 EQUB version
270 EQUS “‘Serial Rom”
280 EQUB @
299 EQUS “©”
300 .copyr EQUB ©
310
320 EQUB @
330 .service QYP #RD
340 BEQ initsp
350 QP #RE
360 BEQ rdbyte
370 RTS
380 \ Routine for paged ROM service call &
399 .initsp PHA
400 JSR invsno
410 QvP ROMid
420 BCC exit
430 LDA #data AND 255
449 STA ROMptr
450 LDA #data DIV &100
460 STA ROMptr+1
470 LDA ROMid
430 JSR invert
490 STA serROM
500 .claim PLA
510 LDA #09
520 RTS
530 .exit PLA
540 RTS
550 \ Routine for paged ROM service call &E
560 .rdbyte PHA
570 TYA
580 BMI 0s120
599 \ this part for 0S with no OSRDRM
600 JSR invsno
610 QvP ROMid
620 BNE exit
630 LDY #0

179

\ Y=0

640 LDA (ROMptr),Y \ load A with byte

650 TAY \ copy A toY

660 .claiml INC ROMptr \ increment ptr low byte
670 BNE claim \ no overflow

680 INC ROMptr+1 \ increment ptr high byte
699 IMP claim \ claim call and return
700 \ this part for 0S with OSRDRM

710 .0s120 ISR invsno \ A=current *ROM number
720 \ not necessarily me
730 TAY \ copy A toY

740 JSR OSRDRM \ OS will select ROM
750 TAY \ byte returned in A
760 IWP claiml \ incremnt ptr & claim call
770 \ Subroutine for inverting *ROM numbers

780 .invsno LDA serROM \ A=*ROM number

799 .invert EOR #&FF \ invert bits

800 AND #&F \ mask out unwanted bits
810 RTS \ finished

820 \ End of header code/beginning of data

830 .data EQUB &2A \ synchronisation byte
840 .hdstrt EQUS “*EXAMPLE*” \ *ROM title

850 EQUB © \ name terminator

860 EQUD © \ Load addresse@

870 EQUD © \ execution address=0
880 EQUW © \ block numbero

899 EQUW © \ block length=0

900 EQUB &CO \ block flag

910 EQUD eof \ pointer to next file

920 .hdcrc EQUA FNdocrc(hdstrt,hdcrc) \ CRC C&246F)
930 .eof
940 \ No data block for this file

950 EQUB &2A \ synchronisation byte
960 .filel EQUS “TEXT” \ file title

970 EQUB @

980 EQUD © \ null load address

990 EQUD © \ null execution address
1000 EQUW © \ first block

1010 EQUWN dat2—datl \ length of data

1020 EQUB &80 \ first & last block
1030 EQUD eofl \ pointer to end of file

1040 .hdcrcl EQUAN FNdo_crc(filel,hdcrcl) \ CRC (&E893)
1050 .datl EQUS “REM This is a very short text file.”

180

1060
1070
1080
1090
1100
1110
1120
1130
1140

EQUB &D \ The file contents
.dat2 EQUW FNdocrc(datl,dat2)\ Block CRC (&655D)
.eofl

EQUB &2B \ end of ROM marker
.eof
]
NEXT
PRINT’*S.ROM ““;~code’s;” “;~0%
END

REM Define function which calculates CRC
REM Requires start and end of block up to 255 bytes
DEF FNdocrc(start,end)
2882=(start-88000+code%) AND &FF
2883=(start-&8000+code%.) DIV &100
?&84=end—start
CALL crc
=(1880) AND &FFFF

REM Define procedure which assembles CRC routine
DEF PROCassm

startaddr=882

Lo crc=881

Hi _crc=880

len=884

FOR I=0 TO 3 STEP3

PEMC%

[
OPT I
.crc LDA #0
STA Hi_crc
STA Lo_crc
TAY
.labell LDA Hi_crc
EOR (startaddr),Y
STA Hi_crc
LDX #8
.label2 DA Hi_crc
ROL A
BCC label3
LDA Hi_crc
EOR #8
STA Hi_crc
LDA Lo _crc
EOR #&10
STA Lo_crc
.label3 ROL Lo crc
ROL Hi crc
DEX
BNE label2

181

1540 INY

1550 CPY len
1560 BNE labell
1570 RTS

1580]

1590 NEXT

1600 CALL crc:ENDPROC

When the resultant ROM is installed in the machimeefollowing
dialogue may ensue.

>*ROM
>¥CAT

EXAMPLE
TEXT

>*EXEC TEXT
>REM This is a very short text file.

182

12 Memory allocation
and usage

Two fundamental points have been stressed in vapaus of this
book.

The first is that programs should only use memdiocated for
their general use or memory designated for speftifictions
when requiring or performing that function.

The second point is that software should not makeraptions
about its environment. The amount of user RAM alxAd
depends on the screen MODE selected and the ambunt
workspace RAM claimed by paged ROMs.

The Electron microcomputer’'s memory map:

i,’i’;’;g Operating system ROM

%LIFZEI(Z)S Memory mapped I/O — “SHEILA”
%LIFZDDIC:)S Memory mapped 1/O — “JIM”
%LFF%ES Memory mapped 1/O — “FRED”
%’Z%'S'; Operating system ROM

%%%E'; Paged ROM space

H%I\ZIIEEAF Screen memory (variable)

Space for user programs (variable)
OSHWM! baged ROM workspace/exploded f iabl
&E00 | Page workspace/exploded font (variable

&DFF | NMI routine and paged ROM information
&DO00 | (WARNING, not for user programs)

&CFF
&A00

o

Operating system private workspace

183

%nggg Sound system workspace/OS workspace

&7FF .
&400 | Current language private workspace

&3FF - :
g236 | Operating system private workspace

&235 N .
8200 OS call indirection vectors
&1FF
&100

&FF
200 | Z€ro page

6502 stack

Zero page

The zero page on the 6502 is very valuable, as nmatryictions
and addressing modes need to work through page zerohis
reason, areas of zero page are allocated to edhk afain
memory contenders.

Zero page is allocated thus:

&00-&8F are allocated to the current language. BA&dserves
locations &70-&8F for the user.

&90-&9F are allocated to the Econet system.

&A0-&A7 are allocated to the current NMI owner (s&ction in
paged ROMs number 15.3.2). This area is not usdzhsitc
cassette machines. It is used extensively by theahd network
filing systems.

&AB8-&AF are allocated for use by operating systesmenands
during execution.

&B0-&BF are allocated as filing system scratch spdmut are not
exclusively used by the currently active filing &s.

&CO0-&CF are allocated to the currently active fgisystem. This
area is nominally private, and will not be altetedess the filing
system is changed, or the absolute workspaceimeth(see
paged ROMs chapter 15).

184

&DO0-&E1 are allocated to the VDU driver.
&DO is the VDU status as returned by OSBYTE &75.

&D1 contains a byte mask for the current graphmisitp This
byte indicates which bits in the screen memory bgreespond to
the point. For example, for the rightmost pixe&itwo colour
mode, this byte would contain &01, and for a sirteelour
mode, &55.

&D2 and &D3 are the text colour bytes to be ORed B®ORed
into memory, respectively. When writing text to geeen in
modes 0 to 6, the pattern byte to be written tcstireen is first
ORed with the contents of &D2, and then EORed with
contents of &D3. The pattern byte contains a bitngeere the
pixel is to be the foreground colour, and a biaclkehere the pixel
is to be the background colour. In four and sixteelour modes,
the pattern byte is expanded before using thesgitos to take
account of the extra bits per pixel.

&D4 and &D5 are similar in function to locations &and &D3,
only they are the graphics colour bytes. By periagran OR
operation, and then an FOR operation, all the G@I0tting
operations can be taken into account by changiegldita in these
two bytes. The graphics mask at location &D1 isdusemask out
the bits in these bytes when they are used.

&D6 and &D7 contain the address of the top linghaf current
graphics character cell (eight bytes long). (Seation &31A)

&D8 and &D9 contain the address of the top scaa ¢éihthe
current text character.

&DA-F are used as temporary workspace.
&EO0-&E1 unused on the Electron
&E?2 is the cassette filing system status byte:

bit 0 Set if the input file is open. bit 1 Sethitoutput file is
open. bit 2 Not used.

185

bit 3 Set if currently CATaloguing.
bit 4 Not used.

bit 5 Not used.

bit 6 Set if at end of file.

bit 7 Set if end of file warning given.

&E3 is the cassette filing system options bytesetdhy the *OPT
command. The byte is organised as two nibblesojhéour bits
are used for load and save operations, and therbdttur bits are
used for sequential access. The format of eachHenibb

Bits 0 and 1, the least significant bits of theligbare used to
control what happens after a tape error. When aougthe
EXEC file the 'retry’ and ‘ignore error' options &nored, so the
EXEC is always aborted. These bits have the follgwneanings
(note the higher bit is mentioned first:

00 Ignore errors
10 Retry after an error
01 Abort after an error

Bits 2 and 3, the most significant bits of the méare used to
control the printing of messages during accesssd bés have the
following meanings (note the format given is high low bit):

00 No messages
10 Short messages
11 Long messages

&E4-&E6 are used as general operating system wardesp

&E7 is the auto repeat countdown timer. This isreleented at
100Hz to zero, at which point the key is re-enten¢d the buffer.
&E8 and &E9 are a pointer to the input buffer imtbich data is
entered by OSWORD &01.

&EA is the RS423 timeout counter, which can takefthilowing
values:
=1 The cassette filing system is using 6850 =0 The
RS423 system holds 6850, but has timed out.
<0 The RS423 system holds 6850, but has not yeitim
out.

186

&EB is the 'cassette critical' flag. Bit 7 is skthie cassette filing
system is called whilst doing a BGET for EXEC @RUT for
SPOOL. Itis used to ensure that no messages iategduring
the access.

&EC contains the internal key number of the mosengly
pressed key, or zero if none is currently presSee.the table of
internal key numbers in Appendix D.

&ED contains the internal key number of the firey/lpressed of
those still pressed, or zero if one or no keyspaessed. This is
used to implement two key rollover.

&EE - 1MHz bus page number

&EF contains the accumulator value for the mostméc
OSBYTE/OSWORD.

&FO0 contains the X register value for the most ntce
OSBYTE/OSWORD, or the stack pointer value at tls¢ BRK
instruction.

&F1 contains the Y register value for the most nece
OSBYTE/OSWORD.

&F2 and &F3 are used as a text pointer for proogssperating
system commands and filenames.

&F4 - This location contains the ROM number of tuerently
active paged ROM. (The operating system maintduissats a
RAM copy of the paged ROM selection latch.)

&F5 to &F7 - These locations are used for the *R@lvig
system (see chapter 11).

&F8 and &F9 are not used.

&FA to &FC - These locations are available for byeroutines
which have set the interrupt flag. The operatingieay interrupt
routines use these locations but do not expeataheents to
remain unchanged between calls. &FC is used astarrapt
accumulator save register. This location is ongduemporarily

187

at the very beginning of an interrupt routine whiles setting up
the stack.

&FD and &FE - These locations are written to alidBRK
instruction has been executed. They contain theeadf the
next byte of memory following the BRK instructiofhus these
locations normally point to an error message (seé 6.2).
Upon selection of a language these locations ar® g®int at the
version string of the newly selected language ROM.

&FF - This location contains the ESCAPE flag. Bofhis
location is set to mark an ESCAPE condition. Tlag is cleared
when an ESCAPE is serviced.

Page 1

This page is used for the 6502 stack. The stackgfom the
last byte in this page (&1FF) down towards the drotbf the
page. Paged ROM service routines may use the battanis
page to store error messages.

Page 2

Page two is the main work zone of the operatingesysit
contains all of the main vectors and user accessipérating
system variables. Page two is laid out thus:

&200-&235 are the vectors. See the vectors chdptard list in
Appendix D.

&236-&28F are the main system variables, accesg€dIBYTE
calls &A6 through &FF.

&290-&291 are unused on the Electron

&292-&296 and &297-&29B are the two stored valuéshe
system clock, as read by ‘TIME’. Two values aretkep one can
be read while the other is being updated by theriapt routines.

&29C-&2A0 are the countdown interval timer valuéigis used
188

to cause an event after a certain time has elafgssdthe chapters
on events, number 12, and on OSWORD, number 9néoe
details of using the countdown timer.

&2A1-&2B0 form the paged ROM type table, as pointedby
value read by OSBYTEs &AA and &AB. Each byte contaihe
ROM type of the corresponding ROM, or zero if thsrao ROM
in that socket. For details of ROM types, see thged ROMs
chapter number 15.

&2B1 and &2B2 are the INKEY countdown timer. Thssused to
time out an INKEY call.

&2B6-&2B9 are the low bytes of the most recent agak
converter values. These are in the order chanr&l3 and 4.

&2BA-&2BD are the high bytes of the most recentlagae
converter values.

&2BE is the analogue system flag. This containsiiimaber of
the last channel to finish conversion, or zerooifchannels have
finished since this value was last read. This by/tead by
OSBYTE &80.

&2BF-&2C8 are the event enable flags. If zero,¢kent is
disabled, otherwise enabled. See the chapter artgveimber
12.

&2C9 is the soft key expansion pointer. The nexelg be
expanded in a soft key is to be found at &B01+?&2C9

&2CA is the first auto repeat count. This is thetnelue to go
into the auto repeat counter at &E7. This locatian be
considered a one byte queue for the counter.

&2CB-&2CD are used as workspace for two key rollove
processing.

&2CE is the sound semaphore. If it is zero it mahas an

envelope interrupt is being processed, so anothist be ignored.
If it is &FF it means that the envelope softwarérés.

189

&2CF-&2D7 are buffer busy flags. Bit 7 of these dwis set if the
matching buffer is empty. For a list of buffer nuend see
OSBYTE &15 (21).

&2D8-&2EO0 are the buffer start indices. They conttiie offset
of the next byte to be removed from each buffee dfisets are
adjusted so that the highest location in the buféex the offset
&FF for all buffers irrespective of size.

&2E1-&2E9 are the buffer end indices. They contam offset of
the last byte to be entered into each buffer.i# Halue is the
same as the start offset, the buffer is emptyi#f value is less
than the start offset, it means the buffer has pedpround to the
start.

&2EA and &2EB contain the block size of currentbsident
block of the open cassette input file.

&2EC contains the block flag of the currently resitiblock of
the open cassette input file. (see section 16.Athéocassette
format and details of the flag byte).

&2ED contains the last character in currently residblock of the
open cassette input file.

&2EE-&2FF are used as an area to build OSFILE cbiocks
for *LOAD and *SAVE

Page 3

Page three is used for the VDU workspace, the ttassgstem
workspace and the keyboard buffer.

Locations &300-&37F provide the VDU workspace. kamining
these locations, it should be noted that theréveogorms of
graphic co-ordinate, internal and external. Themsl graphics
co-ordinate is exactly that used by the PLOT conmanarBASIC.
The internal graphics co-ordinate is derived friwe éxternal by
taking into account the graphics origin and scaiaghat it is
measured in pixels horizontally and vertically. @r&s co-
ordinates are stored in four bytes, with the lowelyf the X co-
ordinate first.

190

VDU workspace is laid out thus:

&300-&307 contain the current graphics window iteimal co-
ordinates.

&300,1 Left hand column in pixels.
&302,3 Bottom row in pixels.
&304,5 Right hand column in pixels.
&306,7 Top row in pixels.

&308-&30B contain the current text window in abgelu
characters offset from the top left of the screen.

&308 Left hand column.
&309 Bottom row.

&30A Right hand column.
&30B Top row.

&30C-&30F contain the current graphics origin irtegxal co-
ordinates.

&310-&313 contain the current graphics cursor iteexal co-
ordinates. This is used for calculating relativeCHls.

&314-&317 contain the old graphics cursor in inedroo-
ordinates. This is used for the generation of gies

&318 contains the current text cursor X co-ordinate
&319 contains the current text cursor Y co-ordinate

&3IA contains the line within current graphics chaeter of the
current graphics point. Because the BBC microcogplgs a

non linear address space for the graphics screisrsimpler to
calculate the address of the byte at the top o€taeacter cell that
contains a point, and then calculate the row withencharacter.
Thus the location of the byte containing the curggaphics point
is ?&D6 + 256*?&D7 + &31A.

&31B-&31E is used either as graphics workspacesdha first
part of the VDU queue.

191

&31F-&323 is the VDU queue. The queue is organsethat
whatever the number of characters queued, théyéstqueued is
always at &323.

&324-&327 contain the current graphics cursor ireinal co-
ordinates.

&328-&349 is used as general graphics co-ordinaikspace.
&34A and &34B contain the text cursor position asaaldress.

&34C and &34D contain the text window width in bytee. the
number of characters wide*the number of horizohyaés per
character*8 for graphics modes. This is used tdrobthe
number of bytes which are soft scrolled for eank bf scrolling.

&34E contains the high byte of the address of thi¢oln of
screen memaory.

&34F contains the number of bytes of memory takehya
single character. This is 8 for 2 colour modesfdat@! colour
modes, 32 for 16 colour modes.

&350 and &351 contain the address of the top laftichcorner of
the displayed screen.

&352 and &353 contain the number of bytes takencharacter
row of the screen. This is 320 for 8K and 10K moaled 640 for
16K and 20K modes.

&354 contains the high byte of the size of the sorememory in
bytes.

&355 contains the current screen mode.

&356 contains the memory map type. The contenteate the
size of the screen memory. It has the value 0 @& @2odes, 1 for
the 16K mode, 2 for 10K modes, and 3 for the 8K enod

&357-&35A contain the current colours. These amzest as the
value that would be stored in a byte in screen nmgrao

192

completely colour that byte to the colour requir€de locations
are:

&357 Foreground text colour.
&358 Background text colour.
&359 Foreground graphics colour.

&35A Background graphics colour.

&35B and &35C contain the graphics plot mode fa th
foreground and background plotting respectivelyeSéhare set by
the GCOL first parameter.

&35D and &35E are used as a general jump vectae.vEttor is
used for decoding VDU control codes and PLOT nusber

&35F contains a record of the last setting of thesor start
register.

&360 contains the number of logical colours in therent mode
minus one.

&361 contains the number of pixels per byte minoes for the
current mode, or zero if text only mode.

&362 and &363 contain the left and right colour k&s
respectively. These bytes contain a bit set in é#ghosition
corresponding to the leftmost or rightmost pixelr Example in a
two colour mode, these bytes would contain &80 &@ail, and in
a sixteen colour mode &AA and &55.

&364 and &365 contain the X and Y co-ordinateshaf text input
cursor. The input cursor is the position from whitlaracters are
COPYed.

&366 not used on the Electron; normally set to 127.

&367 contains the font flag. This byte marks whetbrenot
a particular font zone is being taken from ROM @M\R If
a bit is set it indicates that that zone is in RAée
OSBYTE &14 (20) for more information on fonts.

bit 7 characters 32-63 (&20-&3F)
193

bit 6 characters 64-95 (&40-&5F)

bit 5 characters 96-127 (&60-&7F)
bit 4 characters 128-159 (&80-&9F)
bit 3 characters 160-191 (&A0-&BF)
bit 2 characters 192-223 (&CO0-&DF)
bit 1 characters 224-255 (&EO0-&FF)

&368-&36E are the font location bytes. These conthe upper
bytes of the addresses of the fonts for each of thenes
mentioned above.

&36F-&37E form the colour palette. One byte is utmdeach
logical colour. That byte contains the physicabcol
corresponding to the logical colour. The bytesstoeed in
numerical order of logical colour.

The area of page three from &380 to &3DF is usethieycassette
filing system as working storage.

&380-&39C is used to store the header block forBRT file.
See the section on the cassette filing system, seudt 10 for
details of header block layout.

&39D contains the offset of the next byte to bepotiinto the
BPUT buffer.

&39E contains the offset of the next byte to balrgam the
BGET buffer.

&39F-&3A6 are not used by the Electron OS.
&3A7-&3B1 contain the filename of the file being E&ed.

&3B2-&3D0 contains the block header of the moserdgdlock
read:
&3B2-&3BD Filename terminated by zero.
&3BE-&3C1 Load address of the file.
&3C2-&3C5 Execution address of the file.
&3C6-&3C7 Block number of the block.
&3C8-&3C9 Length of the block.
&3CA Block flag byte.
&3CB-&3CE Four spare bytes.

194

&3CF-&3D0 Checksum bytes.
&3D1 contains the sequential block gap as set BB FQ@,n.

&3D2-&3DC contain the filename of the file beingasehed for.
Terminated by zero.

&3DD-&3DE contain the number of the next block ezasl for
BGET.

&3DF contains a copy of the block flags of the lalsick read.
This is used to control newlines whilst printinggfinformation
during file searches.

&3E0-&3FF are used as the keyboard input buffer.

It should be noted that although OSBYTE &AO is ciily for
reading VDU variables, it may be used to read drithi@values in
page three.

Pages 4, 5,6 and 7

These four pages are allocated for the exclusieeotithe
currently selected language. Should a user be érgarode
independently of a language this memory may be bgetat
code. The user’s code should not re-enter a largguéout
ensuring that the language has had an opportunigset its
workspace.

Page 8
This page is allocated for the sound system antutiers:
&800 to &83F general sound workspace, used asvistio

&800-&803 not used

&804-&807 sound queue occupancy flag
&808-&80B current amplitude

&80C-&80F number of amplitude phases processed
&810-&813 absolute pitch value

&814-&817 number of pitch phases processed
&818-&81B number of steps to process

195

&840 to &84F
&850 to &85F
&860 to &86F
&870 to &87F
&880 to &8BF
&8CO0 to &8FF

&81C-&81F
&820-&823
&824-&827
&828-&82B
&82C-&82F
&830-&833
&834-&837
&838

&839

&83A
&83B
&83C-&83F
&83D-&83E

&83F

duration

interval multiplier

envelope number/auto repeat parameter
length of remaining note interval

sync hold parameter

current pitch setting

pitch deviation

number of channels required for sync
current amplitude step — not used on
Electron

target amplitude — not used on Electron
number of channels on hold for sync
workspace

frequency parameter as sent to sound
generator

not used

sound channel 0 buffer

sound channel 1 buffer

sound channel 2 buffer

sound channel 3 buffer

printer buffer

envelope storage area (env. no’s 1-4)

On the Electron this area is available for the enpéntation of
external sound and the printer buffer area is bsetthe Plus 1
expansion software. Locations in this page shoualg be used by
system software performing the appropriate taskuser printer
routines, sound expansion routines.

Page 9

This page can be used in one of three basic ways:

a)

b)

As an extended envelope storage area:

&900-&9BF

&9CO-&9FF

Envelope storage area, envelopes 5-16.
Speech buffer.

As an RS423 output buffer:

&900-&9BF

RS423 output buffer.

196

&9CO0-&9FF Speech buffer.
c) As a cassette output buffer:
&900-&9FF Cassette output buffer.

Uses (b) and (c) are largely compatible apart fspeech, as the
6850 can only be used by either the cassette dR84#23 system
at any one time, and the cassette system waitist@tiRS423
output has timed out before taking control of tB&@ At time
out, the RS423 output buffer is usually clear.

Page &A

This page is used for either the cassette inpdehudr for the
RS423 input buffer.

Page &B

This page is the soft key buffer. The first seventbytes define
the start and end locations of the sixteen sofs k&ie rest of the
page is allocated to the keys themselves. Thedffa#dt of soft
key string n is held at location &B00+n. The addretthe first
character of the string is &B0I+?(&B00+n). The aelh of the
last character of the string is &B00+?(&B01+n).

Page &C
This page contains the font for characters 224—Fa8h
character requires eight sequential bytes. Theldyte

corresponds to the top line of the character, ¢eersd for the line
below, etc.

Page &D

This page is allocated in the following way:
&DO00 to &D5F NMI routine

&D60 to &D9E reserved

&D9F to &DEF paged ROM extended vectors
&DFO0 to &DFF paged ROM workspace table

197

The NMI routine is the code which is executed wharton-
maskable interrupt is generated. This is enter&D&0 and
should service the interrupt.

The paged ROM extended vectors provide an entoypaged
ROM code regardless of which ROM is active as #ikis made.
See section 10.3 for a description of extendedovect

The paged ROM workspace table contains a singke [isgje
address indicating the start of each ROM’s privabekspace (see
section 10.3 for further details).

WARNING

Many games programmers have used page &D. Thesesgaith
not work when a Plus 1 is fitted because it usesgpace. DO
NOT continually disconnect and re-connect the Rlbgcause
this will damage both the Plus 1 and the ElectRefer to section
15.7 for a method which will disable the Plus 1.

Page &E00 to the OSHWM

This memory is available for paged ROM workspaaz fan
character definitions as part of a user defined. fon

Each ROM is interrogated during a reset to detegnis
workspace requirements (see paged ROM service saliion
10.1). This workspace extends from &EOQO in pagedsimits
until all the paged ROMs have made their claims.

The Acorn BBC range of machines allow the usereting the
character patterns that are printed on the sciidennumber of
user defined characters which may be used depentteo
explosion state of the font (see OSBYTE &14). Oa Hbectron
and BBC microcomputer the memory required whenakiph
the font is allocated above the paged ROM workspace

The user (or language) memory starts from the fdapi®

workspace memory and the start address of this meisicalled
the operating system high water mark (OSHWM).

198

OSHWM to HIMEM

This is where a user might expect his programvie. li
Theoretically this memory has no fixed start adsli@sd no fixed
end address which taken to extremes means thatyit m
theoretically have no size. In practice, on the BBiCrocomputer
and the Electron, the region from &2800 to &3006 ba
assumed to be within the OSHWM/HIMEM bounds. The
language environment may also place constrainte@amount
of RAM available for a user’s program and/or data.

No RAM should be accessed above HIMEM. This inciutte
screen memory and, on a second processor, the méamwhich
the language is stored.

Screen memory

This memory is not guaranteed to exist at any gpiane on
Acorn BBC range machines, For example when a Tsibetive a
program may find itself on the second processortaas any
attempts to access what was the screen memoriavid no
effects on the screen image.

For more information about programming practicesirehapter 1
on the Acorn design philosophy and programmingstule

Paged ROM memory: &8000 to &BFFF

This region in the memory map of non-Tube machord#O
processors contains the currently ‘paged’ paged R@Ken the
current filing system is in paged ROM and a filsygtem
function used then the appropriate paged ROM ecsead.
Operating system ROM memory: &C000 to &FFFF

The contents of the OS ROM are undefined excepgh®OS call

entry points described in chapter 2 and the defeadtor table
described in section 6.11.

199

Memory mapped I/O: &FCO00 to &FEFF

Hardware devices are addressed via these mematydons. Once
again extreme care should be taken to addressithdra correct
manner using OSBYTEs &92 to &97 for reading andiwg
these addresses. See chapter 14 for more informeahiaut the
memory mapped I/O.

(The OS ROM contains a list of credits in this oegmade
inaccessible by the switch to memory mapped 1/0.)

The following list shows how Page &FC addressesafiogated
for external hardware devices.

&FC18 to &FC1F Reserved for use by Acorn
&FC28 to &FC2F Reserved for Econet use
&FC30 to &FC3F Reserved for use by Acorn
&FC60 to &FC6F ACIA

&FC70 Analogue to digital converter

&FC71 Parallel printer port

&FC72 Status register

&FC73 ROM scrolling register

&FC78 to &FC7F Laser Disc

&FC80 to &FC8F Test Hardware

&FC90 to &FCIF Sound/Speech

&FCBO to &FCBF VIA

&FCCO to &FCCF Floppy Disc Controller
&FCEO to &FCEF Tube

&FCFF Paged RAM register

200

13 An Introduction to
Hardware

BASIC is a very useful programming tool. It allowsers to take
advantage of the Electron’s facilities without berihg about the
details of how it is performed in hardware. Comnsaare
provided to deal with output to the screen, inpatrf the
keyboard and cassette, plus all of the other harelvWide same
applies to machine code to a large extent throhghuse of
OSBYTES, OSWORDS and other operating system comsiaand
However, a much more detailed understanding oh#irdware
and how it can be controlled from machine code EOF is very
useful and allows certain features to be implendenteich would
have been impossible in BASIC.

The hardware section of this book satisfies theiregqents of
two types of people. Those who wish to use thevhare features
already present on the computer, and those whotwiadd their
own hardware to the computer. All of the standarivare
features available on the Electron are therefotiénedl in detail
from a programmer’s point of view. Wherever possilit is better
to use operating system routes for controllingithelware. These
are very powerful and will be referred to whenenadevant. In
certain specialised cases, it is necessary tothjir@ccess
hardware, but even in such cases, OSBYTES &92-&91lsl be
used. This will ensure that the software will stilerate on
machines fitted with a Tube processor. For those wish to add
their own hardware, full details on connecting @itg to the
Electron’s expansion port are provided.

The hardware on the Electron consists of a largeuy of
integrated circuits, resistors, capacitors, traosssand various
other electronic components. All of these are showthe full
circuit diagram in Appendix F. In order to help seovho are not
familiar with the general layout of a computer gitand the
devices attached to it, the rest of this introdurcis devoted to
analysing the hardware as a series of discret&®loc
interconnected by a series of system buses.

201

Refer to figure 13.1 whilst reading the followingtiine of the
hardware. There are two major blocks inside thetida.

The first is the uncommitted logic array (usuabyerred to as the
ULA). This is a very large chip which does mostlté boring
system tasks. It’s life is devoted to copying dadan the video
memory to the video circuit, driving the cassgbi®ducing
sounds, keeping an eye on the keyboard plus othmar tasks.

The other major component is the computing cerfttheosystem,
called the 6502A central processing unit (CPU)sTikithe chip
which executes all of the programs including BASIGs
connected to the ULA, ROM and expansion bus. Famitglon the
diagram, the connecting buses are all compressedine which
is represented by the double lines terminated aritbws at each
major block.

A busis simply a number of electrical links connecteganallel

to several devices. Normally one of these deviséalking to
another device on the bus. The communication potéoghich
enable this transfer of data to take place araséty the control,
address and data buses. In the case of the addiresthere are 16
separate lines which allow 65588°) different combinations of
I's and 0’s. The maximum amount of directly addaéds memory
on a 6502 is therefore 655B8@tes. The data bus consists of 8
lines, one for each bit of a byte. Any number betwe and &FF
(255) can be transferred across the data bus. Canation
between the ULA, peripherals on the expansion tmesnory and
the CPU occurs over the data bus. The CPU carr ei¢imel out a
byte or receive a byte. The data bus is therefallecca
bidirectional bus because data flows in any one of two directions
The 6502 address bus is unidirectional becausessiels can be
provided but not received. The ULA sits back loagkat the
addresses from the 6502.

In order to control the direction of data flow dwetdata bus, a
read or write signal is provided by the control .ddardware
connected to the system can thereby determine ehitis being
sent data or is meant to send data back to the TR&Jother
major control bus functions are those of providangjock,
interrupts and resets. The clock signal keepsfalechips

202

AlddNS
43IMO0d

WWVH
S3LABNZE

ol

vin 4o

V2059

9r

1

SNd NOISNVdX3

N LN
—————————— 3ov4uaiNi N 3113ssvo
311355V
1IN0HID
™ “o3aA HOLINOW
¥NOT0D
AN
advogA
o3aiA
%2019
THN 9L
HOLVINAOW
WoH It 4HN
oisva
+
SOW
HIAENdINY
HINVIdS

Figure 13.1 - The system block diagram

203

running together at the same rate. The RESET lioesall
hardware to be initialised to some predefined sifitr a reset.
An interrupt is a signal sent from a peripherati® 6502
requesting the 6502 to look at that peripheral. Tovions of
interrupt are provided. One of these is the infg@rraquest (IRQ)
which the 6502 can ignore under software contrbé @ther in
the non-maskable interrupt (NMI) which can nevergrmored.
Refer to chapter 7 on interrupts for more informmati

When power is first applied to the system, a ressgénerated by
the ULA to ensure that all devices start up inrtiheset states. The
6502 then starts to get instructions from the RONese
instructions tell the 6502 what it should do néxtariety of
different instructions exist on the 6502. The bdsitctions
available are reading or writing data to memorgminput!

output device and performing arithmetic and logmagrations on
the data. Once the MOS (machine operating systeogyam is
entered, this piece of software gains full contrialhe system.

On an unexpanded Electron, the computer will comtin
operating under the MOS until it is switched offo§rams are
entered into the memory from the keyboard or césgetrt, then
run. There is some scope for clever programminigriecies
using the standard hardware - they all involve stanmgering
with the various registers in the ULA. Howeverparhore
facilities can be provided by adding extra hardwar® the back
of the Electron.

Since the Electron is tHdtle brother of the BBC Micro, two
forms of expansion are provided for. The firstlofte covers the
addition of hardware which is supplied as standsrd BBC
Micro. Within this category are included items li&kerinter port,
analogue to digital converter (for joysticks) araypd ROMs. The
second category includes items which would haveetadded
onto a BBC Micro. Products like the second processand units
which plug onto th®©ne Megahertz Bus are in this category.

204

SHEILA and the ULA

On the BBC Micro, all of the resident hardware @&pped into
page &FE of memory. This page is called Sheila. Eleetron
also has all of its internal hardware memory mapptxiSheila,
but with one major difference to the BBC Micro. Atemory
mapped functions are contained within the ULA. Ehean be
summarised as:

SHEILA Address Description

&FEXO0 Interrupt status and control register

&FEX2 Video display start address (low byte)

&FEX3 Video display start address (high byte)

&FEX4 Cassette data register

&FEX5 Paged ROM control and interrupt control

&FEX6 Counter plus cassette control

&FEX7 Controls screen, sound, cassette and CAPS LED

&FEX8-XF Palette registers
Note that the ULA appears in every 16 byte blockaje &FE.

Writing to &FEOQ2 is therefore exactly the same aimg to
&FEAZ2 or &FE32 etc.

205

14 Inside the Electron

The only hardware inside the Electron which caade=essed
directly by the 6502 is the MOS ROM and the ULAETRAM is
read via the ULA, andll internal control functions are performed
by the ULA.

As has already been mentioned in chapter 13, th&igL
addressed in page &FE (called Sheila). The restisfchapter
explains exactly what all of the registers withie LA will do,
and how they can be of use. Note that there arevays of
communicating with Sheila. OSBYTEs 150 and 151 veifid and
write to Sheila respectively. Alternatively, the mary mapped
addresses can be POKEd directly from programs.

14.1 The ULA and its registers
SHEILA &FEOQO - Interrupt status and control

7l6[s]af3]2[1]o0]

— MASTERIRQ

POWER ON RESET

DISPLAY END INTERRUPT (AT BOTTOM OF
DISPLAYED SCREEN)

REAL TIME CLOCK (50HzI

TRANSMIT DATA EMPTY

IRECEIVE DATA FULL

IHIGH TONE DETECT

INOT USED

Figure 14.1 — IRQ status and control register

This register is concerned with the interruptsto Electron.
Interrupts are generated by pieces of hardwarehnieiguire the
6502 to look at them urgently. A detailed discussabinterrupts
can be found in chapter 7.

206

By writing a ‘1’ into the corresponding bits of shiegister,
particular interrupts can be enabled. Writing 1&a a particular
bit will disable the related interrupt. Enabledeimtipts can get the
6502 to look at them if they generate a suitalgeai Disabled
devices will not be looked at evertliiey generate an interrupt.

Note that after an interrupt has occurred, it idlnecessary to
clear the source of the interrupt, This can be dpneriting to
address &FEO05.

SHEILA &FEO02 and &FEQ3 - Screen start address contol

x|x|s]afa]2][1]o] [7]6]s[x x|[x]|x][x]

VL

&&w&l%

‘ 0 ‘AlA%lS‘ A‘IZ‘All‘A‘]O‘ AQ‘ AB‘ A7‘ AG‘ H X ‘X H X ‘ X ‘ X ‘

Figure 14.2 — The screen start address registers

These two registers together form the screen atlaitess. This is
the address in memory which will be mapped to tipeleft-hand
corner of the displayed screen. Whenever a litne I scrolled
up or down, this register is incremented or decrdgsteby the
number of bytes in a line. As well as allowing veat scrolling, a
limited amount of horizontal scrolling is also piss. The start
address can be changed in increments of 64 byt@swiory. In
mode 0, 8 bytes are used per character. This ntkeana scroll in
the minimum increment will move the whole screezh8racters
(64/8) left or right.

207

The following example demonstrates this featurecedhhas
been typed in, the cursor keys can be used to mdheck of text
about over the mode 0 screen. Note that the astweén start
address has to be shifted right by one bit betaseROKEd into
the ULA registers.

10 REM HARDWARE SCROLL EXAMPLE IN MODE ©
20 MODE 0

30 OSBYTE=&FFF4

49 START=83000

50 PRINT”’THIS TEXT CAN SCROLL IN ANY DIRECTION USING CURSOR—KEYS”
60 REM SET KEYS AUTO REPEAT RATE

70 *FX12,3

80 REM SET CURSOR KEYS TO GIVE 136 etc.
99 *FX4,1
100 REPEAT
110 A=INKEY(Q)
120 IF A=136 THEN PROCMOVE(64)
130 IF A=137 THEN PROCMOVE(-64)
140 IF A=138 THEN PROCMOVE(-649)
150 IF A=139 THEN PROCMOVE(649)
160 UNTIL FALSE
170 DEF PROCMOVE(offset)
189 START=START+offset

1990 REM IF ABOVE SCREEN TOP, SUBTRACT SCREEN LENGTH
200 IF START>=88000 THEN START=START-&5000
210 REM IF BELOW SCREEN BASE, ADD SCREEN LENGTH
220 IF START<=8&3000 THEN START=START+&5000
230 REM CALCULATE HIGH BYTE FOR ULA

240 REM SHIFTED RIGHT BY ONE BIT

250 H% = START DIV 512

260 REM LOW BYTE SHIFTED RIGHT BY ONE BIT
270 L% = (START MOD 512) DIV 2

280 REM NOW PUT INTO ULA REGISTERS

299 REM LOW BYTE TO &FE@2

300 AU=151:X%=2:Y%=L%

310 CALL OSBYTE

320 REM HIGH BYTE TO &FE@3

330 AV=151:X%=3:Y%=H%

349 CALL OSBYTE

350 ENDPROC

208

SHEILA &FEO0O4 - Cassette data shift register

READ FROM CASSETTE

7]6[5]43][2][1]0 <« Zmn,
VYY VY YV Y

BYTE READ OUT IN PARALLEL

Figure 14.3a Reading from the shift register

Data is input to the Electron from a cassette @®QIThis data
shifts into bit O of the serial shift register, thi@ato bit 1 and so on
until the whole 8 bits of a byte are in the ULA&Ceive data
register. At this point, data can be read out @aockd in memory
somewhere.

There are several points which are worth rememgevimen the
cassette is used. First of allhigh tone must have been recorded
on the tape before any data is read into the Blecirhis allows
the circuitry to detect that data is about to b@.sEhe screen
mode should have been set to between 4 and Gslhdt, bits are
sometimes lost because the 6502 cannot be intedwytilst high
resolution graphics are being displayed. Finalig, teceive data
full interrupt should be enabled. This will ensthat the 6S02
knows when a byte can be read. If the byte is @ad within
about 2ms, the data will be lost forever as balsfoff the end of
the register when the next bit comes in!

WRITE TO CASSETTE

BYTE WRITTEN IN PARALLEL

YYY VY YV Y
el < 7]6]5[4(3]2]1]0]

Figure 14.3b - Writing to the shift register

209

Writing to this register causes data to be outpuhé cassette
(assuming that the cassette output mode has beby seiting to
&FEQ7). Bit 7 is written out first (so that it ibe first in when the
tape is played back). When the last bit has bedétewrout, a
transmit data empty interrupt is generated. This tells the 6502 that
it can put the next byte to be sent into the regist

SHEILA &FEOS5 - Interrupt clear and paging register

HIGH
TONE RTC

FRAME
END

‘ern PE‘PZ“Pl‘PO‘
L[]

ROM PAGING BITS

ROM PAGE ENABLE

CLEAR SCREEN INTERRUPT *

ICLEAR RTC INTERRUPT

ICLEAR HIGH TONE INTERRUPT

INMI CLEAR=1
GIVE 6502 PRIORITY OVER
ULA - FOR DISCS ETC.

Figure 14.4 The clear interrupt and paging register This regist
has two purposes, namely the clearing of interraptsthe
selection of paged ROMs.

Interrupt clearing

Putting a ‘1’ into any of the bits 4-7 will caudestassociated
interrupt to be cleared. Interrupts should be eéafter they have
been serviced, but before returning from the infgrservice
routine.

Bits 4, 5 and 6 are associated with maskable inpésr Bit 7 is
associated with the Non-maskable interrupt, Thpe t9f interrupt
is generated by very high priority devices likecdisAn NMI
automatically gives the 6502 precedence over tha,éken if it
is in the middle of displaying a screen. White smoay

210

therefore occur on the screen when discs are lag@iogssed. Once
the 6502 has dealt with the source of interrughduld clear it by
writing a ‘1’ to bit 7. This gives the screen memback to the
ULA.

Paging ROMs

The detailed mechanisms for decoding paged ROMscuered
in the next chapter, however, a simple summany @&rder here.

There is the potential within the operating systerdirectly
address up to 16 paged ROMs of 16K bytes each. wenwiur
of thedots are effectively occupied by the keyboard and the
BASIC ROM. The keyboard occupies positions 8 arfdddh are
equivalent). To read from the keyboard, the 14 eskllines AG
Al13 are used. Each of these is connected to otleeafolumns of
the keyboard. If a particular address line is ltvat line of the
keyboard is selected on a read. The row data fhenkeéyboard is
then returned in the lower 4 bits read from theudats. The
BASIC ROM is selected by paging ROM number 10 ar 11

In order to select any of the other ROMSs, a paldicsequence
must be followed, First of all, the ULA must beddhat BASIC
should be dc-selected. This is done with the pagéle bit. One
of the ROMs 12-15 will be selected in this way. Nilat BASIC
has gone, it is (if so desired) possible to pageim of the ROMs
0 to 7. This is simply performed by setting the @agable bit to O
and selecting the required ROM with bits 0 to 2u¥should refer
to section 15.4 for a more detailed discussion.

SHEILA &FEOQ6 - The counter

This write only register has several different fiimigs, depending
upon the particular mode of operation.

211

Reading from cassettes

[X]0]0]0[0[0[0[O]

Figure 14.5a Cassette receive mode

When data is being read from a cassette, this tsnesed to
count from zero crossings. It therefore effectivédyermines the
cassette baud rate. All bits should be set to Ogfaixfor bit 7
which doesn’t matter). Cassette receive mode ibysbits 1 and 2
in &FEO7.

Making sounds

[S7]S6]S5]S4]S3]S2] S1]S0]

Figure 14.5b Sound generation mode

Sound can only be generated when the cassett¢ eimy used.
The 8 bit integer written into this register detares the
frequency of all generated sounds. If the valu&'isvhere ‘S’ is
between 0 and 255 in value, the generated souqddrey is
given as:

Sound frequency = 1 MHz / [6(S + 1)]
To select sound mode, bits 1 and 2 of &FEQ7 ard.use

Frequencies from 244Hz up to 62.5kHz can be geseraut you
won't be able to hear the really high frequencies!

212

Writing to cassettes

(XXX [X[X[X[X[X]

Figure 14.5¢ Writing to cassette

The states of the bits written to this registerign®red in this
mode. The counter is used to control the receiatd ldaud rate,
but cannot be changed. Bits 1 and 2 of &FEQ7 shbaldsed to
select the cassette output mode.

SHEILA &FEOQ7 - Miscellaneous control

7l6[5]43]2]1]x]

D2 D1 MODE

0 0 CASSETTE INPUT

0 1 SOUND
GENERATION

1 1 CASSETTE OUTPUT

1 1 NOTUSED

ROM PAGE ENABLE

CLEAR SCREEN INTERRUPT *

ICLEAR RTC INTERRUPT

ICLEAR HIGH TONE INTERRUPT

INMI CLEAR=1
GIVE 6502 PRIORITY OVER
ULA - FOR DISCS ETC.

Figure 14.6 control register

This general purpose control register providedecsen of
different functions.

213

Communications mode, bit 1 and 2

Bits 1 and 2 control whether data is being writiea cassette
recorder, read from a cassette recorder, or gengrsaunds.
These three functions are mutually exclusive, $ribt possible
to play cheery tunes whilst waiting for a long pang to load.

Display mode selection, bits 3, 4 and 5

There are seven display modes available on thdrBlecThese
can be selected by writing a number between 0 antbits 5,
4, 3. Note that the other possible mode (7) is anbilable on the
BBC Micro.

Cassette motor control, bit 6

Setting this bit to ‘1" will turn the cassette motm. Setting it to
‘0’ will turn the motor off. Motor control is efféed by a small
relay contact inside the Electron. It is possibleige this to switch
small battery operated equipment on and off (faneple a
transistor radio).

CAPS LOCK LED control, bit 7

Setting this bit to a ‘1’ turns on the CAPS LOCKDL®©nN the side
of the keyboard. A ‘0’ turns it off again.

SHEILA &FEO08 to &FEOQF - the colour palette

These addresses in the ULA define the mapping leetwee
logical colours which are provided by programs andpinesical
colours which are displayed on the screen.

For example, in the two colour modegical colour 1 will
actually produce a colour defined by &FEO0S8 bit), &FEO8
bit 2 (green) and &FEQ9 bit 2 (red). The bits aegative logic,
which means that a ‘1’ in bit 6 of &FE08 will ensuthatblue is
turned off for colour 1.

The cursor and flashing colours are entirely geedran software:
This means that all of the logical to physical emlmap must be
changed to cause colours to flash.

214

D7 D6 D5 D4 D3 D2 D1 DO
&FE08 | X [B1|] x| BO|] x| G1] X | x|
&FE09 | X | X | x] eo] x| R1] x| RO]
Figure 14.7a — 2 colour mode palette
D7 D6 D5 D4 D3 D2 D1 DO
&FE08 | B3| B2| B1| BOo| G3] G2] x| x|
&FE09 | X | x | 61| o] R3] R2] R1] R0
Figure 14.7b 4 colour mode palette
D7 D6 D5 D4 D3 D2 DI DO
&FEO08 | B10 | B8 | B2 | BO | G10 | G8 | X | X |
Colours 0,2,8,10
&FE09 | X | X | G2 | GO | R10 | R8 | R2 | RO |
D7 D6 D5 D4 D3 D2 DI DO
&FE08 |BM |Bn |BG| B4 |GM.|Gn | X X |
Colours 4,6,12,14
&FE09 | X | X | G6 | G4 | R14| R12 | R6 R4 |
D7 D6 D5 D4 D3 D2 DI DO
&FE08 |Bﬁ |BB |B7| B5 |Gm |GB| X X |
Colours 5,7,13,15
&FE09 | X | X | G7 | G5 | R15| R13 | R7 R5 |
D7 D6 D5 D4 D3 D2 DI DO
&FE08 | B11 | B9 | B3 | B1 | G11 | G9 | X X
Colours 1,3,9,11
&FE09 G3 R3

Figure 14.7¢ 16 colour mode palette

[* [*]

G1|R11|R9|

R1|

215

14.2 The keyboard

The keyboard is mapped to ROM numbers 8 or 9, aaylbe
read directly by accessing memory locations withther ROM
corresponding to particular keys. This is usefuh &schnique for
speeding up the machine, as it allows normal keybseanning

by the OS to be disabled using OSBYTE &B2 (178).

See section 15.4 on how to select paged ROMs.

The following table lists the relevant memory locas and the
bits within each location which represent the keys.

Column | Address Bit 0 Bit 1 Bit 2 Bit 3
0 &BFFE Right Copy NC Space
1 &BFFD Left Down Return Delete
2 &BFFB . Up : NC
3 &BFF7 0 P X /
4 &BFEF 9 O L
5 &BFDF 8 | K ,
6 &BFBF 7 U J M
7 &BF7F 6 Y H N
8 &BEFF 5 T G B
9 &BDFF 4 R F V
A &BBFF 3 E D C
B &B7FF 2 W S X
C &AFFF 1 Q A Z
D &9FFF Escape| Caps Lk Ctrl Shift

NC=No Connection

216

15 Qutside the Electron

15.1 Introduction to expanding the Electron

This chapter is intended for those who want totheéd own bits
of hardware onto the Electron. There are seveaslars for doing
this. The most common one is to allow the Electmaccess
facilities provided for the BBC Micro. All of theocnmon
interfaces such as discs, printer port, analogukgital converter,
speech chip, paged ROMs etc. can easily be addedrmn
Electron. If care is taken with the design, thesepcts will
operate in an almost identical manner to thosénerBBC Micro.
Several interface add-ons can already be purcHes®dAcorn.

If the only point in adding hardware onto the Elentwere to
make it totally BBC Micro compatible, there wouldve been
little point in buying the Electron in the firstgde. In fact, the
Electron has more potential for expansion than & BBcro.
Why? Because all necessary system buses come the on
expansion connector. This ability to access athefbuses means
that the devices which can be added onto the Bleetre limited
only by the imagination (and maximum allowable liogdof the
buses).

Appendix G provides a summary of the expansionasvi
available for the Electron, grouped by generic type

15.2 The Expansion Connector

All required signals from the Electron are presamthis
connector. In order to make use of them, a basievletge of
interfacing to the 6502 will be required. Such akfedge can be
acquired by reading some of the popular electromiagazines
and specialised books on interfacing. The aimistbok is to
explain all of the details to those who have alyea@dd enough
about microcomputer hardware in general, and nont teaknow
about the Electron in particular.

217

Bottom Top
18VAC 2 1 18VAC
ACRETURN 4 3 ACRETURN
5V 6 5 -5V
ov 8 7 0V
+5V 10 9 45V
16MHz 12 11 SOUND O/P
PHI OUT 14 13 +13IN
NMI 16 15 RST
R/W 18 17 TRQ
D6 20 19 D7
D4 22 21 D5
D2 24 23 D3
DO 26 25 D1
NC 28 27 RDY
SLOT 30 29 SLOT
Al4 32 31 Al5
Al2 34 33 Al3
A10 36 35 All
A0 38 37 A9
A2 40 39 Al
A4 42 41 A3
A6 44 43 A5
A8 46 45 A7
0oV 48 47 OV
+5V 50 49 45V

Figure 15.1 - Expansion connector layout
18V AC (pins 1,2)

These lines are connected directly to the output
from the Electron mains power adaptor.

AC return (pins 3,4)

Up to 6 watts of power may be drawn from this
source (provided that none is drawn from the +5V
line). Bear in mind that the AC will have to be
rectified and smoothed before it can be used to
drive any computer chips.

218

-5V pins (5,6)

This is a -5 volt supply from the Electron, from
which a maximum of 20mA can be drawn. It would
often be used to power RS423 expansions.

OV (pins 7, 8, 47, 48)

This is the signal and power ground on the
Electron. All external circuits must have theird@tv
lines connected to this point.

+5V (pins 9,10,49,50)

This is a +5 volt power supply from the Electron. A
maximum of 500mA can be drawn from it, but note
that no power can be taken from the 18V AC line if
this is done.

Sound o/p(pin 11)

Sound output from the Electron ULA. This signal is
3 volts peak to peak fed via a 1K series resistor.

16MHz (pin 12)

This is the master 16MHz clock from the Electron
main oscillator. It can be used for clock generatio
on expansion modules, but see section 15.3.3 for a
description of clock synchronisation.

16/13 MHz (pin 13)
This is 16MHz divided by 13. It is normally used

for baud rate generation, and will give
approximately 1200Hz if divided by 1024.

219

PHI out (pin 14)

This is a nominally 2 MHz clock as connected to
the 6502A. The low time is some 250ns. The high
time varies depending upon the operation being
performed. It is 250ns when reading ROMs, 750ns
or 1250ns when accessing the 1MHz bus
(depending upon the relative phase of the 2MHz
clock) and can be up to 40us due to screen access
in modes 0 to 3. The clock timing is covered in
greater depth in section 15.3. Note that the NMI
must be synchronised with PHI out. This is because
the NMls give the 6502 precedence over the ULA
for the RAM. Incorrect data may be read from the
RAM if the NMI is not latched on a negative going
edge of PHI out.

RST (pin 15)

Active low reset signal. This is an OUTPUT
ONLY for resetting expansion modules on power
up, or when the BREAK key is pressed.

NMI (pin 16)

Non-maskable Interrupt (negative edge triggered).
This open collector (wire-OR) line is the system
NMI and can be asserted by an expansion module
pulling it low. There is a 3K3 pull-up resistor

inside the ULA. You must be very careful to avoid
holding this line low after the interrupt has been
serviced, because it will mask other interrupts
whilst asserted. For more details about NMIs, you
should refer to chapter 7.

IRQ (pin 17)

This is the active-low IRQ (interrupt request)isit
an open collector (wire-OR) line, so it can be
asserted by any expansion module pulling it low.
There is a 3K3 pull-up resistor within the ULA.
Note that interrupts MUST NOT occur until the

220

software in the machine has initialised to a shaite
which it can deal with them. Power up and reset
conditions should therefore disable all IRQs, Itis
important to ensure that not too much of the
interrupt service time is used up, otherwise some
operations like the system clock may cease to
function correctly.

R/W (pin 18)

This is the system read/write line from the 6502. |
tells peripheral devices whether the 6502 is sendin
data to them, or is expecting data from them.

DO-D7 (pins 19 to 26)

This is the 8 bit wide bi-directional data bus. All
data is transferred over this bus, the direction of
data transfer being determined by the state of the
read/write line.

RDY (pin 27)
This is the active low ready line from the 6502. It
can be asserted by an expansion to slow down the

processor when it is reading slow memory. This
line is only operational on reads.

(pin 28)
No connection.
(pins 29,30)

Polarising key connector to ensure that boards
cannot be plugged in the wrong way round.

A0-A15 (pins 31 to 46)

This is the system address bus. There are 16 lines
in this bus which allow® (65536) different
locations to be addressed.

221

15.3 Designing Circuits

It might at first appear to be very easy to addfaing onto the
Electron Expansion Bus. There is however one fairdjor
problem. The 6502A often changes speed to copethgth
accessing of different devices. These fall into main categories.

15.3.1 Accessing the ROM

When the ROM is being accessed, the 6502 rungah#ximum
possible speed of 2MHz; PHI OUT is low for 250nd &men high
for 250ns.

15.3.2 Accessing the RAM and peripherals

When RAM or peripheral devices are accessed, thadgiwill be
highly dependent on the display mode. This is beedwice as
much data has to be removed from the RAM to prodluee
display in modes 0-3 as in modes 4-6.

Modes 4-6

The processor will normally be running at 2MHz whieiirst
needs to access RAM or peripherals like the 652#ad to slow
down to 1MHz first. This slow doweither consists of a PHI OUT
low time of 250ns followed by a high time of 75008a low of
250ns followed by a high of 1250ns. The partictype of
transition which occurs will depend upon the refatphases of
the 2MHz and 1MHz clocks, This is illustrated igudre 15.1.

Both the 1IMHz and 2MHz clocks are intert@the ULA, and are
not available outside. They must be generated atgharsee later
in this section).

Modes 0-3

In these modes, the ULA must have access to the FoAMIl the
displayed part of a line (40us out of 64us in 2664 out of 312).
This doesn’t matter provided that the CPU only wdataccess
peripherals and the ROM, which it is free to dohie normal way.
However, if it tries to access RAM the ULA will lbit’s clock
high for up to 40us. The overall effect is that the

222

processor can be effectively disabled for up tas40’he only way
for the processor to obtain priority over the ULsAay an NMI
being generated. This will automatically causelthé to release
the 6502 (and the RAM), but inevitably creasasw on the
screen.

15.3.3 Generating the 1MHz clock

Since the 1MHz and 2MHz signals only exist insige LA, it is
necessary to regenerate them outside. Two cloekgrarvided on
the expansion connector. A 16MHz one and a 16/13tizfor
baud rate generation. The former of these can é& tasgenerate
a 1MHz clock, This has to be synchronised to tleegssor clock
if it is to be used with peripherals like the 652A. A simple
division by 16 will not produce a suitable clocigrsal. The circuit
in figure 15.2a will produce a suitable in phagmal. The timing
for this is shown in figure 15.2b.

15.3.4 Long delays for interrupts

It is important to bear in mind how long the delayght be
before a particular requested interrupt is seryidéds is
determined by the longest period for which intetsugan be
disabled.

In modes 0-3, this delay can be up to 100ns irvéing worst case.
Such a long delay can cause problems with unbuffeireuits

like the cassette serialiser/deserialiser. The salytion is to
ensure that such devices are only used from mo@e®@den if it
means forcing a particular mode before executirmuténe).

The interrupt delay is only 4ms at worst in mode& 40 most

actions which require a fast response can be es@tuione of

these modes. Note that NMIs can always be usedass @esort
where necessary, but are normally reserved foratiscEconet
accesses.

223

+5V -4
AlS 10 4
5

3 4 4 PR PR
_ 9 6 12 9 2
RST) 8 5 D Q D Q
LS04 LS74 LS74
LS00 LS00 11 ._3.>
CLR CLR
?13 ?'1
12
= 11
LS00
& —>o 0o s
LD
LS04
16MHz 2 g ;]0
+5V
l 4}B clLu
3]A 16 1
o ol s
q 1MH:z
163
OV =l LS16

Figure 15.2a - A 16MHz to 1MHz synchronisation aitc

RESET

-/ /N

At i AN
Vi

:

LOAD

16MH:z

Figure 15.2b - the timing applied to figure 15.2a

224

15.4 Sideways ROMs

Sideways ROMs can be selected in place of BASI@gluages

like LISP, disc filing systems, utilities etc calhl@e plugged in.

These sideways ROMs are covered from a softward pbview
in chapters 8 to 11.

From a hardware point of view, up to 16 sidewaydvRQ@re
allowed. However, four of these are already alledaitn the
standard Electron. BASIC occupies two slots (ROMsdd 11 it
appears the same in each). The keyboaatipies slots 8 and

9. The remaining 12 ROM slots are all availableggpansion.

The ROM paging register is located in the ULA, aad be
accessed by writing to location &FEO5 (see sectidn

There are twalistinct ways of accessing ROMs via this register.
The first method accesses ROMs 12 to 15. This tipars very
simply performed by writing the required ROM numbep the
low nibble of &FEQ05. Hence:

D7 D6 D5D4 D3 D2 D1 DO
Writeat&FEO50 O O O 1 1 R1 RO

where R1 and RO control which ROM is selected.

Suitable hardware must be included in the expansniito cope
with this method of selecting ROMs. Selection oé afi the
ROMSs 12 to 15 can be carried out by the followinde. Be
careful to ensure that the write to &F4 always osdefore the
write to &FEOQ5, just in case an interrupt occurb@tween.

LDA #ROMnumber
STA &F4
STA &FE@5

The second method for accessing ROMs will allowsého
numbered O to 7 to be selected. It is not possibéelect these
ROMs directly, because BASIC will still be pagedTie only
way of paging BASIC and the keyboard out is to &at@e of the
ROMs 12 to 15 first. This access causes the int&@ds to
page out. The correct ROM selection code can tleeseht to the
lower three bits of &FEOS.

225

D7 D6 D5D4 D3 D2 D1 DO
Writeat &FEO50 O 0 O O R2 R1 RO

where R2, R1 and RO select the required ROM.

As with the other ROM slots, new hardware must foided at
address &FEO5 to select the relevant ROMs.

Code to select a ROM numbered 0 to 7 could be:

LDA #RaC \to deselect BASIC
STA &F4 \one of ROM 12 to 15
STA &FEQ5 \must be selected
LDA #ROMnumber \Now select desired
STA &F4 \Low order ROM

STA &FE@5

It is essential that the A register is stored tol&fefore &FEO5 in
case an interrupt occurs in between.

When the machine is powered up, the sideways RO&lpdalled
in order from 15 down too. The first one whichaesifid to be a
language ROM (see the Paged ROM firmware section fo
specification) will start executing. Since BASICimsslot 10/11, a
ROM which is required to power-up before BASIC miostin one
of the sockets 12 to 15

The ROMs 12 to 15 are allocated to high priority Nddvices or
languages which are expected to power up beforelBAEe
reason for putting high priority NMI servicing RONsthese
sockets is that a smaller delay is required to phem in than for
ROMs O to 7.

The lower priority ROMs are all selected by perforgitwo

writes to the paging register. The first is to deseBASIC, the
second is to select the required ROM.

226

The Acorn Plus 1 expansion unit forces the prianitiR OMs to
be (from highest down):

ROMs 15to 12
ROMs 7to 0
BASIC

This implies that any language which is fittedhe Plus 1 will
automatically power up ahead of BASIC. ROM allocathas
been defined by Acorn as follows:

ROM USE

1 Second external socket on expansion module)(SK2
3 First external socket on the expansion modbiel f
Disc

,6 USER applications

Modem interface ROM

9 Keyboard

10,11 BASIC

12 Expansion module operating system

13 High priority slot in expansion module

14 ECONET

15 Reserved

15.5 The One Megahertz Bus

Most 6502compatible peripherals will generally be connected
onto the 1MHz regenerated bus. This allows reltiskow
devices to be accessed. On the BBC Micro, page B&<been
allocated especially for 1MHz devices, This pageaited FRED
Generally, devices resident within FRED have re&dyi small
memory requirements (mainly control and data regs$t

Since Electron expansion should be compatible BRIC Micro
expansion (so they can use the same expansiorhpgaig), the
allocation of devices in FRED has been very wdliindel. The
following list includes items which would normalbe resident in
Sheila on the BBC Micro, but which have to go oa #MHz bus
on an Electron.

227

&FCO0 to &FCOF
&FC10 to &FC13
&FC14 to &FC1F
&FC20 to &FC27
&FC28 to &FC2F
&FC30 to &FC3F
&FC40 to &FC47
&FC48 to &FC5F
&FC60 to &FC6F
&FC70

&FC71

&FC72

&FC73 to &FCT7F
&FC80 to &FC8F
&FC90 to &FCIOF
&FCAO to &FCAF
&FCBO to &FCBF
&FCCO to &FCCF
&FCDO to &FCDF
&FCEO to &FCEF
&FCFO to &FCFE
&FCFF

Test hardware
TELETEXT
PRESTEL
IEEE 488 interface
ECONET
CAMBRIDGE RING interface
WINCHESTER DISC interface
Reserved for Acorn expansions
685ACIA
A to D converter
CENTRONICS parallel interface
Status register
BSY ADC FB2 FB1 X X X X
Where BSY= printer busy
ADC = A to D conversion end
FB1= Fire button 1
FB2 = Fire button 2
X= undefined

Reserved for Acorn expansions
Test hardware

Sound and speech

Reserved for Acorn expansions
6522 VIA/Real time clock
Floppy disc controller

USER applications

The TUBE

USER applications

Paging register for JIM

Note that page &FD in the Electron address spausasd in

conjunction with the paging register in FRED to\pde an extra
64K of memory. This memory is accessed one pagdiate. The
particular page being accessed is selected byalue in FRED’s
paging register, and is referred to asextended page number.
Accessing memory via the 1MHz bus in this way géherally be
about 20 times slower than accessing memory dyrectl

228

15.6 The Analogue to Digital converter

The A to D converter is present at location &FC7ithwome
status bits in &FC72.

To obtain a value from the converter, it is firstassary to poke a
number representing a channel number into &FC7érdmg to
the following table:

Channel Value

HIWNF
~N| ool

The result will then appear in &FC70 when bit B6fC72 goes
low.

&FC72 also contains the status of the two fire dngtin bits 4
and 5.

15.7 Disabling the Plus 1
To completely disable the Plus 1, the followingsake required:

*FX163,128,1
?8212=8D6
?8213=&F1
?&2AC=0

The first call disables ADC conversion. The secand third calls
redirect FILEV to its default location and the ftucall disables
the Expansion ROM by clearing the associated lwyteeé ROM
table.

229

Appendix A - VDU Code Summary

This Appendix describes the functions performedhaywhole of
the character set when printed using VDU or PRINHRS. Note
that several ones are labelleghansion. This means that they will
only be effective if the associated expansion mesiare
connected.

Dec hex CTRL + bytes function

OCO~NOUITRWNELO

TMMUOTm>POO~NOOT~RWNEFO

<CHOWITOUVOZZIr ACPIOTMOUOB>Q

ROOUIOOFROOUINROOOOCO0O000000O00OORO

Does nothing
Send character to printer (expansion)
Enable printer (expansion)
Disable printer (expansion)
Write text at text cursor
Write text at graphics cursor
Enable VDU drivers
Make a short bleep (BEL)
Move cursor back one character
Move cursor forward one character
Move cursor down one line
Move cursor up one line
Clear text area
Carriage return
Paged mode on
Paged mode off
Clear graphics area
Define text colour
Define graphics colour
Define logical colour
Restore default logical colours
Disable VDU drivers/delete current line
Select screen MODE
Re-program display character
Define graphics window
PLOT K,X,Y
Restore default windows
Reserved
Define text window

230

29 1D] 4 Define graphics origin

30 1E ~ 0 Home text cursor to top left of window
31 1F _ 2 Move text cursor to X, Y

32-126 Complete set of ASCII characters

127 7F DEL O Backspace and delete

128-223 Normally undefined (define using *FX20)
224-255 User defined characters

231

Appendix B PLOT numbers

~N~Noooah~hwNEFLO

Higher
effects

8-15
16-23
24-31
32-63
64-71
72-79
80-87
88-95
96-255

Move relative to last point

Draw relative to last point in current foregrowualour
Draw relative to last point in logical inversdaar
Draw relative to last point in current backgrowadour
Move absolute

Draw absolute in current foreground colour

Draw absolute in logical inverse colour

Draw absolute in current background colour

PLOT numbers have other effects which daged to the
given by the values above.

Last point in line omitted when ‘inverted’ giog used
Using a dotted line

Dotted line, omitting last point

Reserved for Graphics Extension ROM

Single point plotting

Horizontal line filling

Plot and fill triangle

Horizontal line blanking (right only)

Reserved for future expansions

232

Horizontal line filling

These PLOT numbers start from the specified X,Yoadinates.
The graphics cursor is then moved left until tmstfhon-
background pixel is encountered. The graphics cussben
moved right until the first non-background coloupexiel is
encountered on the right hand side. If the PLOT lmemns 73 or
77 then a line will be drawn between these two {samthe
current foreground colour. If the PLOT number isofZ6 then
no line is drawn but the cursor movements are nih@se may
be read using OSWORD call with A=&D/13, see chapgder

Horizontal line blanking right

These PLOT numbers can be usedridraw an object on the
screen. They have an the opposite effect to thbedorizontal
line filling functions except that the graphics soiris moved right
only. PLOT numbers 91 and 95 will cause a linegahkawn from
the specified co-ordinates to the nearest backgreofoured

pixel to the right in the background colour. PLOImbers 89 and
93 move the graphics cursor but do not cause rleetdi be
blanked.

233

Appendix C — Screen mode layouts

MODE 0 Screen layout

Graphics 640x256
Colours 2
Text 80x32

&3000 | &3008 | &3278
&3001 | &3009 | &3279
&3002 | &300A | &327A
&3003 | &300B | &327B
&3004 | &300C | &327C
&3005 | &300D | &327D
&3006 | &300E | &327E
&3007 | &30OF | &327F
&3280

&3281

&7B06

&mBO7 |
&7D80 | &7D88 | &7FF8
&7p81 | &89 | &7FF9
&7D82 | &D8A | &7FFA
&7D83 | &m88 | &7FFB
&7pD84 | &m8C | &7FFC
&7D85 | &08D | &7FFD
&7D86 | &7DSE | &7FFE
&7D87 | &7D8F &7FFF

l7]16]5[4]3]2[1]0] %me

1BIT/PIXEL

Note that the screen layout is only as shown aftrS and will
change as the screen is scrolled.

234

MODE 1 Screen layout
Graphics 320x256

Colours 4

Text 40x32
&3000 | &3008 | &3278
&3001 | &3009 | &3279
&3002 | &300A | &327A
&3003 |&3008B | &327B
&3004 | &300C | &327C
&3005 |&300D | &327D
&3006 | &300E | &327E
&3007 | &300F | &327F
&3280
&3281
&7B06
&mBo7 |
&pgo | &7D88 | &7FF8
&p81 | &7D89 | &7FF9
&rpg82 | &7DSA | &7FFA
&mp83 |&7DSB | &7FFB
&rpg84 |&7DSC | &7FFC
&8s |&7DSD | &7FFD
&7D86 | &7DSE | &7FFE
&7D87 | &7D8F &7FFF

[716[5[4[3]2][1][0] 3néme

A A A

LLE

Note that the screen layout is only as shown aftrS and will
change as the screen is scrolled.

235

MODE 2 Screen layout
Graphics 160x256

Colours 16

Text 20x32

&3000 (&3008 (&3278
&3001 [&3009 (&3279
&3002 | &300A | &327A
&3003 (&300B (&327B
&3004 | &300C (&327C
&3005 (&300D (&327D
&3006 | &300E | &327E
&3007 | &300F | &327F
&3280

&3281

&7B06

&mBoz |
&7b8o [&7D88 | &7TFF8
&7b81 | &7bD89 | &7FF9
&7D82 [&7DSA | &TFFA
&7p83 | &7p8B | &7FFB
&7b84 | &7D8Cc | &7FFC
&7D85 | &7DSD | &7FFD
&7D86 | &7DSE | &7TFFE
&7D87 | &7D8F &7TFFF
[716[5[4[3]2][1][0] ivéme

A A A A A A A A

Note that the screen layout is only as shown aftrS and will
change as the screen is scrolled.

236

MODE 3 Screen layout

Graphics Not available

Colours 2

Text 80x25
&4000 | &4008 | &4278
&4001 | &4009 | &4279
&4002 | &400A | &427A
&4003 |&400B | &427B
&4004 | &400C | &427C
&4005 | &400D | &427D
&4006 | &400E | &427E
&4007 | &400F | &427F
BLANK [BLANK | BLANK
BLANK [BLANK | BLANK
&4280
&4281
&7980
BLANK
BLANK | ¢+
&7coo |&vcos | &7E38
&7co1l |&vco9 | &7E39
&7C02 | &7COA | &7E3A
&7co3 |&vcoB | &7E3B
&7co4 |&vcoc | &7E3C
&7cos |&7cop | &7E3D
&7C06 | &7COE | &7E3E
&7C07 | &7COF | &7E3F
BLANK [BLANK | BLANK
BLANK | BLANK BLANK

[7]elsl4af[3][2]1]0] Sm

1BIT/PIXEL

Note that the screen layout is only as shown aftrs and will
change as the screen is scrolled.

237

MODE 4 Screen layout
Graphics 320x256

Colours 2
Text 40x32

&5800 | &5808

&5801 | &5809

&5802 | &580A

&5803 | &580B

&5804 | &580C

&5805 | &580D

&5806 | &580E

&5807 | &580F

&5940
&5941

&7D86
&7D87

&7ECO | &7ECS8

&7EC1 | &7EC9

&7EC2 | &7ECA

&7EC3 | &7ECB

&7EC4 | &7ECC

&7ECS5 | &7ECD

&7EC6 | &7ECE

&5938

&5939

&593A

&593B

&593C

&593D

&593E

&593F

&7FF8

&7FF9

&7FFA

&7FFB

&7FFC

&7FFD

&7ECT7 | &7ECF

&7FFE

&TFFF

(716[5[4]3]2[1][0] S5

2BITS/PIXEL

Note that the screen layout is only as shown aftrs and will
change as the screen is scrolled.

238

MODE 5 Screen layout
Graphics 160x256

Colours 4

Text 20x32

&5800 [&5808 | &5938
&5801 [&5809 | &5939
&5802 | &580A | &593A
&5803 [&580B [&593B
&5804 |&580C | &593C
&5805 [&580D | &593D
&5806 |&580E | &593E
&5807 | &580F | &593F
&5940 i i
&5941 | !
&7D86 ! !
&7D87 e |
&7ECO | &7EC8 | &T7FF8
&7EC1 | &7ECO | &TFF9
&7EC2 | &7ECA | &TFFA
&7EC3 |&7ECB | &7FFB
&7EC4 | &7ECC | &7FFC
&7EC5 |&7ECD | &7FFD
&7EC6 | &7ECE | &TFFE
&7EC7 | &7ECF &TFFF

l7]16[5]4a[3]2[1]0] siv&

2BITS/PIXEL

1]

A AT

Note that the screen layout is only a s shown aft&rs and will
change as the screen is scrolled.

239

MODE 6 Screen layout

Graphics Not available

Colours 2
Text 40x25

&6000 [&6008 | &6138
&6001 [&6009 | &6139
&6002 [&600A | &613A
&6003 [&600B | &613B
&6004 |[&e600C | &613C
&6005 |[&6OOD | &613D
&6006 | &B600E | &613E
&6007 [&6OOF | &613F
BLANK |BLANK | BLANK
BLANK | BLANK BLANK
&6140 | !

&7CC7 :

BLANK

BLANK | &+

&7F00 |[&7FO8 | &7F38
&7F01 [&7FO9Q | &7F39
&7F02 [&7FOA | &TF3A
&7F03 |&7FOB | &7F3B
&7F04 |&7FOC | &7F3C
&7F05 |&7FOD | &7F3D
&7F06 | &7FOE | &7F3E
&7F07 | &7FOF | &TF3F
BLANK |BLANK | BLANK
BLANK | BLANK BLANK

[7]elsl4f3][2]1]0] Sdrm

1BIT/PIXEL

Note that the screen layout is only as shown aftrs and will
changeas the screen is scrolled.

240

Appendix D - Operating System Calls
and Vectors

Routine
Addr

OSCLI

OSBYTE
OSWORD
OSWRCH
OSNEWL

OSASCI
OSRDCH
OSFILE
OSARGS
OSBGET
OSBPUT
OSGBPB
OSFIND

FFF7

FFF4
FFF1
FFEE
FFE7

FFE3
FFEO
FFDD
FFDA
FFD7
FFD4
FFD1
FFCE

Function
Addr
200
202

204

Vector
Name
USERV
BRKV
IRO1V

IRQ2V 206

CLIV 208
BYTEV 20A
WORDV 20C
WRCHYV 20E

RDCHV 210
FILEV 212
ARGSV 214
BGETV 216
BPUTV 218
GBPBV 21A

EVNTV
UPTV
NETV
VDUV

220
222
224
226

KEYV
INSV

228
22A
REMV 22C

CNPV 22E

241

Name
The user vector
The BRK vector
Primary interrupt
vector
Unrecognised IRQ
vector
Command line
interpreter
*EX/OSBYTE call
OSWORD call
Write character
Write LF, CR to
screen
Write character,
&0D=LF, CR
Read character
Load/save file
Load/save file data
Get byte from file
Put byte in file
Multiple
BPUT/BGET
Event vector
User print routine
Econet vector
Unrecognised VDU
commands
Keyboard vector
Insert into buffer
vector
Remove from buffer
vector
Count/purge buffer
vector

NVRDCH

NVWRCH
GSREAD

GSINIT

OSEVEN
OSRDRM

FFCB
FFC8
FFC5
FFC2

FFBF
FFB9

IND1V 230
IND2V 232
IND3V 234

242

Spare vector

Non-vectored read
char.

Non-vectored write
char.

Read char. from
string

String input initialize
Generate an event
Read byte in paged
ROM

Appendix E - Plus 1 ROM slot

Not connected *

|—;£—D*< x L

* asSle g S N B [e)

ZZOEEEDOO [a) =~ ™ =2 >

5222898‘2’2&%% 33222283

A

\\\\\\\\\\\\\\\\\\\I\\Farside

R EEEEEEEEEEEEEEEE

22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1
9990000000000 0000000000 J .

g e rrrrr T

25882TY¥232¢%[Y3885258¢83

(@) < +

Figure E.1 - The Plus 1 ROM slot connector

The cartridge interface is an earlier and simplersion of that
later used on the BBC Master. Signals which diffetween the
two machines are shown with an asterisk in therdiag The
description below explains the function of all thignals and the
differences between machines.

Note that most of the standard BBC Micro 1MHz bigmals are
available from this slot. However, some of the um@smarginally
different to the BBC 1MHz bus. A full specificatidor producing
suitable add-ons is available from Acorn Compultémsted.

SIDE A’

1 +5V - Power supply

This is the system logic supply rail. No more ti&9mA should
be drawn by a cartridge in a fully configured Masi28
computer, ie with internal co-processor fitted. idore than
50mA should be drawn by a cartridge fitted to tthecion.

2 nOE - Output Enable : Input with CMOS levels

This is an active low signal during the PH12 pembthe system
clock. It is intended to switch on the output btgfef memory
devices in cartridges. It is not guaranteed toigk &t other times.

243

3 NRST - System Reset : Input with CMOS levels
This signal is active low during system resets Ihot
synchronised to any internal clock.

4 CSRW - Chip Select / Read/Write : Input with CMOSlevels

On the Electron:
This pin is the CPU read/write line.

On the Master 128:

This pin changes function according to the memegyan that the
CPU is addressing. During accesses to device®iretjion
&FCO00 to &FEFF it is equivalent to the CPU readtetine
during nPH12. For all other accesses it is an adtigh chip
select for memory devices. It is not guaranteduokttow at other
times. This approach is necessary for compatibiith the
Electron.

5 A8 - Address line 8 : Input with TTL levels
6 A13 - Address line 13 : Input with TTL levels
7 A12 - Address line 12 : Input with TTL levels

8 PH12 - CPU clock : Input with CMOS levels
This input is the host computer PH120ut.

9 -5V - The negative supply voltage
No more than 20mA per cartridge should be drawmftiois

supply.
10 CSYNC/MADET

On the Electron:
This is a "no connect" on the Electron.

On the Master 128:

This pin has two functions dependant on the posiioa link in
the host computer:

E/nB: this is the default function. It allows harake in cartridges
to "know" which into which type of computer it itugged. It is a

244

direct connection to +0V in the Master 128 andoatihg node in
the Electron.

CSYNC - Composite Synchronisation: Input with TEBvéls
The system composite vertical and horizontal symmisation is
made available. It is intended to be used in géndqplications.
11 RNW/READY

This has different functions on the Electron arelMaster 128.

On the Electron:

READY - CPU wait state control : Open collector mutt

When driven low, this line will cause the CPU tdesd its cycle
until READY is released. This will only work on Efeons with
CMOS CPUs. With NMOS CPUs it will only work on read
cycles.

On the Master 128:

R/W - Data Direction Control : Input with TTL lel

This is the system data buffer direction contrblow, cartridges
are being written to; if high and selected they rdaye the bus
during PH12.

12 nNMI - Non maskable interrupt : Open collector atput
This signal is connected to the system NMI linés kctive low.

13 nIRQ - Interrupt request : Open collector output
This signal is connected to the system IRQ lines #ctive low.

14 nINFC - Internal Page &FC : Memory active decodenput

: TTL active low

When bit IFJ is set in the Master 128 ACCCON reyisll
accesses to the address range &FCO00 to &FCFF avie this
select to become active. The ACCCON access ispplicable to
the Electron.

15 nINFD - Internal page &FD : Memory active decoddanput

: TTL active low

When bit IFJ is set in the Master 128 ACCCON regjsall
accesses to the address range &FDO0O0 to &FDFF aiilse this
select to become active. The ACCCON access isppiicable to
the Electron.

16 ROMQA - Memory paging select : Input with TTL levels
245

This is the least significant bit of the ROM seltth located at
&FE30 in the Master 128 and at &FEOQ5 in the Elettro

17 Clock
This connection has different uses in the Electnoth Master 128:

In the Electron:
Clock is a 16MHz input with TTL levels.

In the Master 128:

Clock is a strap selectable function:

a) 16MHz input with TTL levels.

b) 8 MHz input with TTL levels.

The functions are selected by links on the hostpmder. The user
should ensure that the links are correct for argaeplication and
that proper termination is provided.

18 NROMSTB/NnCRTCRST
This has different functions on the Electron andsidn128:

On the Electron:

NROMSTB is an active low input using TTL levels winiselects
the location &FC73. This is intended to be used paging
register.

On the Master 128:

NCRTCRST is an active low output signal meeting Taiels of
the system CRTC reset input. It is provided for imsgenlock
applications.

19 ADOUT - System audio output
This is the filtered output of the sum of all audiputs to the host
computer. No significant load should be taken fitbia node.

20 AGND - Audio Ground
This is the zero volt return for ADOUT. It should bsed instead
of the system zero volt connection to reduce andise.

21 ADIN - Cartridge audio output

In the Electron:
This is merely a connection from one cartridgeh® ather.

246

In the Master 128:

This is an output to the host computer audio cirgult 'sees’ an
impedance of at least 1.0kOhms. Two

cartridges with audio output should not be insen¢al the host
computer at the same time.

22 OV - Zero volts
This is the system earth return for digital signals

247

SIDE 'B'

1 +5V - Power supply

This is the system logic supply rail. No more ti&9mA should
be drawn by a cartridge in a fully configured Magt28
computer, ie with internal Second Processor fithdal more than
10mA should be drawn by a cartridge fitted to thecion.

2 A10 - Address line 10 : Input with TTL levels

3 D3 - Data bus line 3 : Input/Output with TTL levds
4 A1l - Address line 11 : Input with TTL levels

5 A9 - Address line 9 : Input with TTL levels

6 D7 - Most significant data bus line : Input/Outpu with TTL
levels

7 D6 - Data bus line 6 : Input/Output with TTL leveds
8 D5 - Data bus line 5 : Input/Output with TTL leves
9 D4 - Data bus line 4 : Input/Output with TTL levds

10 nOE2 - Output Enable : Input with TTL levels

This line provides an additional active low outpuagble for
ROMs in the Electron. This corresponds to ROM posii3 and
consequently responds quickly to service calls. lbw during the
active low portion of PH12. It is not guaranteed&high at other
times.

LPSTB - Light pen strobe

A connection with a pull up to +5V is provided t@etCRTC light
pen strobe and system interrupt structure. Whemmamoard link
Is removed, this connection is merely a link frone @artridge to
the other.

11 BA7 - Buffered address line 7 : Input with TTL kvels
The buffered address lines hold addresses valitiZéns after
PH12 goes low. They are not buffered or held viidan
extended period in the Electron.

248

12 BAG - Buffered address line 6 : Input with TTL kvels
13 BAGS - Buffered address line 5 : Input with TTL kvels
14 BA4 - Buffered address line 4 : Input with TTL kvels
15 BA3 - Buffered address line 3 : Input with TTL levels
16 BAZ2 - Buffered address line 2 : Input with TTL levels
17 BAL - Buffered address line 1 : Input with TTL kvels
18 BAO - Buffered address line 0 : Input with TTL kvels
19 DO - Data bus line 0 : Input/Output with TTL levels
20 D2 - Data bus line 2 : Input/Output with TTL levels
21 D1 - Data bus line 1 : Input/Output with TTL levels
22 QV - Zero volts

This is the earth return for digital signals.

Where two or more cartridges are fitted, any hostputer links
affect ALL cartridges.

249

Appendix F — Complete circuit diagram

MEYBOARD TONNEC TR

Pl

Rre1 Mot miTTED res [Nwor FiTTED rea[|not FirTen 70 [wor Firten
7y ax7 4KT, K7

¥ ¥

3 b
n
- Hlano
FIH il
o
o Hkan:
caps Lock 04 2 eaps Lock
BREAK O-L- ’ 9 RSt
N ; ! o
o5V Oy ¢
ov o-te o
1c2
a0 o g
A1 O

a5 PASIC RaM

B5074

—Sich]

<[=[<]<=2]

i
neez

g cLoc

Dok LKINF 1 onp o

| CREE —

! u !

— Ao =

v [Tene TS0 |
“
£
RT1 B
33 el

*5V OV -BV

NOTES -

1 CAPACITORS C1,C2,67CN £.C25 ¢
ELECTROLYTICS CAN BE INTERCHANGED T
FOR TANTS (SEE PrLI

wop. ICt ct
T CAPACITORS €20 & C77 HAVE DUAL LEAD ®504 TS
FITCHES [SEE i)

1 ALL DIDDES ARE IN&140 ::‘L::ﬂ
4 FIT 104,56 £7 OR ICIOIORTION

e

250

veer veer veer ” L]
cas out o =
5 o8
56k
Cas R
cas
cas o ov
e BKE BKZ o fCn Ris
Tanif Lu3ze
39 5v
- ox
o & 1 o
2 x LKy
oy L HuFIe aiss A ERR s
o
sounp arpfel 5
2 4R T0uF-
BT -
s6n s | SRR
. L g TR
] B * * FOiw
pey
AT E a5y
E icts
Tvnclel 0
sLue [TLLSOE
GREEN I
repf
icr
ez
Lok
W
= e
e
o Jciewe
0 &
Tsoe ©

VG 55-40pF

me_mor, =6

WEDL TASGL

251

HITSC

A
UHF Ut
LMIZIE36 PAL

2.
SELECT |UMIEZ LAZINTS

Main PCB Circuit Diagram

Appendix G — Hardware expansions

It is beyond the scope of this manual to providdtécal details

on all of the available add-on hardware for thecEt, except for

certain aspects of the official Plus 1 and Plusi8suTo obtain
this information, reference must be made to theveait manuals
supplied with the hardware.

The following tables provide a summary of the ntandware
expansions available for the Electron.

General interface units

Manufacturer | Name Facilities Type
Acorn Plus 1 2x cartridge | Module
slots
Printer port
Joystick port
Andyk RS423 RS423 Cartridge
Bud Commander 3| Joystick port Module
First Byte Printer Printer port Module
interface
First Byte Joystick Joystick port | Module
Interface
Jafa RS423 RS423 Cartridge
Lindy Expansion unit| 2x cartridge| Module
slots
Printer port
Mushroom Printer User port Module
interface and | Printer port
user port
Pace Comms unit RS423 Cartridge
Serial printer
port
Power Joystick Joystick port | Module
interface

252

Manufacturer | Name Facilities Type
PRES AP1 2x cartridge | Module
slots
Printer port
Joystick port
PRES 1Mhz bus 1Mhz bus Cartridge
PRES AP5 Tube, 1Mhz| Cartridge
bus, User
Port
PRES AP6 6x ROM Internal
slots upgrade to
Plus 1/AP1
PRES User Port User port Cartridge
Project User Port User port Cartridge
Expansions
Ram Joystick Joystick port | Module
electronics interface
Slogger Plus 2 3x ROM Module
sockets and
2x cartridge
slots
Slogger Rombox 8x ROM Module
sockets
Slogger Rombox+ 4x ROM Module
sockets, 2x
cartridge
slots
Slogger Joystick Joystick port | Cartridge

interface

Disc interfaces

Manufacturer | Name Facilities Type
Acorn Plus 3 ADFS 1D00| Module
Cumana Disc interface] CDFS EOQO Cartridge
John Kortink GOMMC MMC Module
interface
PRES AP3 ADFS 1D00| Cartridge
PRES AP4 DFS EOO Cartridge
Slogger Pegasus 400 DFS EOO Cartridge
Solidisk Disc Interface| DFS EQO Cartridge
ADFES 1DO00
RAM expansion units / Second Processors
Manufacturer | Name Facilities Type
Jafa Shadow RAM| 32k shadow | Internal
board RAM /
Turbo mode
PMS E2P 6502 second Cartridge
processor inc
64k RAM
PRES Advanced 32k Cartridge
Battery
Backed RAM
PRES Advanced s/w| 16k SWR Cartridge
RAM
PRES Advanced 256k Cartridge
Quarter Meg
RAM
PRES AP7 32k Cartridge
Slogger 32k s/w RAM | 32k SWR Cartridge
Slogger Master RAM | 32k shadow | Internal
board RAM / Turbo
mode

254

Sound expansions

Manufacturer | Name Facilities Type

Complex Sound 4 channel Cartridge

sound systems expansion sounds

Project Sound 4 channel Cartridge

expansions expansion sounds

Database Sound Master | Volume Connects

electronics control internally

Millsgrade Voxbox Speech unit Module

Display/Other

Manufacturer | Name Facilities Type

Jafa Mode 7 Provides Module
adaptor Mode 7

Nidd Valley Slomo Slows down | Module

machine

255

Bibliography

Acorn User Magazine, published monthly, Addison Wesley

6502 Assembly Language Programming, L.A. Leventhal,
OSBORNE/Mc Graw Hill, Berkeley, California

Acorn Electron Expansion Application Note, Acorn Computers
Limited, 1984

Acorn Electron User Guide, Acorn Computers Limited,
Cambridge, 1983

Beebug Magazine, published every five weeks, BEEBUG, PO Box
109, High Wycombe, Bucks.

Programming the 6502, Rodnay Zaks, Sybex, 1980

R6522 Versatile Interface Adapter Data Sheet, Rockwell
International, 1981

TTL Data Book, Texas Instruments Inc., 1980

The BAS C ROM User Guide for the BBC Micro and Acorn
Electron, Mark Plumbley, Adder Publishing/Acornsoft Limited,
Cambridge, 1984

The Advanced User Guide for the BBC Microcomputer, Bray,
Dickens and Holmes, Cambridge Micro Centre, 1983

Electron User, Database Publications

Acorn Electron World, Dave Edwards, (Website)

256

Glossary

Address Bus— a set of 16 connections, each one of which can be
set to logic 0 or logic 1. This allows the CPU tweess &FFFF
(65536) different memory locations.

Active low — signals which aractive low are said to be valid
when they are at logic level 0.

Analogue to digital converter (ADC)— this is a chip which can
accept an analogue voltage at one of its inputgaovde a
digital output of that voltage.

Asynchronous— two devices which are operating independently
of one another are said to be operating asynchseiyou

Baud Rate— used to define the speed at which a serial data |
transfers data. One baud is equal to 1 bit of tlatesferred per
second. The standard cassette baud rate of 12@0stherefore
equal to 1200 bits per second.

Bidirectional — a communication line is bidirectional if datanca
be sent and received over it. The data bus liredidirectional.

Bit of memory — this is the fundamental unit of a computer’s
memory. It may only be in one of two possible fatesually
represented by a 0 or 1.

Buffer — a software buffer is an area of memory set aside
data in the process of being transferred from @wce or piece
of software to another.

Byte of memory— 8 bits of memory. Data is normally
transferred between devices one byte at a timetbealata bus.

Chip — derived from the small piece of silicon waferchip
which has all of the computer logic circuits etclo it. A chip
is normally packaged in a black plastic case witlals metal
leads to connect it to the outside world.

257

Clock — it is necessary to provide some master timingregfce
to which all data transfers are tied. The clockves this
synchronisation. A 16MHz clock is applied to theAJIFrom

this, the clock timing for the 6502 CPU is deriv8ee chapter 15
for a discussion of the clock timing requirements.

CPU (Central processing unit)}— the 6502A in the Electron, It
is this chip which does all of the computing wosdsaciated with
running programs.

Cycle— this is usually applied to the 6502 clock. A coete
clock cycle is the period between a clock goindhhigw, then
high again. Seelock.

Data bus— a set of eight connections over which all data
transactions between devices in the BBC microcoerdake
place.

Field — a space allocated for some data in a registen, @r
program listing, For example, in an Assembly largguparogram,
the first few spaces are allocated to the line remfikld, the next
few spaces are allocated to the label field, andinso

Handshaking — this type of communications protocol is used
when data is being transferred between two asynolusdevices.
Two handshaking lines are normally required. Onthesée is a
data ready signal from the originating device to the receiving
device, When the receiving device has accepteddtee it sends
adata taken signal back to the originating device, which then
knows that it can send the second lot of data ar@hs This type
of handshaking is used with the RS423 serial iaterfoption.

High — sometimes used to designate logic ‘1’
Interrupt — this signal is produced by peripheral devicesiand
always directed to the 65022PU. Upon receiving an interrupt,

the 6502will normally run a special interrupt routine pragn
before continuing with the task in hand before @isvinterrupted.

258

Latch — a latch is used to retain information appliedt &fter

the data has been removed, It is rather like a mgfooation
except that the outputs from the bits within theHeare connected
to some hardware.

LED (Light emitting diode) — acts like a diode by only allowing
current to pass in one direction. Light is emitiddIst current is
passed.

Low — sometimes used to designate logic ‘0’.

Machine code— the programs produced by the 6502 BASIC
Assembler are machine code. A machine code progoasists of
a series of bytes in memory which the 6502 canuwredirectly.

Mnemonic — the name given to the text string which defiaes
particular 6502 operation in the BASIC assembl&Alis a
mnemonic which mearisad accumulator.

Opcode— the name given to the binary code of a 6502
instrucction, For example, &AD is the opcode whmbandoad
accumulator.

Open Collector— this is a characteristic of a transistor output
line, It simply means that the collector pin of thensistor is not
driving a resistor load, ie it igpen.

Operand — a piece of data on which some operation is
performed. Usually the operand will be a byte & #iccumulator
of the 6502, or a byte in some memory location.

Page— a page of memory in the 6502 memory map is & 100
(256) bytes long. There are therefore 256 pag#seientire
address space. 256 pages of 256 bytes each adopthe 65536
bytes of addressable memory.

Parallel — parallel data transfers occur when data is denga

two or more lines at once. The system data bueXample has
eight lines operating in parallel.

259

Peripheral — any device connected to the 65t¥htral processor
unit, such as the Plus 1, Plus 3 interface et¢.nbuincluding the
memory.

Poll — most of the hardware devices on the Electron msipa
modules will generate interrupts to the 6%IRU. If interrupts
have been enabled, the CPU has to find out whicltee
generated the interrupt. It does this by succelysreading status
bytes from each of the hardware devices which cbale caused
an interrupt. This successive reading of devicesliedpolling.

RAM (Random Access Memory)— the main memory in the
Electron is RAM because it can be both writtenrtd eead from.

Refresh— all of the RAM in the Electron is dynamic memory.
This means that it has to be refreshed every felisedonds so
that data is not lost. The refreshing functionesf@rmed by the
ULA as it accesses memory regularly for video otitpu

Register— the 6502and the Electron ULA contain registers.
These are effectively one byte memory locationsctvigio not
necessarily reside in the main memory map. Allvgarfe on the
6502 makes extensive use of the internal regifbers
programming. The bits in most peripheral registefne the
operation of a particular piece of hardware, drthed processor
something about that peripheral’s state.

Rollover — this is a function provided on the keyboard tpeo
with fast typists. Two keys can be pressed at ohlee.previous
key with a finger being removed, and the next ké we finger
hitting the key. The software in the operating sgsensures that
rollover normally operates correctly.

ROM (Read Only Memory) — as the name implies, ROM can
only be read from and cannot be modified by beinigten to. The
MOS and BASIC are contained in one large 32K by@#vRchip.

Serial — data transmitted along only one line is trantedit
serially. Serial data transmission is normally slothan parallel
data transmission, because only one bit insteaé\dral bits are
transferred at a time. Communication with the dasseterface is
carried out serially.

260

Stack— a page of memory in the 6502 used for temporary
storage of data. Data is pushed onto a stack meseg, then
removed by pulling the data off the stack. The tagé to be
pushed is the first byte to be pulled off againe Bkack is used to
store return addresses from subroutines, Page €04ed for the
stack in the Electron.

ULA (Uncommitted Logic Array) — this large chip is
responsible for most of the system control on tleetiEon. It
contains a large number of logic gates. The commebietween
the gates is defined when the chip is manufactured.

261

Index

IBOOT status
*
*
filing system call
*BASIC
*CAT
filing system call
*CODE
*EXEC
close files
file handle
*EX
*HELP
*KEY
*LINE
*LOAD
*MOTOR
*OPT
filing system call
*ROM
data format
example ROM
get byte call
initialise ROM call
*ROM filing system
*RUN
filing system call
*SAVE
*SPOOL
close files
file handle
*TAPE
*TV
1MHz bus

1MHz clock generation

6502
stack area
6502 clock speed

262

A

ADC

channel read

conversion complete event
conversion type

current channel

maximum channel number
Arguments (files)
Auto-boot

ROM call

Auto-repeat

delay

period

B

BASIC
paged ROM socket
BEL
channel
duration
frequency
SOUND information
Blank/restore palette
BPUT
fast tube
BREAK
effect
interception
last type
Break-points
BRK
paged ROM active
Service ROM call
vector
BRKV
Buffers
character entry event

154

28,66
29,66

count/purge

examine status

flushing

get character

Input full

input interpretation

insert character

insert value

maintenance vectors
output empty event
printer character ROM call
remove value

RS423 character ROM call
sound purged

status

C

Cassette

filing system select

reading register

switch relay

timeout counter

ULA shift register

writing register
Cassette/ROM flag
Character

read definition
Character entering buffer event
Character interpretation
Circuit diagram
Clock

1MHz generation

read

write
Close SPOOL/EXEC files
CNPV
Command line interpreter
Connectors

expansion

Plus 1 ROM
Count/purge buffer
Counter

CFS timeout

flash

ULA register
Country code
Cursor

editing status

enable/disable editing

263

graphics position
position
read character

D

Default vector table
Delays to interrupts
Deselect filing system

E

Econet

error event

keyboard disable

OS call interception

read character interception
vector

write character interception
zero page workspace
Editing using cursor
End-of-file check
ENVELOPE

OSWORD command
Error handling
ESCAPE

character

effect

event

key status

terminating input
Escape character
ESCAPE condition

clear

set
Event

vector
Events

disabling

enabling

generation using OSEVEN
EVNTV
Examine buffer status
Expansion connector
Explode soft character RAM
Extended vectors
External clock generation
External hardware

134
223
108

121
68
70

123
71
184
25,81
44,106

90
116

76
68,79
121

88
12

42,43
43

119
29

14
119

53

217

171,189
223
217

F

Fast tube BPUT
File options select
Files
attributes
close SPOOL/EXEC
EOF check
EXEC handle
open/close
read byte
read/write
read/write group of bytes
SPOOL handle
system calls
write byte
Filing system
deselect
handle range
initialise
*ROM
workspace claim
zero page workspace
Filing system calls
Firm keys
language call
pointer
status
string
Flag
*ROM/*TAPE
printer destination
RS423 control
RS423 use
Tube presence
user
Flashing colours
counter
mark duration
reset cycle
space duration
Flushing buffers
FRED

G

Get byte (OSBGET)
Get character

at cursor

from buffer

108

100

49
52

264

from input stream 10
GSINIT 12
GSREAD 12

H

Handle

filing system 108
Hardware

external 216

internal 206

introduction 201
Hardware scroll example 208
High-order address a7
HIMEM 199

read 48
I/O read/write 53
I/O processor

read memory 89

write memory 920
INKEY 45
Input buffer full event 120
Input character interpretation 76
Input line 88
Input source flags 59
Input stream

selection 23
Insert value into buffer 127
INSV 127
Internal hardware 206
Interrupts 135

delays 222

example 141

interception 139

ROM call if unknown 155

ULA mask 69

vectors 119
Interval timer 89
Interval timer event 121
IRQ

input pin 220

ULA register 206
IRQ1V 119,139
IRQ2V 119.139

JIM

K

Key number table
Keyboard
auto-repeat delay
auto-repeat period
disable
reading direct from ROM
scan
soft key status
status byte
status LEDs
translation table address
vector
Keys pressed information
KEYV

L

Language
exclusive workspace
zero page workspace
Language entry
Language ROMs
Line filling
Line input OS WORD

M

Memory clear on BREAK
Memory usage
MODE

read

N

NETV
NMI
blank/restore palette

53

188
195

148

232
88

68
183

49

123
136
36

265

claim service ROM call
input pin

release service ROM call
routine area

zero page workspace

O

One megahertz bus
One megahertz clock generation
Operating system
calls
commands
high water mark (OSHWM)
variables
vectors
workspace
zero page workspace
Operating system call summary
OS commands
OS version
OSARGS
OSASCI
OSBGET
OSBPUT
OSBYTE
summary
OSCLI
OSEVEN
OSFILE
OSFIND
OSFSC
OSGBPB
OSHWM
primary
read
soft character explosion
OSNEWL
OSRDCH
OSRDRM
OSWORD
summary
OSWRCH
Output buffer empty event
Output stream
read/write
selection

158
220
158
197
184

227
223

9
14
47
56
110
81,85
186
241

P

PAGE
Paged mode lines
Paged ROMs
active at BRK
allocation
BASIC socket
copyright string
current language number
enter language
extended vectors
firm keys
header format
info table address
issue service call
language entry
language ROMs
OS commands
paging register
pointer table address
polling semaphore
priority (Plus 1)
read byte from
selection
selection register
service entry
service ROMs
title string
Tube relocation address
type byte
version number
version string
workspace table
Paged ROMs connector (Plus 1)
Palette
blank/restore
read
ULA register
write
Pixel value
PLOT numbers
Plus 1
disabling
page &D usage
printer buffer example
ROM connector
ROM priority
Polling
semaphore

243

service ROM call
POS
Printer
buffer example
character in buffer ROM call
destination flag
driver going dormant
ignore character
output destination selection
user vector

R

Read byte from ROM
Read character (OSRDCH)
Read character definition
Read input line
Remove value from buffer
REMV
Reset output pin
ROM accessing
ROM connector (Plus 1)
ROM filing system

select
ROM/Cassette flag
RS423

baud rate

control flag

error event

mode

use flag

workspace

S

Screen memory
Screen
blank/restore palette
pixel value
Screen mode dependent clock
Screen mode layouts
Select input stream
Select output stream
Serial ROMs
Service call semaphore
Service ROM call
Service ROM calls
*HELP

*ROM get byte

*ROM initialise

absolute workspace claim
auto-boot

BEL request

BRK executed

character in printer buffer
character in RS423 buffer
font expl./impl. warning
initialise filing system

NMI claim

NMI released

no operation

poll (100Hz)

relative space claim
SOUND buffer purged

SPOOL/EXEC closure warning

Tube main initialisation
Tube post-initialisation
unknown interrupt
unrecognised *command
unrecognised OSBYTE
unrecognised OS WORD
vectors claimed
Service ROM example
Service ROMs
SHEILA
addresses
Soft characters
explode RAM
explosion state
Soft keys
*KEY
consistency
cursor keys
length
pointer
reset
status
Sound
BEL
OSWORD command
output pin
semaphore
suppression
Sound system
external BEL request
external buffer purge
external flag
reset internal
select external

159,175
158,174
153,157

154
161
155
160
160
159
160
158
158
153
160
153
161
159
161
161
155
154
156
156
159
162
152
53
205

using ULA register

workspace
Speech

processor presence

suppression
Speech processor
Stack

memory usage
Start up options
String input

T

Timer
interval event

Timer switch state

Tube
fast BPUT
main initialisation call
post-initialisation call
presence flag
read 1/O processor memory
write I/O processor memory

U

ULA
addresses
interrupt mask
RAM copy
ULA registers
cassette shift register
counter
interrupt clear and paging
IRQ status/control
misc. control
palette
screen start address
Unrecognised * command
Unused vectors
UPTV
User
event
flag
vector
User print vector

213
195

80

55

188

12

USERV
executecode
Utility zero page workspace

V

VDU
abandon queue
extension vector
paged mode lines
gueue items
read graphics cursor positions
read palette
read status
read variable
variables origin
write palette
VDU code summary
VDUV
Vectors
BRK
buffer maintenance
default table
Econet
event
extended

113

184

268

interrupt
interrupt
keyboard
summary
unused
user
user print
VDU extension
Version
operating system
operating system
Vertical sync
event
wait
VPOS

W

Wait for vertical sync

Write a new line (OSNEWL)
Write character (OSASCI)
Write character (OSWRCH)

Z

Zero page usage

119
139
125
241
134
113
121
124

22
46

120
32
49

32
11
11

184

Acorn Electron
Advanced User Guide

About this book

This guide describes the facilities of the Acorn Electron in the detail
required by the serious programmer, and acts as a supplement to the
‘Acorn Electron User Guide'.

Both the software and the hardware aspects of the Acorn Electron
system are covered, and extensive indexing and cross-referencing
make the information readily accessible.

Among the many topics covered are:
*FX/OSBYTE calls
paged ROM software
the use of events and interrupts
programiming the ULA
interfacing to the expansion bus
a complete memory map :
a full circuit diagram.

Acornsoft Limited, Betjieman House, 104 Hiils.Road,
Cambridge CB2 1L.Q, England. Telephone (0223) 316039

ISBN 0907816 17 X

Electron Advanced User Guide - Changes

Second edition Draft 1 May 2008

Chapter Changes Source
3 Added detail for *FX16 and *FX17 when Plus 1 Plus 1 manual
fitted
Added *FX163.
Changed definition of *FX225,226 and 227.
Updated definition of *FX128
3 Added *FX178 Michael Jakobsen,
Electron User August 1986
14 New section 14.2 on keyboard mapping to ROM Michael Jakobsen,
Electron User August 1986
15 New section 15.6 on use of A to D converter. Michael Jakobsen,
Electron User August 1986
15 New section 15.7 on disabling the Plus 1 Electron User October 1984

Second edition (final) June 2008

numbers and titles

Chapter Changes Source
12 Corrected references to “Chapter X" NA
12 Reference added to section 15.7 for switching off | NA
Plus 1
12 Memory map diagram improved NA
12 Memory usage explained in more detail pages 2- | BBC micro AUG
&b
All Formatting improved to match original NA
App F Circuit diagram changed to match original book Electron AUG
Osbyte &FF Added Plus 3 status bit information. Acorn Plus 3 guide
App G New appendix of expansion units Acorn Electron World
Misc Format improved and many typos fixed NA
- Covers included NA
- Contents page expanded to show section NA

App E

New diagram and details added of pins.

Acorn App Note 14 (1992)

