The
Advanced

User
Guide

for the BBC Microcomputer

Andrew C. Bray,

St. Catherines College,
Dept. of Computer Science,
Cambridge University

Adrian C. Dickens,
Churchill College,
Dept. of Engineering,
Cambridge University

Mark A. Holmes BA,

Fitzwilliam College,

Dept. of Clinical Veterinary Medicine,
Cambridge University

Contents

Introduction

1 Introduction for those new to machine code
Operating System Commands

2 Operating System commands

Assembly Language Programming

The BASIC assembler

Machine code arithmetic

Addressing modes
The assembler mnemonics

o 01 b~ W

Operating System interfaces

7 Operating system calls
8 *FX/OSBYTE calls

9 OSWORD calls

10 Vectors

11 Memory usage

12 Events

13 Interrupts

14 RS432

15 Paged ROMs

16 Filing systems

11

21
31
35
41

101
109
247
253
267
287
295
309
317
333

Hardware

17 An introduction to the hardware 353
18 The video circuit (6845) 359
19 The video ULA 377
20 The serial interface 385
21 The paged ROM select register 395
22 Programming the 6522 VIA 397
23 The system 6522, including sound and speech 417
24 The user 6522 425
25 Disc and Econet interfaces 427
26 The analogue-to-digital converter 429
27 The Tube 433
28 The 1 MHz bus 437
Appendices
A *FX/OSBYTE call index 449
B Operating System calls summary 455
C Table of key numbers 456
D VDU codes 459
E PLOT number summary 460
F Screen mode layouts 462
G US MOS differences 478
H Disc upgrade 480
I Circuit board links 482
J Keyboard circuit diagram 489
K Main circuit diagram Inside Back Cover
Bibliography 491
Glossary 493
Index 499

Introduction

The ‘Advanced User Guide for the BBC Microcomputer’ has
been designed to be an invaluable supplement to the User
Guide. Information already contained in the User Guide is only
repeated in this book in sections which contain much new
information and where omitting the duplicated details would
have left the section incomplete. Some parts of the User Guide
are factually inaccurate or incomplete and where details in this
book are at variance with corresponding information in the
User Guide the reader will find that a more accurate description
is usually found in these pages.

This reference manual contains a considerable amount of
information about 6502 assembly language programming, the
operating system and the BBC Microcomputer hardware. The
intention has not been to provide the inexperienced user with a
tutorial to guide him or her through the complexities of these
advanced concepts. However, it is hoped that the information
has been presented in a way that enables users new to assembly
language programming and unfamiliar with hardware topics to
develop their understanding of the machine and to expand the
scope of their programming. Contained within this book is an
extensive description of the software environment and the
hardware facilities available to the assembly language
programmer. The authors have presumed that the readers of
this Advanced Guide are reasonably familiar with the basic use
of the BBC Microcomputer. While every attempt has been made
not to bury the facts under a mountain of computer jargon the
use of technical terms is an inevitable consequence of
attempting to condense a large number of facts into an easily
accessible form.

All the information about the operating system is exclusively
based on OS 1.20. The hardware information has been verified
with an issue 4 circuit board but where possible differences on
earlier issue boards have been noted.

While this book gives the programmer full access to all the BBC
microcomputer’s extensive software and hardware facilities
using techniques which the designers of the machine

intended programmers to use, it also opens the door to a
multitude of ‘illegal’ programming techniques. For the
enthusiast, direct access to operating system variables or chip
registers may enable him to perform the bizarre or even the
merely curious. For the serious programmer, on the other hand,
attention to compatibility and machine standards will enable
him to write software which will run on BBC Microcomputers
of all configurations. The responsibility rests with YOU, the
user. The value of your machine depends on continued
software support of the highest quality; unlike many machines
the BBC microcomputer has been designed to be used in a
variety of different configurations and the operating system
software provides extensive information about the current
hardware and software status. The operating system makes
most of the allowances required for the different configurations
automatically, but only when the legal techniques are adhered
to, so please use them.

The final paragraph in this introduction must be a word of
apology to those programmers engaged in the task of software
protection. Many of the details contained in this book will give
those intent on pirating software inspiration to circumvent their
protection techniques. On the other hand these same details
may also give the software protectors inspiration. In the end no
software protection is complete. Any protection technique relies
on the fact that the person trying to break the protection has a
threshold at which he decides that the effort and resources
required are greater than the reward. For some this threshold is
higher than others but for these people the reward is often the
victory in the intellectual battle with the programmer of the
protection method. For those intent on denying the software
producer his income, one hopes that this threshold is somewhat
lower.

1 Introduction for those
new to machine code

There comes a time in every programmer’s life (well, most
programmers’, anyway) when the constraints of a high level
language (e.g. BASIC) prevents him from implementing a
particular program idea or from utilising some machine facility.
At this stage the programmer must often seek recourse to the
microprocessor’s native language, its machine code.

At the heart of any microcomputer is the microprocessor. This
microprocessor is the brain of the computer and provides the
computer with all its computing power. The BBC
Microcomputer uses a 6502 microprocessor and the brief
description of machine code given here applies specifically to
the 6502. The microprocessor performs instructions which are
contained in memory. Each instruction which the
microprocessor understands can be contained within a single
byte of memory. Depending on the nature of this instruction the
microprocessor may fetch a number of bytes of data from the
memory locations following the instruction byte. Having
executed this instruction the microprocessor moves on to the
byte after the last data byte to get its next instruction. In this
way the microprocessor works its way sequentially through a
program. These single byte instructions are called operation
codes (or just opcodes) although they are frequently referred to
as machine instructions (or just instructions). The data used by
the instructions are called the operands. A program using the
native machine instructions is called a machine code program.
An assembler is a software package (a language or a program)
which enables a programmer to create a machine code program.

Machine code is substantially different from a higher level
language such as BASIC. The machine code programmer is
limited to three registers for temporary storage of data while in
BASIC he has unlimited use of variables. For more permanent
storage in machine code programs, the register values can be
copied to bytes of memory. Only very limited

arithmetic is available; there are no multiply or divide
instructions. There are no automatic loop structures such as
FOR... NEXT or REPEAT... UNTIL and any loops must be
explicitly set up by the programmer using conditional branches
(these approximate to IF .. THEN GOTO .. in BASIC). The range
of instructions available are sufficient to enable extremely
complex programs to be written but a lot more effort is required
to implement the program. One of the most grave
disadvantages of machine code is that very little error checking
is made available to the programmer. A well designed
assembler will help the programmer, but once the machine code
program is running the only error checking is that which is
provided within the program itself.

At first glance it may appear that there is little to be gained
from writing a machine code program. The principal advantage
is that of speed. While assigning a value to a variable in BASIC
will take about 1 millisecond, in machine code assigning a
similar value will only take 10 microseconds. This is why fast
moving arcade games have to be written in machine code. Some
of the facilities available on the BBC Microcomputer can only be
used when programming in machine code. For example, a user
printer driver can only be implemented in machine code.

Of no less importance than the design of the hardware or the
choice of microprocessor in the machine is the operating
system. This is a large, and highly complex machine code
program which governs the machine. The operating system
consists of a large number of routines which perform operations
such as scanning the keyboard, updating the screen, performing
analogue-to-digital conversions (for the joysticks) and
controlling the sound generator. All these functions are
performed by the operating system and are made available to
other machine code programs. A machine code program with
which all users will be familiar is BASIC. This program which
provides the user with an easier way of using the
microprocessor s computing power constantly uses the
operating system routines to get input from the keyboard and
to reflect that input on the screen. BASIC recognises words of
text and when it wants to use a hardware facility it calls a
machine code routine within the operating system.

8

The great advantage of this independence of the language
program from the direct use of hardware is that the same
facilities can be offered to different languages.

Writing a machine code program requires the programmer to
place the appropriate values into successive memory locations
corresponding to the opcodes and operands. This would be a
very tedious business if it had to be done by looking up the
opcode values in tables and poking in the values by hand. It is
much faster, easier and more efficient to get the computer to do
most of the work. A program which analyses text input
representing opcode symbols, converts these to opcode values
and inserts these values into memory is called an assembler.
The text input consists of opcode mnemonics (three-letter
words which specify the opcode type) followed by numbers,
variable names or expressions which give the values of the
operand to be used by the opcode. Like BASIC the assembler
requires the program to be written in a defined way according
to a syntax. The language that an assembler understands is
called assembler or assembly language. In the BBC
Microcomputer an assembler is available as part of the BASIC
language and a description of how this assembler can be used is
contained in the chapter on the BASIC assembler.

Many of the following sections include descriptions of the
various operating system routines and facilities which are
available to the machine code programmer.

10

2 Operating System
commands

The command-line interpreter resident within the operating
system will recognise a number of commands and act upon
receiving them. These commands are most appropriately often
used from the keyboard or in BASIC programs using the ‘*’
prefix. Commands may also be passed to the command-line
interpreter using the OSCLI call (&FFF7) from machine code
(see section 7.12 for details of OSCLLI).

Any command offered to the command-line interpreter but not
recognised as a command resident in the command table is
offered to paged ROMs for possible action. If it is not claimed
by a paged service ROM it is presented to the currently selected
filing system ROM. The filing system may recognise the
command as one of its internal file commands or attempt to
load and execute a file specified by the may command name
(the cassette and ROM filing systems excepted), i.e. it is
equivalent to “**RUN <command name>’.

Each command name may be abbreviated by using enough
letters to identify the command terminated by a full stop. The
minimum abbreviations for each command are noted below
with the description of each command.

The command-line interpreter does not distinguish between
upper and lower case characters in the command name (‘*cat’
has the same effect as *CAT").

Where a string or filename is specified as a parameter the text
need not be enclosed within paired quotation marks but must
be separated from the command name by at least one space.

Several of the operating system commands invoke OSBYTE
calls and so their action mimics these calls. Where there is an
equivalent OSBYTE call this has been indicated.

11

A number of commands are filing system dependent. Any
command which creates or uses files is described for the ROM
and cassette filing systems only.

2.1%]

An operating system command-line with a “|’, string escape
character, as its first non-blank character will be ignored by the
operating system. This could be used to put comment lines into
a series of operating system commands placed in an EXEC file
for example.

2.2 %,
This command is directly equivalent to the *CAT command.
2.3 */<file name>

This command is treated exactly the same as typing *RUN <file
name> or *<file name>. The file name is offered directly to the
filing system and will not be interpreted as a command.

2.4 *BASIC (*B.)

While the operating system is independent of any particular
language and only serves to provide an interface between
languages or utility software and the machine hardware, BASIC
has been accorded special status. The *BASIC command is
resident in the operating system command table and it enables
the operating system to select a language in paged ROM not
possessing a service entry point (for further details about paged
ROMs see chapter 15). The operating system scans the paged
ROMs and keeps a record of which paged ROM contains BASIC
(see OSBYTE &BB/187). If a BASIC ROM is not present this
command is offered to other paged ROMs.

12

2.5 *CAT (*)

This command displays a catalogue of files from the selected
filing system. When the cassette or ROM filing systems are
selected the name of each file encountered is printed on the
screen along with the block number of the last block read.
When the last block is reached further information is printed
out. If the default messages are selected then the length of the
file will be added to the block number.

FILENAME 09 0904

If extended messages have been selected then the catalogue
printout after the final block has been reached will look like
this:-

FILENAME 09 0904 FFFFOEQO
FFFF801F

This file is a BASIC (level 1) program SAVEed from BASIC with
PAGE=&EQ0 and the program is &904 bytes long. The fourth
field in the catalogue printout is the start address of the file and
the file will *LOAD to this address by default. The fifth field is
the execution address. When using level 2 BASIC the execution
address will be &8023. When an attempt is made to *RUN a file
the processor jumps (using JSR) to this address. The two most-
significant bytes of the four-byte fourth and fifth fields are set
to the machine high order address (see OSBYTE &82/130).

For details about selecting extended messages see *OPT.
2.6 *CODE x,y (*CO.) OSBYTE with A=&88 (136)

This command enables the user to incorporate his own
command into the operating system command table. *CODE
executes machine code indirected through the user vector
(USERYV) at locations &200,&201 (low-byte, high-byte). The
default contents of the user vector produce the ‘Bad Command’
message. The machine code at USERYV is entered with A=0, X=x
and Y=y.

13

For example:

10 DI M MC% 100

20 OSASCl =&FFE3

30 USERV=&200

40 FOR opt %0 TO 3 STEP3

50 PY%=MC%

60 [

70 OPT opt %

80 .wite

90 CWP #0 \ is this *CODE ?

100 BEQ code \ if *CODE call act upon it

110 BRK \ anything else, print error nessage
120]

130 ?P%255 : P%P%t REM error nunber

140 $P%="* CODE only pl ease"

150 PY%=P%-LEN$PY%

160 [

170 OPT opt % \ reset OPT

180 BRK \ op code val ue=0

190 .code TXA \ transfer contents of X req. to Acc.
200 JSR OSASCI \ print ASCII character

210 RTS \ return to BASIC

220]

230 NEXT

240 ?USERV=write MOD 256
250 ?(USERV+1l)=write DIV 256

This example prints out the ASCII character corresponding to
the value of the first parameter given to the *CODE command.
After this program has been run typing in “*CODE 65’ or “*FX
136,65’ will cause a letter ‘A’ to be printed. The second
parameter (stored in Y) if included, is ignored.

See also *LINE

2.7 *EXEC<filename> (*E.)

Text files from the currently selected filing system can be used
as if they were keyboard input using this command. A typical
application might involve the setting up of a user’s favourite
soft key definitions which are *EXECed in at the beginning of a

programming session.

See also *SPOOL and OSBYTE &C6/198.

14

2.8 *FXa,x.y (*F.)

OSBYTE calls may be performed directly from the keyboard
using this command. A, X and Y are loaded by the operating
system from the command-line parameters. Any OSBYTE call
may be made using the *FX command but it is not always
appropriate to make an OSBYTE call using this direct method
e.g. OSBYTE calls that return values in any of the registers. The
*EX command is a useful way of making those OSBYTE calls
which have a direct effect from a BASIC program or from the
command-line interpreter. For further information on specific
*EX/OSBYTE calls refer to chapter 8.

2.9 *HELP (*H.)

Typed in on a machine containing only the operating system
and BASIC ROMs this command causes the version number of
the operating system to be printed out i.e.

0S1.20

Each *HELP call is offered to any paged ROMs that are resident
and these may be able to respond to further command-line
parameters. e.g.

*HELP VIEW
*HELP UTILS

For more information about *HELP handling in paged ROMs
see section 15.1.1 (service call 9).

2.10 *KEYn<string> (*K.)

The ten red-topped function keys, the BREAK key, the COPY
key and the four cursor control keys may be set up using this
command. Using *KEYn with n in the range 0 to 9 sets up the
function keys. *KEY10 can be used to program the BREAK key.
Before the remaining programmable keys can be used a *FX4,2
must be performed. This disables cursor editing and enables the
following soft keys:-

15

*KEY 11 COPY

*KEY 12 left cursor
*KEY 13 right cursor
*KEY 14 down cursor
*KEY 15 up cursor

Each time a soft key is pressed a soft key character is inserted
into the keyboard buffer. The soft key characters may be
calculated by adding the soft key number to &80 (128). (A soft
break actually places a character of value &CA in the input
buffer but this behaves identically to character &8A.)

See OSBYTEs &DD/?221 to &E4/228 for more information
about the function keys.

Control codes may be introduced into the string by using an
‘escape’ character, ‘|’. This acts in a similar way to the CTRL
key and so ‘G’ gives a bell sound as the CTRL and G keys
would if pressed simultaneously; ‘| G’ actually places a
character of value 7 into the soft key buffer. The ‘]’ character
may be inserted using the sequence ‘] |’ and a quotation mark
() may be represented by preceding the quotation mark with
the ‘escape’ character (‘]’). The delete character (ASCIl &7F/
127) may be introduced using the ‘escape’ character followed by
a question mark. Characters of value greater than 127 may be
inserted by using the escape sequence ‘| !’; this sequence will
add 128 to the value of the next character in the string.

eg. ‘|'A’ 128+65=193
A’ 128+1=129

This method of including non-printable characters into a string
may be used in any string which is processed using the
operating system routines GSINIT and GSREAD (see section
7.9) and is not restricted to use of the *KEY command.

2.11 *LINE<text> (*LLI.)

This command executes machine code at the location pointed to
by the contents of the user vector (USERV) at locations
&200,&201 (low-byte, high-byte). The command enters this
code with the A=1, X=least significant byte of string address
and Y=most significant byte of string address. *LINE provides

16

an easy method of incorporating a user function into the
operating system command table.

10 DI M MC% 100

20 OSASCl =&FFE3

30 USERV=&200

40 FOR opt %0 TO 3 STEP3

50 PY%M%

60 [

70 OPT opt %

80 .Wwite

90 CW #1 | is this *LINE?

100 BEQ code | execute nachine code if *LINE

110 BRK | otherwi se print Qut error nessage
120 1

130 ?P%255 : P¥%P%1 : REM error nunber

140 $P%"*LI NE only pl ease"

150 P%=P%+-LEN$p%

160 [

170 OPT opt% | reset OPT

180 BRK | op code value O

190 .code STX &70 | *LINE code entry point and store
200 STY &71 | string address; |ow byte, high-byte
210 LDY #0 | set up Y register for indexing

220 .1 oop LDA(&70), Y | Post-Indexed Indirect addressing
230 JSR OSASCI | print Qut character

240 I NY | increnent

250 CW #&0D | test for end of string

260 BNE loop | if not last character go round again
270 RTS | finished

280]

290 NEXT

300 ?USERV=write MOD 256

310 ?(USERV+l)=write DIV 256

This example program sets up the user vector to point to some
machine code which prints out the string pointed to by X and Y.

After this program has been run typing in

“*LINE THIS IS SOME TEXT’

results in “THIS IS SOME TEXT’ being printed out.

See also *CODE

17

2.12 *LOAD<filename><address> (*L.)

A file may be loaded into memory from the selected filing
system using the *LOAD command. If the load address is not
specified in the command line then the file will load at its start
address (this is usually the address from which it was saved).

213 *MOTORn (*M.) OSBYTE with A=&89 (137)

This command executed with n=0 opens the cassette relay (i.e.
switches the motor off) and with n=1 closes the cassette relay
(i.e. motor on).

2.14 *OPTx,y (*O.) OSBYTE with A=&8B (139)

This command is highly filing-system specific and although the
general protocol of the cassette filing system is usually adhered
to, other filing systems may interpret this command differently
and expand upon it.

For the cassette and ROM filing systems:-

*OPT 0,0 restore *OPT default values

*OPT 1,0 turn off filing system messages

*OPT 1,1 turn on filing system messages (non-extended)
*OPT 1,2 turn on extended messages

*OPT 2,0 errors ignored though messages may be given

*OPT 2,1 on error, prompt for re-try

*OPT 2,2 on error, abort

*OPT 3,n set interblock gaps to n/10 seconds (only relevant to
cassette SAVE operations)

When extended messages have been selected the following
information is printed on the screen on completion of the filing
system operation:

file name - block no. - file length - start adr. - execution adr.

All numeric values are printed in hexadecimal.
See also *CAT
18

2.15*ROM (RO.) OSBYTE with A=&8D (141)

The *ROM filing system is initialised using this command. The
*ROM filing system is able to use paged ROMs or serially
accessed ROMs associated with the speech processor. These
ROMSs must contain data in a block format similar to that used
in the cassette filing system. With the ROM filing system
initialised all other filing systems are disabled.

For further details see section 16.11 in the filing systems
chapter.

2.16 *RUN<file name> (*R.)

This command causes a file to be loaded into memory at its
start address and then the microprocessor jumps (using JSR) to
the execution address. This is a method of loading and running
machine code programs. Any text following the file name is
available to pass parameters to the program. Parameter passing
is not implemented for the cassette or ROM filing systems (see
filing systems chapter 16).

2.17 *SAVE <file name> <start addr> <end addr> <exec.addr>
<reload addr> (*S.)

The contents of memory may be saved to a file on the currently
selected filing system using *SAVE. Only the start address and
the end address are mandatory. If omitted the execution
address will default to the start address. The reload address
allows the start address stored with the file to be different to the
actual start address used when saving. The end address may be
in the form

+ length

where the second field is preceded by a '+' and the size of
memory to be saved is specified in hexadecimal.

19

2.18 *SPOOL <filename> (*SP.)

The *SPOOL command causes all screen output to be repeated
into a file. The file is opened by *SPOOL <file name> and closed
by repeating this command or by typing *SPOOL alone.

See OSBYTEs &03 and &C7/199 for more information.
2.19 *TAPEN (*T.) OSBYTE with A=&8C (140)

*TAPE without any number selects cassette filing system and
sets the default baud rate (1200). *TAPE3 selects tape with 300
baud and *TAPE12 selects 1200 baud.

2.20 *TVx,y (no abbreviation) OSBYTE with A=&90 (144)

The *TV command allows the vertical position of the screen to
be altered and interlace to be switched on or off. The first
parameter causes the vertical position to be altered; a value of 0
causes no change, a value of 1 would cause the screen to be
moved up one line and a value of 255 would cause the screen to
be moved down one line. The second parameter should be 0 or
1, a value of 0 causes interlace to be enabled and a value of 1
causes interlace to be switched off. Any change of interlace or
screen position will only come into effect at the next mode
change and will remain until a further *TV command or a hard
reset. Interlace cannot be turned off in mode 7.

(It is possible to switch off interlace in mode 7 but the character
set stored in the SAA 5050 is designed to be used with interlace
on. Type in VDUZ23,0,8,&90;0;0;0,23,0,9,&09;0;0;0 and you will
see why the operating system disallows this. See chapter 18 for
more information about programming the 6845 video controller
chip.)

20

3 The BASIC Assembler

One of the many attractive features of BBC BASIC is the
incorporation of a mnemonic assembler within the language
itself. This provides a powerful environment for the assembler
and allows machine code to be easily incorporated within
BASIC programs. Hybrid BASIC/machine code programs may
often lead to the use of the best features of each language, the
speed of machine code when it is required, coupled with the
increased power of BASIC when speed is hot of paramount
importance.

The assembler facilities available to users are dependent on the
version of BASIC that is resident in the machine. To ascertain
which version of BASIC is present type 'REPORT' following a
BREAK. If the copyright message is dated 1981 then this is ‘old
BASIC' which will henceforth be referred to as Level 1 BASIC,
and if the message is dated 1982 then this is 'new BASIC' which
will be referred to as Level 2 BASIC.

Below is an example of a simple machine code program written
using the BASIC assembler.

10 OSWRCH=&FFE3
20 DI M MC% 100
25 DI M data &20
30 FOR opt %0 TO 3 STEP 3

40 PY%=MC%

50 [

60 OPT opt %

70 .entry LDX #0 \ set index count (in Xreg.) to O
75 LDA data \ load first itemin accunul ator
80 .l oop JSR OSWRCH \ perform VDU conmand

90 I NX \ increnent index count

100 LDA data, X \ |oad next VDU paraneter

110 CPX #&20 \ has count reached 32 (&20) ?
120 BNE | oop \ if not then go round again
130 RTS \ hack to BASIC

140

]
150 NEXT opt %
160 !data=&04190516
170 datal! 4=&00C800C8
180 data! 8=&00000119
190 data! &C=&01190064
200 dat a! &10=&000000C8
210 data! &14=&00000119
220 data! &18=&0119FF9C
230 dat a! &1 C=&0000FF38
240 CALL entry

21

This program performs some simple graphics using the BASIC
VDU method to select the screen MODE and perform
PLOTting. All the VDU codes are contained within the block of
memory labelled ‘data’. Using the operator does not make it
immediately obvious what is going on. Four bytes are inserted
into memory with each operator. The least significant byte
being inserted at the address specified. Each subsequent byte is
inserted into the next byte of memory.

i.e.

ldata=&04190416
data!4=&00C800C8

will result in an equivalent to, VDU &16, &04, &19, &04, &C8,
&00, &C8, &00 or, to separate it into its two components,

VDU &16,&04
VDU &19,&04,&00C8;&00CS8;

or
VDU 22,4 select MODE 4
VDU 25,4,200;200; PLOT 4,200,200 - move absolute X,Y

Any program which can be written in BASIC may also be
implemented in machine code although it is not always sensible
to do so.

There now follows a detailed description of using the BASIC
mnemonic assembler.

3.1 The assembler delimiters '['and ".

All the assembler statements should be enclosed within a pair
of square brackets. When the BASIC program is RUN, the
assembler statements contained between the square brackets
are assembled into machine code. This code is inserted directly
into memory at the address specified by P% and P% is
incremented by the number of bytes in each instruction or
directive.

22

Within the assembler delimiters the text of the assembly
language program may be written. The assembly language
program will consist of a number of assembler statements
separated by new lines or colons (as in BASIC).

Each assembler statement should consist of an optional label
followed by an instruction (this will be a three letter assembler
mnemonic or an assembler directive) and an operand (or
address). If a label is included it should be separated from the
instruction by at least one space. The operand need not be
separated from the instruction. Any character following the
operand and separated by at least one space from it will be
totally ignored by the assembler which will move onto the next
colon or line for the next statement. A comment may be placed
after the operand field and should be preceded by an backslash
(\). Any text following an backslash in an assembly statement
will be ignored by the assembler up to the next colon or end-of-
line.

N.B. In level 1 BASIC colons cannot be included in expressions.
Missing out a colon in a multi-statement line will result in the
statement after the intended colon being ignored by the
assembler. This error is often difficult to spot in a program
which assembles without error but then fails to function as the
programmer had anticipated.

During assembly of the example program above the following
printout is produced (with PAGE=&1900):

>RUN
1BEA OPT opt %
1BEA A2 00 .entry LDX #0 \'set index count (in X reg.)
to 0
1BEC 00 5A 1C .l oop LDA data, X\ |oad next VDU paraneter
1BEF 20 E3 FF JSR OSASC \ perform VDU conmand
1BF2 E8 I NX \ increment index count
1BF3 EQ 20 CPX #&20 \ has count reached 32 (&20)
?
1BF5 00 F5 BNE | oop \ if not then go round again
1BP7 60 RTS \ back to BASIC
location label/mnemonic/address

op.code/data \ comment

23

3.2 OPT, assembler option selection

OPT is an assembler directive or non-assembling statement
which can be included within an assembly program to select a
number of different assembler options.

The OPT command should be followed by a number to make
the option selection. The assembler options are selected on the
state of the least significant 2 or 3 bits of the OPT parameter.

bit 0 if set, assembly listing enabled.

bit 1 if set, assembler errors enabled.

bit 2 if set, assembled code placed in memory at 0%
(Implemented in Level 2 BASIC only)

In the example program above OPT is set up using the FOR..
NEXT loop variable, opt%. On the first pass of the assembler
OPT 0 is used, listing is suppressed and assembler errors are
not enabled. For the second pass an OPT 3 is used which
switches on assembly listing and enables assembler errors.
BASIC errors will be flagged as normal. The assembler errors
which are suppressed are the ‘Branch out of range’ error and
the ‘No such variable’ error. These will normally be generated
during the first pass when the assembler is resolving forward
passes (see section 3.5).

Bit 2 allows a program to be assembled into one region of
memory while being set up to run at a different address. P%,
the program counter (see below) should be set up as usual to
provide the source of label values. If bit 2 is set then O% should
be set up at the same time as P% to point to the start of memory
into which the machine code is to be assembled. This facility is
useful for assembling machine code where it is impossible to
use the memory in which the program is eventually going to
reside (e.g. Assembling programs which are going to be blown
into EPROM for paged ROMS). This option is only available in
Level 2 BASIC.

Each time the assembler is entered the OPT value is initialised
to 3. This means that a second chunk of assembler in the same
BASIC program must perform its own OPT selection.

24

3.3 The Location Counter P%

When the assembler is creating the machine code program the
code produced is placed in memory starting from the address in
P% (one of the resident integer variables) unless remote
assembly has been selected using OPT (see section 3.2).

The programmer must set P% to a meaningful value before the
assembly begins. The usual method for short programs is to
DIMension a block of memory and to set P% to this value at the
beginning of each pass of the assembler (as in the example
above). A classic problem is sometimes encountered when a
programmer adds more code to a short program which has
been allocated space by this method. If the code created
overflows the space DIMensioned for it and is over-written by
BASIC, it will fail to operate as expected when tested;
alternatively the code may over-write the BASIC dynamic
storage and a ‘No such variable’ error will be flagged during
the second pass of the assembler.

The assembler updates P% as it is assembling and when it
reaches the end of a pass the value of P% represents the address
of the first 'free' byte of memory after the machine code
program.

3.4 Labels

Any BASIC numerically assignable item may be used as a label
with the assembler (such as a variable or an array element). A
label is defined by preceding the variable name with a full stop.
The full stop prefix causes the assembler to set up a BASIC
variable containing the current value of P%. Once set up this
variable is available for use by any other part of the assembler
or BASIC program.

3.5 Forward Referencing and Two Pass Assembly

In the construction of a machine code program using the BASIC
assembler a large number of labels may be generated. It is often
the case that one part of the program needs to jump forward
over another part of the program. Labels provide a convenient
way of marking that point in the program to

25

which the processor is to jump. When assembling the machine
code, the assembler works sequentially through the program
and in the case of a forward reference the assembler will
encounter the reference before the label. In the normal course of
events an error will be flagged (No such variable). In order to
resolve forward references, two passes of the assembler are
required. The first pass should be performed with error
trapping switched off and during this pass all the labels will be
initialised. A second pass will provide all the correct values
required for forward referencing. During this second pass error
trapping should be enabled to pick up any genuine
programming mistakes.

The most convenient way of performing the two passes is to use
a FOR... NEXT loop. The programmer should make sure that
P% is reinitialised at the beginning of the second pass. It is often
convenient to set up the pseudo-operation OPT using the FOR
loop variable (errors and listing disabled for the first pass,
errors enabled and listing as required for the second).

3.6 The EQUate Facility in Level 2 BASIC

One of the improvements made to Level 2 BASIC was the
incorporation of some EQU pseudo-operation commands.
These allow the incorporation of data by reserving memory
within the body of the assembly language program.

The EQUate operations available are:-

EQUB equate byte reserves 1 byte of memory

EQUW equate word reserves 2 bytes of memory

EQUD equate double word reserves 4 bytes of memory

EQUS equate string reserves memory as
required

These operations initialise the reserved memory to the values
specified by the address field. The address field may contain a
string, in double quotes, or string variable for the EQUS
operation or a number or numeric variable for the other EQU
operations. The assembler will use the least significant part of
the value if too large a value is specified.

26

The example program, written in Level 2 BASIC, could have
been written with lines 30 and 170 to 240 replaced with:-

141. dat a

142
143
144
145
146
147
148

In Level 1 BASIC one way to reserve space for data within the

EQUD
EQUD
EQUD
EQUD
EQUD
EQUD
EQUD
EQUD

&04190516
&00C800C8
&00000119
&01190064
&000000C8
&00000119
&0 19FF9C
&0000FF38

body of a machine code program is to leave the assembler using

aright-hand square bracket and insert the data using the
address contained in P%. P% should then be incremented by

the appropriate amount before entering the assembler.

e.g.

This program prompts the user to press the TAB key by
printing out a message. If the wrong key is pressed an error is
flagged.

to incorporate a string into a machine code program.

310

DI M M2% 100
OSRDCH=&FFEO
OSASCI =&FFE3

FOR opt %0
PY%=MC%
[

TO 3 STEP3

OPT opt %
.entry LDY #0 \ zero | oop index

.loop LDA string, Y \

JSR CSASCI \ write the character

I NY

\

CVP #&0D \

BNE | oop \
JSR OSRDCH \ get character from keyboard

\

\

\

CWP #9

BNE error

RTS
.string

increment | oop index
is the current character a CR
if not get the next character

is it the TAB key
if not flag an error
return to BASIC

1
$P%" Pl ease press the TAB key'
PY&=PY%LEN($P%) +1

[
OPT opt %
.error BRK \ cause an error

]
NEXT opt %

?2PY%&FF
PY&PY%-1
$PY%" W ong

key pressed"

2(PY%-LEN($P%) =0

CALL entry

| oad accumulator with Y?string

27

3.7 Handling errors with BRK

In the example program above the BRK instruction is used to
generate an error. The BRK instruction forces an interrupt
which is interpreted by the operating system as an error. As
part of the error handling in BASIC the programmer can
incorporate an error number and an error message into his code
to identify the error. The byte in memory following the BRK
instruction should contain the error number. The error message
string should follow the error number and must be terminated
by a zero byte.

The following lines set this up:-

240 .error BRK \cause an error
270 ?PY%&FF Error nunber 255
280 PY%PY%

290 $P%"Wong key pressed” Error message
300 ?(PY%LEN($P%)=0 Term nating byte

When a BRK is encountered in a machine code program called
from BASIC the error message is printed out together with the
line number from which the machine code was called. Typing
‘REPORT’ or printing ERR will reproduce the message and
error number as with any BASIC error.

The user can provide his own BRK handling routine which may
be useful when using machine code away from the BASIC
environment (see section 10.2 for more information about the
BRK vector).

3.8 Entering machine code from BASIC - CALL and USR

Machine code routines can be entered from a BASIC program
using either the CALL statement or the USR function. On entry
to the machine code program using these instructions, the
accumulator, the X register, the Y register and the carry flag are
set to the least significant bytes (or bit) of the resident integer
variables A%, X%, Y% and C%. A number of parameters may
be passed to the machine code routine if the

28

CALL statement is used, the addresses and data types of these
parameters being available to the machine code in a parameter
block at location &600. The USR function allows the machine
code routine to return a value to the BASIC program made up
from the register contents. For more details of CALL and USR
refer to the ‘USER GUIDE’.

3.9 Conditional Assembly and Macros

Working within the BASIC environment it is possible to use
BASIC functions to implement these higher level assembly
language structures.

Conditional assembly is a method of varying the code
assembled according to a test. All the facilities of BASIC are
available for setting up the test criteria. Typical applications for
conditional assembly include the conditional incorporation of
debugging routines and selecting different hardware specific
sub-routines from a number of alternatives.

A macro is a group of assembler statements which may be
inserted into the assembler program when called. A macro may
be thought of as being a type of sub-routine which is used to
include a portion of assembler used more than once within a
program. A number of statements which are likely to be used
more than once can be enclosed within assembler delimiters
and placed within either a sub-routine (called using GOSUB
and terminated by RETURN), or a function definition or a
procedure definition. Using a procedure or a function is the best
way to implement macros because the programmer is then able
to pass parameters to the macro and the procedure/function
name serves to identify the macro.

e.g.

10 DI M MC% 100
20 FOR opt %0 TO 3 STEP 3

30 PY%=MC%

40 [

50 OPT opt %

60 .add CLC \ clear carry
70 LDA &80 \ A=?&80

80 ADC &81 \ AA+?&Bl+carry
90 STA &81 \ ?8&81=A

100 OPT FNdebug(TRUE)

110]

120 NEXT

130 ?&80=l

29

140 ?&81=2
150 CALL add

160 PRI NT' "Result of addition : ";?&81
170 PRI NT' " A=&"; ~?&70, " X&" ~?&71,"Y&"; ~?&72
180 END

190 DEF FNdebug(switch)

200 IF switch [OPT opt % STA &70: STX &71: STY &72 \ save
registers:]

210 [OPT opt % RTS:]

220 =opt %

This highly contrived program adds two bytes together. It uses
a macro within which conditional assembly occurs. Hanging a
function on the end of an OPT command enables the
programmer to call the macro in a tidy manner. If FNdebug is
called with the value TRUE then some code which saves the
registers in zero page is inserted into the program otherwise an
RTS instruction is inserted. The function returns with the value
to which OPT was set in the first place. This example indicates
how the close inter-relation of the mnemonic assembler with
BASIC results in a very powerful assembler. The programmer
should always remember that BASIC is always available as an
aid when using the BASIC assembler.

3.10 User Zero Page

32 bytes of zero page locations are reserved by BASIC for the
users machine code programs. These locations are from &70 to
&8F (inclusive). These are the only zero page locations that a
user program (resident in RAM) should use if the program is to
be made commercially available or run on a variety of other
BBC Microcomputers.

The locations from &0 to &6F which are part of BASIC’s zero
page workspace are available to the machine code program if
BASIC is not required while the code is running.

Depending on the nature of the machine code program other

zero page locations may be available. See chapter 11, memory
usage, for more details.

30

4 Machine Code
Arithmetic

4.1 2’s Complement

The 6502 microprocessor normally performs all arithmetic using
the 2’s complement method of representing numbers. In 2’s
complement representation the most significant bit of the value
is a sign bit. If the most significant bit is clear then the number
is positive. The remaining bits represent the binary value of the
positive number. Negative values are represented by the
complement of the positive value plus 1. The complement of
any binary value is made by ‘flipping’ each bit (i.e. changing
each 1to a 0 and each 0 to a 1). When negative values are
represented by the complement of the positive value this is
called I's complement. The disadvantage with I’s complement is
that there are two ways of representing 0, a positive 0 (all bits
clear) and a negative 0 (all bits set). By adding one to the
complemented value (2’s complement) there is only one way of
representing 0 (all bits clear).

e.g. Using 8 bits to store a value
5=00000101,-5=11111010=111111011

and -5 + 5=

11111011-5
00000101 +5
00000000 =0 (ignore the carry from the last bit)

Numbers in the range -128 (10000000) to +127 (01111111) can be
represented using 8 bit 2’s complement values.

Using 2’s complement arithmetic the same addition and
subtraction operations work identically on negative and
positive numbers. Negative numbers can be always be
recognised by the state of the most significant bit; this is always
set for negative numbers.

31

The 6502 microprocessor can only perform its arithmetic
operations using 8 bit values. This limitation can lead to errors
when a carry is generated on the most significant bit so that the
result cannot be stored in 8 bits. The sign bit may also be
wrongly changed when a carry occurs into it. Two flags in the
status register are set when certain conditions occur. These flags
are the carry flag and the overflow flag.

The carry flag is set when a carry is generated during an
addition operation if a carry is generated from bit 7 (i.e. the
carry flag is a ninth bit of the result). The carry flag is cleared if
a borrow occurred into bit 7 during a subtraction. The addition
and subtraction instructions on the 6502 include the carry bit in
the operation. Using the carry bit makes it possible to perform
multi-byte arithmetic. The examples for ADC and SBC in the
mnemonics section illustrate how the carry flag may be used.

The overflow flag is set when the sign of the result is incorrect
following an arithmetic operation. During additions overflow
will occur in two situations

(@) When a carry occurs from bit 6 into bit 7 without the
generation of an external carry.

(b) When an external carry is generated without a carry
occurring from bit 6 into bit 7.

During subtractions the carry flag is used as a borrow source.
The overflow flag will be set in the analogous situations where
borrows occur rather than carries. When the overflow flag is set
it indicates that the 2’s complement 8 bit result of an arithmetic
operation is incorrect.

It is often more convenient to think of bytes as always
containing positive values. The eight bits of the byte can
represent a maximum binary value of 255 (&FF). This is no
problem because the microprocessor performs exactly the same
arithmetic operations regardless of the sign of the values
involved. When the result of any arithmetic operation has bit 7
set then a negative flag is set in the status register. The
programmer can test this flag if the program must react to
negative values. The overflow and carry flags will also be set as
described above.

32

4.2 Binary Coded Decimal

A binary coded decimal arithmetic mode may be selected by
setting the decimal flag in the status register. The binary coded
decimal form of representing numbers uses each byte to store a
two digit decimal value. Each digit is stored as a binary value in
4 bits (1 nibble). Normally 4 bits can be used to represent
numbers in the range 0 to 15. In BCD arithmetic 6 of the values
that could be represented in 4 bits are not used. Adding 1 to 9 in
BCD will cause the low-nibble to be set to 0 and the high nibble
to be set to 1. The carry flag is used to store the carry from the
high-nibble.

This is an example of a program which uses BCD arithmetic.

10 DI M MC% 100

20 OSWRCH=&FFEE

30 OSRDCH=&FFEO

40 OSNEWL.=&FFE7

50 FORopt %0 TO 3 STEP3

60 PY%=MC%
70 [
80 OPT opt %
90 .start SED \set flag for BCD arithnetic
100 CLC \clear carry flag
110 LDA &80 \ A=?&80
120 ADC #1 \ A=A+l +C
130 STA &80 \repl ace val ue
140 LDA &81 \ A=28&81
150 ADC #0 \ A=A+0+C
160 STA &81 \repl ace val ue
170 CLD \clear flag, no nore BCD
180 CLC \clear carry flag
190 LDX #2 \'set | oop index
200 .l oop DEX \decrenent index
210 LDA #&FO \'mask for high-nibble
220 AND &80, X \ A=A AND X?&80
230 LSR A'LSR A'LSR A'LSR A
240 \ nove hi gh-nibble to | ow ni bble
250 ADC #&30 \add val ue to ASCO'
260 JSR OSWRCH \print val ue
270 LDA #&F \mask for | ow nibble
280 AND &80, X \ A=A AND X?&80
290 ADC #&30 \add val ue to ASC'0"
300 JSR OSWRCH \print nunber
310 CPX #0 \ has index reached 0
320 BNE | oop \if not, go round again
330 LDA #&D \ A=carriage return val ue
340 JSR OSWRCH \performcarriage return (no LF)
350 JSR OSRDCH \ A=GET
360 CWP #&0D \was it RETURN
370 BNE start \if not, back to the start
380 JSR OSNEW. \carriage return and line feed
390 RTS \ back to BASIC

33

400
410
420
430
440
450
460

]
NEXT

1 &80=0

PRI NT" ' "Bi nary Coded Decinal """’
PRI NT"press key to add 1"

PRI NT"press RETURN to exit"""'
CALL start

This program could be altered to subtract 1 each time a key is
pressed by changing line 100 to SEC and changing the ADC
instructions in lines 120 and 150 to SBC instructions.

The decimal flag must always be cleared before using operating
system routines.

There is no standard representation of negative numbers using
BCD. In order to implement more complex arithmetic including
floating point applications the programmer must define his
own conventions and number formats.

34

5 Addressing Modes

When an assembly language instruction needs some data or an
address to work on this must be provided in the operand field
of the assembler statement. Although there are a limited
number of different machine code instructions which can be
used with the 6502, the power of the instruction set is enhanced
by a number of different addressing modes by which the data
or addresses used by each instruction may be provided. The
addressing mode used by the assembler depends on the syntax
of the assembly language statement. The following text
describes how the different addressing modes work and the
assembler syntax which is necessary.

N.B. Not all addressing modes are available for all instructions.
Details of which addressing modes can be used with which
instructions are contained in the Assembler Mnemonics section
6.2.

5.1 Implicit addressing

Many instructions do not require any addressing mode to be
specified in the operand field. In such cases the addressing is
implicit in the instruction itself. For example an RTS instruction
will always cause the processor to jump to the location
addressed by the top two bytes of the stack.

5.2 Accumulator addressing
Some instructions may operate on either a memory location or

the accumulator. The accumulator is specified by putting a
capital A in the operand field.

e.g.
ASL A \ shift accumul ator contents one bit |eft
ROR A \ rotate accunul ator contents one bit right

(Note that the variable A cannot therefore be used as an
operand.)
35

5.3 Immediate addressing - using a data constant

If, at the time of programming, the data required for a machine
code instruction is known then immediate addressing may be
used. Immediate addressing is indicated to the assembler by
preceding the operand with a +#’ character. The assembler uses
the least significant byte of the value given to define the
operand. The machine code instruction actually uses the byte of
memory immediately following the instruction in program
memory.

e.g.
LDA #&FF \ load the accumul ator with value &FF
LDX #count \ load X with value of the constant 'count’

5.4 Absolute addressing - using a fixed address

When the address required for an instruction is known at the
time of assembly then absolute addressing may be used.
Absolute addressing is the default addressing mode used by the
assembler. If a number or variable is placed in the operand field
of the assembler it will be treated as a 16 bit effective address.

e.g.
CWP &1900 \ conpare A with contents of |ocation &1900
JMWP | abel \ goto address specified by 'label’

55 Zero page addressing - using a fixed zero page address

This mode is the same as absolute addressing except that an 8
bit address is specified. This 8 bit addressing limits use to the
first &100 bytes of memory (zero page). The assembler will
automatically select zero page addressing when the operand
value is less than 256 (&100).

e.g.
CPY &80 \ conpare y with contents of |ocation &80
ASL &81 \ shift left contents of location &1 one bit

36

5.6 Indirect addressing - using an address stored in memory

Using this addressing mode an instruction can use an address
which is actually computed when the program runs. The JMP
instruction may use this addressing mode. The address used for
the jump is taken from the two bytes in memory starting at the
address specified in the operand field (low byte first, high byte
second). Indirect addressing is indicated to the assembler by
enclosing the address within brackets.

e.g.
LDA #8&40 \ load accurmul ator with &40
STA &1900 \ store low byte of indirection
LDA #8&28 \ load accunul ator with &8
STA &1901 \ store high byte of indirection
JwP (&1900) \ goto address in &1900 and &1901
N.B. A JMP &2840 instruction would have been more sensible

in this case.

There is a bug in the 6502. When the indirect address crosses a
page boundary the 6502 does not add the carry to calculate the
address of the high byte.

i.e. IMP (&19FF) will use the contents of &19FF and &1900 for
the JMP address.

Indexed Addressing

The following 5 addressing modes use the X or Y registers as an
offset which is used to modify another address specified in the
operand field. These addressing modes give the program access
to a table of memory locations specified in terms of a base
address to which is added the 8 bit offset value.

5.7 Absolute,X or Y addressing - using an absolute address+X

These are the simplest indexed addressing modes. An absolute 16
bit address is specified in the operand field. This should be followed
by a comma and either X or Y. The address used by the instruction
will be the 16 bit address + the contents of the register specified.

37

The X and Y register contents are always taken as positive
values in the range 0 to 255 and so only forward offsets are
available (c.f. Relative addressing, below).

e.g.

LDA &2800, X \ | oad accumrul ator from &2800+X
ADC table, Y\ A=A+?(tabl e+Y)

5.8 Zero page,X addressing - using zero page address+X

This mode is the same as the absolute X addressing mode
except that an 8 bit base address is used. The assembler
automatically uses this mode, where available, if a zero page
address is specified in the operand field.

If a variable is used to describe the address of the zero page
location it should be set up before the first pass of the
assembler. This is because the assembler will assume 16 bit
addressing on the first pass if the variable is unrecognised and
allocate two bytes for the address. On the second pass, the zero-
page opcode and one byte of address will be assembled,
causing all further label values to be wrong.

N.B. For the LDX instruction a zero page,Y addressing mode is
provided.

e.g.
LDX &72,Y \ load X with contents of (&72+Y)
LSR &80, X \ one bit right shift contents of (&80+X)

5.9 Pre-indexed indirect addressing - using a table of indirect
addresses in zero page

This addressing mode is designed for use with a table of
addresses in zero page locations. The operation is performed on
a memory location, the address of which is contained within the
zero page locations specified by an 8 bit base address plus the
contents of the X register.

38

N.B. The Y register cannot be used for this addressing mode.

?&80=&00

?&8| =&40

?&82=&00

?&83=841

LDX #0 \ set Xto O

LDA (&80, X) \ A=?&4000, address in (&B0+X), (&81+X)
1 NX \ X=X+, i.e. 1

I NX \ X=X+

LDA (&80, X) \ A=?&4100, address in (&82), (&83)

5.10 Post-indexed indirect addressing - using an indirect
address in zero page plus offset in Y

This indexed indirect addressing mode uses a single address
held in zero page. The contents of the Y register are then added

to that address held in zero page to give the effective address
used.

N.B. The X register cannot be used for this addressing mode.
e.g.

Set 256 bytes of memory to 0 starting at the address contained
in locations &80 (low byte) and &81 (high byte).

?&80=&40

?&81=&72

LDY #0 \ set loop index to O

TYA \ A=0

.l oop STA (&80),Y \ ?(&7240+Y)=0, base addr. in &0 and &81
I NY \ Y=Y+

CPY #0 \ Y-0 conparison [not needed after |NY)
BNE | oop \ if Y<>0 goto |oop

39

511 Relative addressing

The 6502 instruction set contains 8 branch instructions which
cause a jump if a certain condition is met. In the example above
a BNE instruction is used to cause the loop to be executed again
if the loop index (Y register) does not equal 0. These branch
instructions can only be used with relative addressing. If the
condition of the branch is satisfied the byte following the
branch instruction is added to the program counter as an 8 bit
two's complement number. This method of relative addressing
allows a branch forward 127 bytes or back 128 bytes from the
program counter value after the branch instruction has been
executed. The calculation of the relative branch value is
normally quite transparent to the programmer using the BASIC
assembler. When writing in assembly language the
programmer follows the branch instruction with a label or
absolute address and the assembler performs the necessary
calculations. The use of relative addressing will only become
apparent when a label or absolute address is specified outside
the relative addressing range. When this occurs the assembler
will flag an ‘Out of range’ error to the user. OPT 0 is used to
suppress this error from forward references on the first
assembler pass.

40

6 The 6502 Instruction Set

6.1 The 6502 registers and abbreviations
Accumulator - A

An 8 bit general purpose register used for all the arithmetic and
logical operations.

X Index Register - X

An 8 bit register used as the offset in indexed and pre-indexed
indirect addressing modes, or as a counter.

Y Index Register - Y

An 8 bit register used as the offset in indexed and post-indexed
indirect addressing modes, or as a counter.

Status Register

An 8 bit register containing various status flags and an interrupt
mask. These are:-

Carry flag- C
Bit 0, Set if a carry occurs during an add operation and cleared
if a borrow occurs during subtraction. Used as a 9th bit in rotate
and shift operations.

Zeroflag - Z
Bit 1, Set if the result of an operation is zero, otherwise cleared.

Interrupt disable - |

Bit 2, When set, IRQ interrupts are disabled. Set by the
processor during interrupts.

41

Decimal mode flag - D
Bit 3, When set the add and subtract instructions work in binary
coded decimal arithmetic. When clear these operations are
performed using binary arithmetic.

Break flag - B

Bit 4, This flag is set by the processor during a BRK interrupt.
Otherwise this flag is clear.

Unused flag
Bit 5, Unused by the processor.

Overflow flag - V
Bit 6, If, during an operation, there is a carry from bit 6 to bit 7
and no external carry then the overflow flag is set. This flag is
also set if there is no carry from bit 6 to bit 7 but there is an
external carry.

Negative flag - N
Bit 7, Set if bit 7 of a result is set, otherwise cleared.
Stack Pointer - SP
An 8 bit register which forms the low order byte of the address
of the next free stack location (the high order byte of this
address is always &1).

Program Counter - PC (PCL, PCH low-byte, high-byte)

A 16 bit register which always contains the address of the next
instruction to be executed.

42

6.2 The Assembler Mnemonics

The following section contains a detailed description of each of
the operation codes (or instructions) in the 6502 instruction set.
The assembler recognises three letter mnemonics which it
translates into the 8 bit values which the microprocessor
actually takes as its instructions.

Each assembler mnemonic is described on a new page. At the
head of the page is the three letter mnemonic which the
assembler recognises.

Beneath the heading there is a short phrase indicating the
function of the instruction and the derivation of the mnemonic.

A short hand ‘BASIC like’ description of the operation is given
on the top right of the page. The registers and flags are denoted
by the abbreviations given on the previous two pages. The
initial ‘M’ represents the data byte obtained using the selected
addressing mode.

A brief description of the instruction and its operation is given
beneath the headings.

Any changes to the status register are noted in a list of the
status register flags.

All the available addressing modes are listed together with the
number of bytes of memory which the instruction and its data
will occupy when this mode is used. The number of instruction
cycles taken for the execution of the instruction in each
addressing mode is also given (1 instruction cycle=0.5
microseconds).

A short example of the use of the instruction within an
assembly language routine is given at the bottom of each page.

43

ADC

Add with Carry A,C=A+M+C

This instruction adds the contents of a memory location to the
accumulator together with the carry bit. If overflow occurs the
carry bit is set, this enables multiple byte addition to be
performed.

Processor Status after use

C (carry flag): set if overflow in bit 7

Z (zero flag): set if A=0

| (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): set if sign bit is incorrect
N (negative flag): set if bit 7 set

Addressing mode bytes used cycles

immediate 2 2
Zero page 2 3
zero page, X 2 4
absolute 3 4
absolute, X 3 4 (+1if page crossed)
absolute,Y 3 4 (+1if page crossed)
(indirect,X) 2 6
(indirect),Y 2 5 (+1 if page crossed)

Example: Add 1to a2 byte value in locations &80 and &81

CLC \ clear carry flag

LDA #1 \ load accunulator with 1

ADC &80 \ A=A+?&80, carry set if overflow occurs
STA &1 \ place result of addition in &80

LDA #0 \ set accumulator to O (carry unchanged)
ADC &81 \ A=A+?&81+C, add 1 if carry set

STA &1 \ store result back in &1

44

AND

Logical AND A=A AND M

A logical AND is performed, bit by bit, on the accumulator
contents using the contents of a byte of memory. The truth table
for the logical AND is:-

Acc. Mem. Result
bit bit bit
0 0 0

0 1 0
1 0 0
1 1 1
Processor Status after use

C (carry flag): not affected

Z(zero flag): set if A=0

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 set

Addressing mode bytes used cycles
immediate 2 2

zero page 2 3

zero page,X 2 4

absolute 3 4

absolute, X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1 if page crossed)
(indirect,X) 2 6

(indirect),Y 2 5 (+1 if page crossed)

Example: Clear the top 4 bits of location &80

LDA &80 \ | oad value to be ANDed into A
AND #&FO \ perform AND, (mask=l1110000)
STA &80 \ load menory with the nodified val ue

45

ASL

Arithmetic Shift Left M=M*2, C=M7 (or accumulator)

This operation shifts all the bits of the accumulator or memory
contents one bit left. Bit 0 is set to 0 and bit 7 is placed in the
carry flag. The effect of this operation is to multiply the memory
contents by 2 (ignoring 2's complement considerations), setting
the carry if the result will not fit in 8 bits.

C< 7654321<0
Processor Status after use

C (carry flag): set to old contents of bit 7

Z (zero flag): set if result=0

| (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of the result is set

Addressing mode bytes used cycles

accumulator 1
zero page 2
zero page,X 2
absolute 3
absolute, X 3

~NoO oo

Example: Rapid multiplication of memory contents by 4

ASL data \ ?data=?data*2
ASL data \ ?data=?data*2, gross effect *4.

46

BCC

Branch on Carry Clear Branch if C=0

This instruction causes a relative jump if the carry flag is clear.
The address to which the branch is directed must be within
relative addressing range otherwise the assembler will throw
up an 'Out of range' message.

Used after a CMP instruction this branch occurs when
A<DATA.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytes used cycles

relative 2 2 (+1if branch
succeeds +2 if to new
page)

Example: Branch if contents of &80 < 100

LDA #100 \ load accunulator with data
CWP &80 \ A-data (comparison)
BCC finish\ goto finish if ?&80<100

BCS

Branch on Carry Set Branch if C=1

A relative branch will occur if the carry flag is set. The branch
address given to the assembler must be within relative
addressing range.

Used after a CMP instruction this branch occurs when A>=data.
Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

| (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytes used cycles

relative 2 2 (+1if branch
succeeds +2 if to new

page)

Example: Branch if contents of X register are greater than or
equal to 5

CPX #5 \ X-5, conpare
BCS | abel \ branch to label if X>=5

48

BEQ

Branch on result zero BranchifZ=1

This instruction causes a relative branch if the zero flag is set
when the instruction is executed. The assembler automatically
calculates the relative address from the address given and will
cause an error if the address is out of range.

Used after a CMP instruction this branch occurs if A=data.
Used after an LDA instruction this branch occurs if A=0.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles

relative 2 2 (+1if branch
succeeds +2 if to new
page)

Example: Subroutine not used when A=3

CWP #3 \ A-3, conparison

BEQ over \ if A=3 goto over

JSN anything \ subroutine to be mssed if A=0
.over ...

49

BIT

Test memory bits with accumulator A AND M, N=M7, V=M6

This instruction can be used to test whether one or more
specified bits are set. The zero flag is set if the result is 0
otherwise the zero flag is cleared. Bits 7 and 6 of the memory
location are transferred to the status register. The BIT
instruction performs an AND operation without storing the
result but setting the status flags.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if the result=0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): set to bit 6 of memory
N (negative flag): set to bit 7 of memory

Addressing mode bytesused cycles
Zero page 2 3
absolute 3 4

Example: Test bit 7 of location &8F

LDA #&02 \ load nask into accunul ator (000000l 0)
BIT flags \ AAND flags, if bit 1=1 then Z=0
BNE flagset \ action to be perforned if bit 1 set

50

BMI

Branch if negative flag set Branch if N=1

This relative branch is performed if the result of a previous
operation was negative. Relative branch calculations are made
by the assembler which will flag an error if an address is given
outside the relative addressing range.

Branch occurs after a result which sets bit 7 of the accumulator.
(All 8 bit 2’s complement negative numbers have this bit set.)

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytes used cycles

relative 2 2 (+1if branch
succeeds +2 if to new

page)

Example: Branching if a byte of memory contains a negative
number

LDA &3010 \ load accunul ator fromnenory, N set if -Ve
BM negative \ branch if ?&3010 is negative

51

BNE

Branch on result not zero Branch if Z=0

This instruction causes a relative branch if the zero flag is clear
when the instruction is executed. The assembler automatically
calculates the relative address from the address given and will
cause an error if the address is out of range.

Used after a CMP instruction this branch occurs if A<>data.
Used after an LDA instruction this branch occurs if A<>0.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles

relative 2 2 (+1if branch
succeeds +2 if to new

page)

Example: Memory location to be written to if it contains zero
(i.e. IF ?&84=0 then ?&84=&7F)

LDA &84 \ load nenory into Ato set flags
BNE round \ if not zero skip the next bit
LDA #&7F \ lead Awith value to he witten
STA &84 \ wite to location &84

.round \ rest of program

52

BPL

Branch on positive result Branch if N=0

Depending on the state of the negative flag a relative branch
will be made. The relative address is calculated by the
assembler from an address provided by the programmer. This
address must be within the relative addressing range.

Branch occurs after a result which sets accumulator bit 7 to 0.
Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles

relative 2 2 (+1if branch
succeeds +2 if to new

page)
Example: A loop which shifts A left until bit 7 is set

.loop ASL A \ shift accunulator 1 hit left
BPL | oop \ if bit 7 not set then go round again

N.B. This will be an endless loop if A=0 on entry.

53

BRK

Forced Interrupt PC and P pushed on stack
PCL = ?&FFFE, PCH = ?&FFFF

This instruction forces an interrupt to occur. The processor
jumps to the location stored at &FFFE. The program counter is
pushed onto the stack followed by the status register. A BRK
instruction usually represents an error condition and the BRK
handling code is usually an error handling routine. Using
machine code in a BASIC environment it is possible to use
BASIC's error handling facilities, see section 3.7. A user BRK
handling routine may be implemented, see Vectors section,
section 10.2.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

| (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): set

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles
implied 1 7

N.B. A BRK instruction cannot be disabled by setting the
interrupt disable flag.

Example: Cause an error if A is greater than 4

CWP #5 \ A-5. conparison

BCC noerr \ if A<5 then branch round error
BRK \ cause error

.noerr \ rest of program (or error message)

54

BVC

Branch if overflow clear Branch if V=0

A relative branch is made if the overflow flag is clear. The
relative address calculation is performed by the assembler
which will flag an error if given an address out of relative
addressing range.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles

relative 2 2 (+1if branch
succeeds +2 if to new

page)

Example: Branching on overflow when carry is deliberately set

ADC &80 \ A=A+?&80-4-C
SEC \ set carry flag
BVC sonewhere\ goto somewhere if no overfl ow

55

BVS

Branch if overflow set Branch if V=1

Branch to a relative address if the overflow flag is set. Overflow
is generally set when the carry flag is set except when a
subtraction is performed. In this case overflow is set when the
carry flag is cleared. The address specified in the operand field
of the assembler statement must be within the relative
addressing range otherwise an assembly error will be flagged.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles

relative 2 2 (+1if branch
succeeds +2 if to new

page)

Example: Branching if overflow occurs during subtraction

SEC \ set the carry flag

LDA #8 \ load A with the value 8

SBC &86 \ A=A-M (-carry if required)

BVS help \ if overflow has occurred goto help
STA &86 \ otherw se put new value in &86

N.B. A BCC instruction would have performed the same
purpose in this instance.

56

CLC

Clear carry flag C=0

This instruction clears the carry flag. This is often a sensible
operation to perform before using an ADC instruction if there is
any doubt as to the status of the carry flag.

Processor Status after use

C (carry flag): cleared

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles

implied 1 2
Example: Clearing the carry flag before an 8 bit addition
CLC clear carry flag

LDA counter
ADC i ncr enent
STA counter

load first |ow order byte
add second |low order to it

\
\
\
\ place new val ue in counter

57

CLD

Clear decimal flag D=0

This flag is used to place the 6502 into decimal mode. This
instruction returns the processor into non-decimal mode. See
machine code arithmetic, chapter 4.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

| (interrupt disable): not affected
D (decimal mode flag): cleared
B (break command): not affected
V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles
implied 1 2

Example: Turn decimal mode off

CLD \ No nore BCD arithnetic

58

CLI

Clear interrupt disable flag 1=0

This instruction is used to re-enable interrupts after they have
been disabled by setting the interrupt flag. In a machine where
the operating system relies heavily on interrupts it is unwise to
play around with the interrupt flag without good reason. For
information about interrupts see chapter 13.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): cleared

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles

implied 1 2
Example: Re-enabled interrupts
CLI \ interrupts responded to now

59

CLV

Clear the overflow flag V=0
This instruction forces the overflow flag to be cleared.
Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): cleared

N (negative flag): not affected

Addressing mode bytesused cycles

implied 1 2
Example: Explicitly clear the overflow flag
CLvV \ overfl ow now cl ear

60

CMP

Compare memory and accumulator A-M

This is a very useful instruction for comparing the accumulator
contents to the contents of a memory location. The status
register flags are set according to the result of a subtraction of
the memory contents from the accumulator. The accumulator
contents are preserved but the status register flags may be used
to cause branches depending on the values which were
compared.

Processor Status after use

C (carry flag): set if A greater than or equal to M
Z (zero flag): set if A=M

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of the result is set

Addressing mode bytes used cycles

immediate 2 2
Zero page 2 3
zero page,X 2 4
absolute 3 4
absolute, X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1 if page crossed)
(indirect),X 2 6
(indirect,Y) 2 5 (+1 if page crossed)

Examples: Branching on the result of a comparison

The test which if true
is to cause the branch. Code.

A>M or McA BEQ over (or BEQ P%4, no | abel)
BCS sonewhere

61

A>=M
=M

A<=M

A<M

62

or

or

or

or

M =A

MEA

N> =

M-A

BCS somewher e
BEQ sonewher e

BCC sonmehwer e
BEQ sonewher e

BCC sonmewher e

CPX

Compare memory with X register X-M

This instruction performs a subtraction of the contents of the
memory location from the contents of the X register, the
memory location and the register remain intact but the status
register flags are set on the result.

Processor Status after use

C (carry flag): set if X greater than or equal to M
Z (zero flag): set if X=M

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of the result is set

Addressing mode bytesused cycles

immediate 2 2
Zero page 2 3
absolute 3 4

Example: Clearing an area of memory (max &100 bytes). The
number of bytes to be cleared is stored in ‘count’.

LDA #0 \ set accumulator to O
TAX \ set loop index to O
.loop STA page,X \ wite 0 to byte page+X
1 NX \ increnent |oop index
CPX count \ X-?count, conparison
BNE | oop \ if not equal go round again

63

CPY

Compare memory with Y register Y-M

This instruction performs a subtraction from the Y register of
the specified memory location contents. The memory location
and the register remain intact but the status register flags are set
on the result.

Processor Status after use

C (carry flag): set if Y greater than or equal to M
Z (zero flag): set if Y=M

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of the result is set

Addressing mode bytesused cycles

immediate 2 2
Zero page 2 3
absolute 3 4

Example: Branch if Y=&0D

CPY #& D \ conpare Y with &0D/ 13
BEQ cr \ if Y=13 goto cr

64

DEC

Decrement memory by one M=M-1

This instruction decrements the value contained in the specified
memory location.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if memory contents become 0
I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of the result is set

Addressing mode bytesused cycles

Zero page
Zero page,X
absolute
absolute, X

W WNN
~N O O Ol

Example: Decrement location &2900

DEC &2900 \ ?&2900=7&2900- |

65

DEX

Decrement X register by one M=M-1

This instruction decrements the contents of the X register by
one.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if X becomes 0

| (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of X becomes set

Addressing mode bytesused cycles
implied 1 2

Example: Decrement X register

DEX ' X=X-1

66

DEY

Decrement the Y register by one Y=Y-1

This instruction decrements the contents of the Y register by
one.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if Y becomes 0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of Y becomes set

Addressing mode bytesused cycles
implied 1 2

Example: Decrement Y register

DEY \Y=v-1

67

EOR

Exclusive OR memory with accumulator A=A EOR M

This instruction performs a bit by bit Exclusive OR of the
specified memory location contents with the contents of the
accumulator leaving the result in the accumulator. The truth
table for the logical EOR operation is:-

Acc. Mem. Result
bit bit bit
0 0 0

0 1 1
1 0 1
1 1 0

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if A becomes 0

| (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of A becomes set

Addressing mode bytesused cycles

immediate 2 2
Zero page 2 3
zero page,X 2 4
absolute 3 4
absolute, X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1 if page crossed)
(indirect, X) 2 6
(indirect), Y 2 5 (+1 if page crossed)

Example: EOR contents of memory with &FF

LDA #&FF \ load accumul ator with &FF
EOR tenp \' A=A EON (?tenp)
STA tenp \ reload nenory

68

INC

Increment memory by one M=M+1

This instruction increments the value contained in the specified
memory location.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if memory contents become 0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of memory becomes set

Addressing mode bytesused cycles

Zero page
Zero page,X
absolute
absolute, X

W WNN
~N O O Ol

Example: Increment location &80

INC &80\ ?&80=7&80+I

69

INX

Increment X register by one X=X+1

This instruction increments the contents of the X register by
one.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if X becomes 0

| (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of X becomes set

Addressing mode bytesused cycles
implied 1 2

Example: Increment X register

I NX \ X=X+1

70

INY

Increment the Y register by one Y=Y+1

This instruction increments the contents of the Y register by
one.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if Y becomes 0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of Y becomes set

Addressing mode bytesused cycles
implied 1 2

Example: Increment Y register

I NY Y=Y+l

71

JMP

Jump to new location PC - new address

This instruction is the machine code equivalent of a GOTO
statement in BASIC. An indirect addressing mode is available
where the address for the JMP is contained in memory specified
by the address in the operand field (see examples below).

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles
absolute 3 3

indirect 3 5

Examples: A direct jump

JMWP entry \ goto entry

An indirect jump (a contrived example)

LDA #&00 \ A=0

STA &2800 \ ?&2800=A (address | ow byte)
LDA #8&40 \ A=&40

STA &2801 \ ?&2801=A (address hi gh byte)
JMP (&2800) \ junp to &4000

72

JSR

Jump Subroutine Push current PC onto stack; PC=new
address

This instruction causes a jump but also saves the current
program counter on the stack. The subroutine which is called
returns to the part of the program that called it by pulling the
saved address and jumping back to it. A subroutine must
always be terminated by an RTS instruction which performs the
return to the location from which the subroutine was called.

Processor Status after use:

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing Mode bytesused cycles

absolute 3 6
Examples: Using an OS call

LDA #ASC' X"

JSR OSWRCH \ print 'X on screen

73

LDA

Load accumulator from memory A=M

This instruction is used to set the contents of the accumulator to
that contained in a specified byte of memory.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if A=0

| (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of A set

Addressing mode bytesused cycles

immediate 2 2
Zero page 2 3
zero page,X 2 4
absolute 3 4
absolute, X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1if page crossed)
(indirect, X) 2 6
(indirect),Y 2 5 (+1 if page crossed)

Example: Load accumulator with ASCII value for ‘A’

LDA #ASC A \ A=65

74

LDX

Load X register from memory X=M

This instruction is used to set the contents of the X register to
that contained in a specified byte of memory.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if X=0

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of X set

Addressing mode bytesused cycles

immediate
zero page
zero page,Y
absolute
absolute,Y

W WNDNDN

2
3
4
4
4 (+1 if page crossed)

Example: Load X register with contents of location &80

LDX &80\ X=?&80

75

LDY

Load Y register from memory Y=M

This instruction is used to set the contents of the Y register to
that contained in a specified byte of memory. Processor Status
after use

C (carry flag): not affected

Z (zero flag): set if Y=0

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of Y set

Addressing mode bytesused cycles

immediate
Zero page
zero page,X
absolute
absolute, X

W WNNDNNDN

2
3
4
4
4 (+1 if page crossed)

Example: Load Y register with contents of location labelled
'data’ with an offsetin X

LDY dat a, X \ Y=?(dat a+X)

76

LSR

Logical Shift Right by one bit M=M/2 (or A)

This instruction causes each bit in the memory location or
accumulator to shift one bit left. Bit 7 is set to 0 and the carry
flag will be set to the old contents of bit 0. The arithmetic effect
of this is to divide the value by 2.

0>76543210>C
Processor Status after use

C (carry flag):set to bit of operand
Z (zero flag): set if result=0

I (interrupt disable): not affected
D (decimal mode flag):not affected
B (break command): not affected
V (overflow flag): not affected

N (negative flag): cleared

Addressing mode bytesused cycles

accumulator
Zero page
Zero page,X
absolute

2
5
6
6
absolute, X 7

W WMNDN -

(+1 if page crossed)

Example: Shift accumulator contents right one bit

LSR A \ C=bit 0, A=A/2

77

NOP

No operation

This is a dummy instruction which has no effect on any
memory or register contents except to increment the program
counter by one.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

| (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing Mode bytesused cycles
implied 1 2

Example: A NOP instruction

NOP \ this instruction does not hing

78

ORA

OR memory with accumulator A=A OR M

This instruction performs a bit by bit logical OR operation

between the contents of the accumulator and the contents of the
specified memory and places the result in the accumulator. The

truth table for logical OR is:-

Acc. Mem. Result
bit bit bit
0 0 0

0 1 1
1 0 1
1 1 1
Processor Status after use

C (carry flag): not affected

Z (zero flag): set if A=0

I (interrupt disable): not affected
D(decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of A set

Addressing mode bytesused cycles

immediate 2 2

Zero page 2 3

absolute 2 4

absolute, X 3 4 (+1 if page crossed)
absolute, Y 3 4 (+1 if page crossed)
(indirect,X) 2 6

(indirect), Y 2 5 (+1 if page crossed)
Example: Set the top 4 bits of the accumulator

ORA #&F0 \ mask is 1111000, 1 OR anything=1

79

PHA

Push accumulator onto stack Push A

This instruction places the value held in the accumulator onto
the stack. This value is accessible using the instruction PLA
(pull A from stack).

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing Mode bytesused cycles

implied 1 3
Example: Save registers at the beginning of a routine
.entry PHP \ save status register (see bel ow)

PHA \ save accunul ator contents

TXA \ A=X

PHA \ save X register contents

TYA \ A=Y

PHA \ save Y register contents

.... \ rest of program

80

PHP

Push Status register onto stack Push P

This instruction places the value held in the status register onto
the stack. This value is accessible using the instruction PLP (pull
P from stack).

Processor Status after use

C (carry flag):not affected

Z (zero flag): not affected

J (interrupt disable): not affected

D (decimal mode flag):not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing Mode bytesused cycles
implied 1 3

Example: See the example given for PHA above.

81

PLA

Pull accumulator off stack Pull A

This instruction loads the accumulator with a value which is
pulled from the stack. This is usually a previous accumulator
value which has been saved on the stack using a PHA
instruction.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if A=0

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of A set

Addressing Mode bytesused cycles

implied 1 4

Example: Restore registers at the end of a routine
PLA \ pull Y value from stack

TAY \ put it back inY

PLA \ pull X value from stack

TAX \ put it back in X

PLA \ pull A value from stack

PLP \ restore status register

RTS \ back to calling routine

82

PLP

Pull status register off stack Pull P

This instruction loads the status register with a value which is
pulled from the stack. This is usually a previous status register
value which has been saved on the stack using a PHP
instruction.

Processor Status after use

C (carry flag): bit 0 from stack

Z (zero flag): bit 1 from stack

I (interrupt disable): bit 2 from stack
D(decimal mode flag): bit 3 from stack
B (break command): bit 4 from stack
V (overflow flag): bit6from stack

N (negative flag): bit 7 from stack

Addressing Mode bytesused cycles
implied 1 4

Example: See the example for PLA above.

83

ROL

Rotate one bit left M=M*2, M0=C, C=M7 (A or M)

This instruction causes a shift left one bit. The bit shifted out of
the byte, bit 7, is placed in the carry flag. The contents of the
carry flag are placed in bit 0.

<76543210 < C <
I I

Processor Status after use

C (carry flag): set to old value of bit 7

Z (zero flag): set if result=0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of the result is set

Addressing Mode bytesused cycles

accumulator 1 2

Zero page 2 5

zero page,X 2 6

absolute 3 6

absolute,X 3 7

Example: Rotate accumulator contents one bit left
ROL A \ A=A rotated |eft

N.B. The carry flag state should be known before this operation
is performed.

84

ROR

Rotate one bit right M=M/2, M7=C, C=MO0 (A or M)

This instruction causes a shift right one bit. The bit shifted out
of the location, bit 0 is placed in the carry flag. The contents of
the carry flag are placed in bit 7.

>76543210>C
I 1

Processor Status after use

C (carry flag): set to old value of bit 0

Z (zero flag): set if result=0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of the result is set

Addressing Mode bytesused cycles

accumulator 1 2
Zero page 2 5
zero page,X 2 6
absolute 3 6
absolute, X 3 7
Example: Reverse the order of bits in a byte

.start STA &80 store byte in &80

\
LDX #8 \ set loop count to 8
.loop ROL &80 \ bit 7 of &0 to carry
ROR A \ carry to bit 8 of A
DEX \ decrenent |oop count
BNE | oop \ if not 0 goto | oop
\

exit with A reversed

RTI

Return from Interrupt Status register and PC pulled
from stack

This instruction is used to return from an interrupt handling
routine. When an interrupt occurs the current program counter
and status register are pushed onto the stack. These are restored
by the RTI instruction.

Processor Status after use

C (carry flag): bit 0 from stack

Z (zero Hag): bit 1 from stack

I (interrupt disable): bit 2 from stack

D (decimal mode flag): bit 3 from stack
B (break command): bit 4 from stack

V (overflow flag): bit 6 from stack

N (negative flag): bit 7 from stack

Addressing Mode Bytesused cycles
implied 1 6
Example: Instruction at the end of an interrupt handling routine

\ code dealing with the interrupt
RTI \ back to what we were doing before ...

86

RTS

Return from subroutine Pull PC from stack

The RTS instruction is used to terminate the execution of a
subroutine. Any routine terminated in this way should be
called using a JSR instruction which places a return address on
the stack. The top two stack values are placed in the program
counter and execution is resumed at the point in the program
after the JSR instruction. During a subroutine the same number
of items pushed on the stack must be removed before the RTS
instruction is reached if the subroutine is to return to the correct
address.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag):not affected

Addressing Mode Bytesused Cycles
implied 1 6

Example: Last instruction in a subroutine

\ body of subroutine
RTS \ return to calling routine

87

SBC

Subtract memory from accumulator with carry A,C=A-M-(1-C)

This instruction subtracts the contents of the specified memory
from the accumulator contents leaving the result in the
accumulator. If the carry flag is used as a 'borrow' source and if
clear then an extra unit is subtracted from the accumulator. This
enables the 'borrow’ to be carried over in multi-byte
subtractions (see example below).

Processor Status after use

C (carry flag): cleared if a borrow occurs

Z (zero flag): set if result=0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): set if the sign of the result is wrong
N (negative flag): set if bit 7 of the result is set

Addressing mode bytesused cycles

immediate 2 2
Zero page 2 3
zero page,X 2 4
absolute 3 4
absolute, X 3 4 (+1 if page crossed)
absolute,Y 3 4 (+1 if page crossed)
(indirect, X) 2 6
(indirect), Y 2 5 (+1 if page crossed)

Example: 16 bit value at locations &80 and &81 subtracted from
16 bit value at locations &82 and &83, result at locations &82
and &83.

SEC \ ready for any borrow

LDA &80 \ low order byte of first value
SBC &82 \ A=A-?8&82 (borrow may occur)
STA &82 \ place result in &82

LDA &81 \ high order byte of first value
SBC &83 \ A=A-&83(1-0

STA &83 \ place result in &83

88

SEC

Set carry flag C=1

This instruction is used to set the carry flag. This instruction
should be used to set the carry flag prior to a subtraction unless
the carry flag has been deliberately left as a 'borrow’ from a
previous subtraction.

Processor Status after use

C (carry flag): set

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode Bytesused Cycles
implied 1 2

Example: Explicit setting of the carry flag

SEC \ C

89

SED

Set decimal mode D=1

This instruction is used to place the 6502 in decimal mode. This
causes arithmetic operations to be performed in BCD mode

See machine code arithmetic, chapter 4.
Processor Status after use:

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): set

B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected
Addressing mode Bytesused Cycles
implied 1 2
Example: Set decimal mode for arithmetic

SED \ BCD from now on

90

SEI

Set interrupt disable flag 1=1

This instruction is used to set the interrupt disable flag. When
this flag is set maskable interrupts cannot occur. See interrupts
chapter 13.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): set

D (decimal mode flag):not affected
B (break command): not affected
V (overflow flag): not affected

N (negative flag): not affected

Addressing mode Bytesused Cycles

implied 1 2
Example: Disable interrupts
SEI \' No naskable interrupts

91

STA

Store accumulator contents in memory M=A

This instruction is used to copy the contents of the accumulator
into a memory location specified in the operand field.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles

Zero page 2 3

zero page,X 2 4

absolute 3 4

absolute, X 3 5

absolute,Y 3 5

(indirect,X) 2 6

(indirect),Y 2 6

Example: Store accumulator in location 'save' + Y offset
STA save, y \ ?(save+Y)=A

92

STX

Store X contents in memory M=X

This instruction is used to copy the contents of the X register
into a memory location.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles

zero page 2 3
zero page,Y 2 4
absolute 3 4
Example: Store X in location &80

STX &80\ ?&80=X

93

STY

Store Y contents in memory M=Y

This instruction is used to copy the contents of the Y register
into a memory location.

Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode bytesused cycles

Zero page 2 3
zero page,X 2 4
absolute 3 4
Example: Store Y in location &5FF0
STY &5FFO0 \ 2&85FF0=Y

94

TAX

Transfer A to X X=A

This instruction is used to copy the contents of the accumulator

to the X register.
Processor Status after use

C (carry flag): not affected

Z (zero flag): set if X becomes 0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of X is set

Addressing mode Bytesused Cycles

implied 1 2
Example: Transfer contents of A to X
TAX \ X=A

95

TAY

Transfer AtoY Y=A

This instruction is used to copy the contents of the accumulator
to the Y register.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if Y becomes 0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of Y is set

Addressing mode Bytesused Cycles

implied 1 2
Example: Transfer contents of Ato Y
TAY \ Y=A

96

TSX

Transfer S to X X=S

This instruction is used to copy the contents of the stack pointer

to the X register.
Processor Status after use

C (carry flag): not affected

Z (zero flag): set if X becomes 0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of X is set

Addressing mode Bytesused Cycles

implied 1 2

Example: Transfer contents of S to X

TSX \ X=S

97

TXA

Transfer X to A A=X

This instruction is used to copy the contents of the X register to
the accumulator.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if A becomes 0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of A is set

Addressing mode Bytesused Cycles
implied 1 2

example: Transfer contents of X to A

TXA \ A=X

98

TXS

Transfer Xto S S=X

This instruction is used to copy the contents of the X register to

the stack pointer.
Processor Status after use

C (carry flag): not affected

Z (zero flag): not affected

I (interrupt disable): not affected

D (decimal mode flag): not affected
B (break command): not affected

V (overflow flag): not affected

N (negative flag): not affected

Addressing mode Bytesused Cycles

implied 1 2

Example: Transfer contents of X to S

TXS \ S=X

99

TYA

Transfer Y to A A=Y

This instruction is used to copy the contents of the Y register to
the accumulator.

Processor Status after use

C (carry flag): not affected

Z (zero flag): set if A becomes 0

I (interrupt disable): not affected

D (decimal mode flag): not affected

B (break command): not affected

V (overflow flag): not affected

N (negative flag): set if bit 7 of A is set

Addressing mode Bytesused Cycles

implied 1 2
Example: Transfer contents of Y to A
TYA \ A=Y

100

7/ Operating System calls

Input/Output

The input device from which characters may be fetched can be
selected using the OSBYTE call with A=2 (*FX 2). Input may be
selected from the keyboard and/or RS423.

Output may be channelled to any combination of the following
destinations: Screen, Printer, RS423 or Spooled file. Selection of
destination is achieved using OSBYTE call with A=3 (*FX 3)

See the OSBYTE call section (chapter 8) for a full description of
these OSBYTE calls.

7.1 OSWRCH Write character to currently
selected O/P stream.

Call address &FFEE
Indirected through &20E

This routine writes the character given in the accumulator to the
currently selected output stream or streams.

NB. Unrecognised VDU commands are passed to a vector at
location &226. See Vectors section, 10.8.

After an OSWRCH call,
A, Xand Y are preserved.
C, N, V and Z are undefined.
The interrupt status is preserved (though it may be
enabled during a call).

101

7.2 Non-Vectored OSWRCH

Call address &FFCB

This routine is normally used by OSWRCH and the call address
is contained in the OSWRCH vector on reset. The non-vectored
OSWRCH routine is believed to be used by the Tube system.
This routine has not been documented by Acorn and should be
used with caution.

7.3 OSRDCH Read character from currently
selected I/P stream.

Call address &FFEQ
Indirected through &210

This routine reads a character from the currently selected input
stream and returns the character read in the accumulator.

After an OSRDCH call,

C=0 indicates that a valid character has been read.
C=1 flags an error condition, A contains an error number.

If an escape condition occurs then A=&1B (27) and C=1,
if detected an escape condition must be acknowledged
using an OSBYTE call with A=&7E (126).

Xand Y are preserved.

N, V and Z are undefined.

The interrupt status is preserved (though interrupts may
be enabled during a call).

102

7.4 Non vectored OSRDCH
Call address &FFC8

This routine is normally used by OSRDCH and the call address
is placed in the OSRDCH vector on reset. The non-vectored
OSRDCH is believed to be used by the Tube system. This call
has not been documented by Acorn and should be used with
caution.

7.5 OSNEWL Write a newline to selected output
stream.

Call address &FFE7
Not indirected

This routine uses OSWRCH to write a linefeed (ASCII &0A/ 10)
followed by a carriage-return (ASCII &0D/13) to the currently
selected output stream(s).

After an OSNEWL call,
A=&0D (13)
Xand Y are preserved.
C, N, V and Z are undefined.
Interrupt status is preserved (though it may be enabled
during a call).

103

7.6 OSASCI Write character routine where OSNEWL is called
when A=&0D (13).

Call address &FFE3
Not indirected

This routine performs an OSWRCH call with the accumulator
contents unless called with accumulator contents of &0D (13)
when an OSNEWL call is performed.

After an OSASCI call,

A, Xand Y are preserved.

C, N, V and Z are undefined.

Interrupt status is preserved (though interrupts may be
enabled during a call).

7.7 Main VDU character output entry point
Call address &FFBC

This is the entry point for raw VDU character processing. On
entry the accumulator contains the character to be written to the
VDU drivers. Any settings of OSBYTE &3/*FX 3 are totally
ignored and no output will go to any other destination (except
characters preceded by VDU 1 which will be sent to the printer
if the printer has previously been enabled with a VDU2). This
call has not been documented by Acorn. There will normally be
no need to use this routine as OSWRCH with the appropriate
*FX3 call can be used to the same effect.

104

7.8 GSINIT General string input initialise
routine.

Call address &FFC2

The GSINIT and GSREAD routines are used by the operating
system to process strings used for commands such as *KEY and
*LOAD. The advantage of using this system for reading strings
is that an escape sequence can be used to introduce control
characters which would otherwise be difficult to type in directly
from the keyboard (the escape character is see section 2.10 for
details of its use.).

This routine should be used to initialise a string which is to be
used for input using the GSREAD routine (see below). The
routine requires locations &F2 and &F3 plus a Y register offset
to specify the string address. The string need not be enclosed by
quotation marks. GSINIT must be used not only to strip off
leading spaces but also to set up an information byte in zero
page which indicates the termination character and if the string
is surrounded by gquotation marks.

If the carry flag is clear on entry then the first space or carriage
return or second quotation mark will be considered as the
terminating character for the string.

If the carry flag is set then only a carriage return or a second
guotation mark will be considered as the terminal character.

On exit,
Y contains the offset of the first non-blank character from
the address contained in &F2 and &F3.

A contains the first non-blank character (as returned by the
first call of GSINIT.

Z flag is set if the string is a null string (e.g. a BEQ
instruction will cause a branch).

This routine has not been documented by Acorn but has been
used in applications software.

105

7.9 GSREAD Read character from string input.

Call address &FFC5

This routine should only be used following a GSINIT call.
GSREAD should be entered with Y set to either the Y value
following a GSINIT call or following a previous GSREAD call.
Locations &F2 and &F3 should contain the address of the start
of the string (i.e. should not have been altered since the last
GSINIT call).

On exit,
A contains the character read from the string.
Y contains the index for the next character to be read.
Carry flag is set if the end of string is reached.
Xis preserved.

This routine has not been documented by Acorn but has been
used in applications software.

7.10 OSRDRM Read byte in paged ROM.

Call address &FFB9

On entry,
Y=ROM number.
Locations &F6 and &F7 should contain the address of the
byte to be read.

On exit,
A contains the value of the byte read.

This routine has not been documented by Acorn but has been
used in applications software.

106

7.11 OSEVEN Generate an event.

Call address &FFBF

This call generates or causes an event. The event number should
be placed in the Y register when this routine is called. The
accumulator contents are transferred to the Y register and the
event number is placed in the accumulator when the event
handling routine is entered. See Events, chapter 12,for more
information about events.

This routine has not been documented by Acorn and should be
used with caution.

The Command Line Interpreter

For details of which commands are recognised by the command
line interpreter see chapter 2 (Operating System Commands).

7.12 OSCLI Passes line of text to the CLI.

Call address &FFF7
Indirected through &208

This routine passes a line of text to the command line
interpreter which decodes and executes any command
recognised.

On entry,
Xand Y should point to a line of text
(X=low-byte, Y=high-byte).
The line of text should be terminated by a carriage return
character (ASCIl &0D/13)

After an OSCLI call,

A X, Y, C, N,V and Z are undefined. Interrupt status is
preserved but interrupts may be enabled during a call.

107

108

8 *FX and OSBYTE calls

The OSBYTE call to the operating system is a powerful and
flexible way of invoking many of the available operating system
facilities. The *FX command can be used to make OSBYTE calls
from BASIC programs or directly from the keyboard (see
section 2.8).

OSBYTE - OS call specified by the contents of A
taking parameters in X and Y

Call address &FFF4
Indirected through &20A

One entry,
A selects an OSBYTE routine
X contains an OSBYTE parameter
Y contains an OSBYTE parameter

Any OSBYTE calls which are not recognised by the operating
system will be offered to paged ROMs (see section 15.1.1,
service call 4). If the unrecognised OSBYTE is not claimed by a
paged ROM then a ‘Bad command’ error will be issued (error
number 254).

All the OSBYTE calls recognised by the operating system are
described in detail in the following pages. Each OSBYTE call or
group of related OSBYTE calls is assigned a separate page. The
description for each call includes details of the entry parameters
required and the state of the registers on exit. All OSBYTE calls
may be made using the *FX command, but it is not always
appropriate to do so (i.e. those calls returning values in the X
and Y registers). Where it is appropriate to use a *FX command
this has been indicated. Preceding the full OS BYTE
descriptions is a complete summary of the OSBYTE calls in a
list.

109

OSBYTE calls &A6/166 to &FF/255 can be used to read or write
operating system status flags or variables. In OS 1.20 these
memory locations extend from &236 to &28F. The action of
these calls is to replace the contents of the specified location

with

‘(<old value> AND Y) EOR X',
To read a location set X=0, Y=&FF.
To write a location set X=value, Y=0.

On exit,
X=old value, Y=value of next location

Many of these calls repeat the function of lower value OSBYTESs
(NL.B. These equivalent calls are not guaranteed to have an
identical effect when used to set flags or OS variables, and other
calls are of no practical use, these are included for
completeness).

110

OSBYTE/*FX Call Summary

dec. hex. function

0 0 Print operating system version

1 1 User OSBYTE call, read/write location &281
2 2 Select input stream

3 3 Select output stream

4 4 Enable/disable cursor editing

5 5 Select printer destination

6 6 Set character ignored by printer

7 7 Set RS423 baud rate for receiving data
8 8 Set RS423 baud rate for data transmission
9 9 Set flashing colour mark state duration
10 A Set flashing colour space state duration
11 B Set keyboard auto-repeat delay interval
12 C Set keyboard auto-repeat rate

13 D Disable events

14 E Enable events

15 F Flush selected buffer class

16 10 Select ADC channels to be sampled

17 11 Force an ADC conversion

18 12 Reset soft keys

19 13 Wait for vertical sync

20 14 Explode soft character RAM allocation

21 15 Flush specific buffer
OSBYTE/*FX calls 22 (&15) to 116 (&74) are not used by 0S1.20

117 75 Read VDU status

118 76 Reflect keyboard status in LEDs

119 77 Close any SPOOL or EXEC files

120 78 Write current keys pressed information
121 79 Perform keyboard scan

122 7A Perform keyboard scan from 16 (&10)
123 7B Inform OS, printer driver going dormant
124 7C Clear ESCAPE condition

125 7D Set ESCAPE condition

126 7E Acknowledge detection of ESCAPE condition
127 7F Check for EOF on an open file

111

128 80 Read ADC channel or get buffer status

129 81 Read key with time limit

130 82 Read machine high order address

131 83 Read top of OS RAM address (OSHWM)

132 84 Read bottom of display RAM address (HIMEM)
133 85 Read bottom of display address for a given MODE
134 86 Read text cursor position (POS and VPOS)
135 87 Read character at cursor position

136 88 Perform *CODE

137 89 Perform *MOTOR

138 8A Insert value into buffer

139 8B Perform *OPT

140 8C Perform *TAPE

141 8D Perform *ROM

142 8E Enter language ROM

143 8F Issue paged ROM service request

144 90 Perform *TV

145 91 Get character from buffer

146 92 Read from FRED, 1 MHz bus

147 93 Write to FRED, 1 MHz bus

148 94 Read from JIM, 1 MHz bus

149 95 Write to JIM, 1 MHz bus

150 96 Read from SHEILA, mapped I/0

151 97 Write to SHEILA, mapped 1/0

152 98 Examine buffer status

153 99 Insert character into input buffer

154 9A Write to video ULA control register and copy
155 9B Write to video ULA palette register and copy
156 9C Read/write 6850 control register and copy
157 9D Fast Tube BPUT

158 9E Read from speech processor

159 9F Write to speech processor

160 A0 Read VDU variable value

OSBYTE/*FX calls 161(&A1) to 165(&A5) are not used by 0S1.20

166 A6 Read start address of OS variables (low byte)
167 A7 Read start address of OS variables (high byte)
168 A8 Read address of ROM pointer table (low byte)
169 A9 Read address of ROM pointer table (high byte)

112

170 AA Read address of ROM information table (low byte)

171 AB
172 AC
173 AD
174 AE
175 AF
176 BO
177 Bl
178 B2
179 B3
180 B4
181 B5
182 B6
183 B7
184 B8
185 B9
186 BA
187 BB
188 BC
189 BD
190 BE
191 BF
192 CO
193 C1
194 C2
195 C3
196 C4
197 C5
198 C6
199 C7
200 C8
201 C9
202 CA
203 CB
204 CC

Read address of ROM information table (high byte)
Read address of key translation table (low byte)
Read address of key translation table (high byte)
Read start address of OS VDU variables (low byte)
Read start address of OS VDU variables (high byte)
R