
 1

Acorn
Econet

Advanced user guide

Within this publication the “BBC” is used as an abbreviation for
"British Broadcasting Corporation"

412,010 Issue 1
October 1983

Written and designed by Baddeley Associates, Cambridge.

© Copyright Acorn Computers Limited 1983

 2

Neither the whole or any part of the information contained in, or the
product described in, this manual may be adapted or reproduced in any
material form except with the prior written approval of Acorn Computers
Limited (Acorn Computers).

The product described in this manual and products for use with it, are
subject to continuous developments and improvement. All information
of a technical nature and particulars of the product and its use (including
the information in this manual) are given by Acorn Computers in good
faith. However, it is acknowledged that there may be errors or omissions
in this manual. A list of details of any amendments or revisions to this
manual can be obtained upon request from Acorn Computers Technical
Enquiries. Acorn Computers welcome comments and suggestions
relating to the product and this manual.

All correspondence should be addressed to:

Technical Enquiries
Acorn Computers Limited
Fulbourn Road
Cherry Hinton
Cambridge
CB1 4JN

All maintenance and service on the product must be carried out by Acorn
Computers’ authorised dealers. Acorn Computers can accept no liability
whatsoever for any loss or damage caused by service or maintenance by
unauthorised personnel. This manual is intended only to assist the reader
in the use of the product, and therefore Acorn Computers shall not be
liable for any loss or damage whatsoever arising from the use of any
information or particulars in, or any error or omission in, this manual, or
any incorrect use of the product.

 3

Contents

Econet for advanced users 5

Conventions used in this guide 6

Programming with the filing system 7

Including file server commands in programs 7
Using BASIC file-handling keywords 8
Using operating system routines 8
Reserving memory 10
Filling the memory 10
Assigning entry values 11
Calling the routine 13
Evaluating the results 14
Using a routine to open a file 15
Control blocks 15
Filling a control block 16
Pointing to a control block 16
Using a control block 17
Starting work 17

Programming with the network 18

Transmitting and receiving 19
Checking for errors 22
Constructing a TRANSMIT program 24
Constructing a RECEIVE program 26
Immediate operations 28
Other OSWORD and OSBYTE calls 29

Frames and the four-way handshake 30

The four-way handshake 30
The monitor utility 32

Additional Econet commands 34

Copying another station’s screen 34
Taking over another station 35
Sending short messages 36
Protecting your station 36

 4

Reference section

Filing system programming 37

Network programming 45

Listing of example TRANSMIT and RECEIVE
programs 73

Econet error handling 76

Circuit diagrams 77

Econet interface on the BBC Microcomputer 77
Econet terminator and clock boxes 78

Index 79

 5

Econet for advanced users

This guide deals with features of Econet and its filing
system that are not covered in the other Econet user
guides. Many of these features are available only on Level
2 systems, and the guide has been written with Level 2
users primarily in mind. The first two sections describe:

� how to use the network filing system from programs
� how to use the network itself from programs.

These sections introduce the facilities available and
include example programs and program lines. Later in the
guide, there is a reference section which gives all the
details you need to use these facilities, once you have
become familiar with the principles.

After the two programming sections, there are sections
which describe:

� how, in detail, communications between stations are

handled by the network
� a set of additional Econet commands, not covered in

other Econet user guides, which enable you to
communicate with, or take over, other stations.

At the end of the guide, you will find a note on Econet
error handling, two circuit diagrams and an index.

You will need to have read:

� the BBC Microcomputer User Guide, which we refer

to as the BBC User Guide
� the Econet Level 2 File Server user guide, which we

refer to as the Econet user guide.

The examples in this manual are of BASIC programs, but
the principles are the same for assembler programs.

 6

Conventions used in this
guide

The following abbreviations are used for the four
processor registers:

A accumulator
X X register
Y Y register
C carry bit of the processor status register.

When X and Y hold a two-byte value, X holds the least-
significant byte, and Y the most-significant byte.

D, N, V and Z are used for flags in the processor status
register.

& indicates a hexadecimal number.

Multiple-byte values are held in 6502 order: least-
significant byte at the lowest address and most-significant
byte at the highest address.

Buffer addresses are four bytes long, to accommodate the
addressing range of 16-bit and 32-bit second processors.

Control blocks are shown with addresses increasing down
the page. The offset of the first byte of a field is marked
opposite that field, with the length of the last field (where
it is fixed) indicated by an offset for the next unused
location.

 7

Programming with the filing
system

The Econet filing system is only one of the several filing
systems available for BBC Microcomputers – others
include the cassette system, the local disc filing system
and the telesoft system.

All these systems can be used from your own programs,
and the methods you use are in principle the same for all
of them. But there are some variations. This section gives
you all the information you need to program with the
Econet filing system.

There are three ways you can use the Econet filing system
from your programs:

� including file server commands in your programs
� using the BASIC file-handling keywords, like

BGET# and PTR#
� calling operating system routines directly.

Including file server commands in
programs

This is the simpler of the three methods.

EXAMPLE
100 *LOAD DATA 3000

This program line would load the file DATA into memory
at. address 8c3000.

In a line like this, the characters after the + are sent
direct to the operating system command line interpreter
(OSCLI) routine, so BASIC variables cannot be included
in the line.
In BASIC II, there is an OSCLI function which takes a
single string as its argument and sends it to the command
line interpreter. This function enables you to include
BASIC variables.

 8

EXAMPLE

10 filename$=" DATA"
20 OSCLI "LOAD "+filename$+ " 3000"

In both versions of BASIC, you can call OSCLI directly,
using a routine which is part of your machine’s operating
system: this is described in the BBC User Guide.

The distinction between BASIC I and BASIC II, and the
way to find out which version you have, are explained
towards the back of the Econet user guide.

Using BASIC file-handling keywords

This method is described in the Econet user guide.

Using operating system routines

The third way of using the Econet filing system from your
programs is to call operating system routines directly.

In the BBC Microcomputer, 16K of ROM contains the
operating system (OS). Within this area there is a set of
routines, which you can use by giving their entry
addresses. When you include a file server command in a
program, the operating system will interpret the command
and then call the appropriate operating system routine.
You can also call a routine directly: this is more
complicated, but gives you a wider range of activities.
You can, for example:

� change a file’s reload address, execution address and

attributes
� read the entries in a catalogue
� find the length of a file.

There are two BASIC keywords which you can use to
invoke an operating system routine: CALL and USR.
CALL is used to run the routine, USR to run the routine
and put its result into a BASIC variable. These two
keywords are explained in detail in the BBC User Guide.

 9

The account of operating system routines that follows
assumes that you are familiar with CALL, USR, and the
use of A%, X%, Y% and C%.

Each routine has a vector address in RAM. The entry
address you give contains an instruction to:
− find the vector address
− look at the ROM address held there
− go to that ROM address.

In other words, the routine is reached by jumping through
the vector address. The contents of the vector address in
RAM may be changed to allow for different ROM
arrangements in different operating systems.

RAM ROM
User’s program
 entry address
Vector address
 routine
User’s program

There are six operating system routines available to
programmers who want to make this sort of direct use of
the Econet filing system:

� OSFILE
� OSFIND
� OSARGS
� OSBPUT
� OSBGET
� OSGBPB.

Some of these routines carry out one particular function,
but most can carry out a range of related
functions. OSFILE, for example, carries out a range of
functions related to reading and writing file or
catalogue information, including:
− loading a file
− saving a file
− writing a file’s catalogue information
− deleting a file or directory.

The reference section at the back of this guide gives
complete details of the functions of all six routines.

 10

To use any of these routines, you:

1 reserve memory for the items of information the

routine needs
2 fill in the reserved memory with that information
3 assign values that will be transferred to some or all of

the registers A, X and Y (A, for example, is often
used to select a particular function from the routine’s
range of functions)

4 call the routine, using the BASIC keywords CALL or
USR, and giving the entry address of the routine

5 evaluate the results.

Reserving memory

This is done using the DIM statement. For example

10 DIM file% 30

DIM here reserves a series of bytes nationally numbered 0
to 30 – that is, 31 bytes – for the variable file%, and puts
the address of the bytes into file%.

Filling the memory

To fill the reserved memory with the information needed
by the routine, you use the indirection operators:

? the byte indirection operator
! the word indirection operator
$ the string indirection operator.

These operators are explained in the BBC User Guide,
chapter 39.

EXAMPLES

100 ?M%=0

means: set the contents of the byte of memory reserved at
location M% to 0.

 11

110 PRINT !M%

means: print in hex the contents of the four bytes starting
at M%.

120 $M%="ECONET"

means: put the ASCII codes representing the string
ECONET into memory, starting at location M%, and
ending the string with a carriage return.

Assigning entry values

In this stage, you assign values to the BASIC variables
that CALL or USR will look at. The CALL or USR
function will transfer these values into the four registers.

Variable register

A% → accumulator (A)
C% → the carry bit (C) of the processor

status register (P)
X% → X register (X)
Y% → Y register (Y)

EXAMPLE

120 A%=&40

This line puts the hexadecimal number 40 into the
variable A%. The CALL or USR function will transfer this
value to the A register. This register is normally used to
select a particular function from the range of functions
available from a routine.

All BASIC variables contain four bytes, but each register
can take only one byte, and C takes just one bit. CALL
and USR handle this by transferring only:
− the lowest byte of A%, X% or Y% to A, X or Y
− the lowest bit of C% to C.

 12

EXAMPLES

A% A
&0000F3FE &FE
&3423CB22 &22

C% C
&00033224 binary 0
&000000F1 binary 1

Often, you will want to give the routine two-byte values,
which you will have to split between two registers.

You do this with the calculation DIV 256, which has the
effect of removing the lowest byte – that is, the last two
hexadecimal digits.

EXAMPLES

23,768 is a two-byte value: in hex, &5CD7.

23,768 divided by 256 is 92, remainder 216.

The DIV function performs this calculation, ignoring the
remainder. So 23,768 DIV 256 is 92: in hex, &5C.

The effect, then, of the DIV calculation is to remove the
last two hex digits:

&5CD 7 – > &5C

To split 23,768 between the two registers X and Y:
− set X% to &5CD8
− it will contain, in full, &00005CD8
− set Y% to (X% DIV 256)
− Y% will contain &0000005C
− only the last byte of X% – &D8 – will be transferred

to X
− only the last byte of Y% – &5C – will be transferred

to Y.

 13

&5CD8

 X%: &00005CD8
 ↓
 Y%: &0000005C
 ↓
 Y: &5C X: &D8

130 X%=f ile%
140 Y%=X% DIV 256

This example splits the contents of the variable file%
between X% and Y%.

When you call the routine, the value in X%, the least-
significant byte, will be put into the X register, and the
most-significant byte (the value in Y%) will go into the Y
register.

Calling the routine

You now call the routine, using CALL or USR.

EXAMPLES

200 CALL &FFDD

This calls the routine whose entry address is hex FFDD.

210 U%=USR &FFCE

This calls the routine at &FFCE, putting the result into the
variable U%.

 14

Evaluating the results

The simplest way to evaluate the results of a routine is to
use USR, and print the contents of the variable into which
USR puts its result.

EXAMPLE

220 PRINT ~U%

This means: print in hex the number in U%.

The result from a USR call will be a four-byte variable,
containing the values in the registers at the end of the
routine; in hex it will look something like this:

71 1B 84 24
↓ ↓ ↓ ↓
P Y X A

You are likely to be interested in only part of this result –
just the contents of the X register, perhaps. To find the
part of the result you want, you mask off the other
sections of the variable.

EXAMPLES

10 P%=U% AND &FF
20 PRINT ~P%

displays &24, the contents of the A register. (The BBC
User Guide explains how to use AND.)

10 P%=U% AND &FF00
20 Q%=P% DIV 256
30 PRINT ~Q%

displays &84, the contents of the X register.

 15

Using a routine to open a file

This program uses the routine OSFIND to open the file
DATA for input only.

100 DIM file% 30 reserve 31 bytes for file%

110 $file%="DATA" put the address of the filename

DATA into the variable file%

120 A%=&40 select the function in OSFIND

that opens a file for input only

130 X%=file% split the address of the
140 Y%=file% DIV 256 filename DATA between the X

and Y registers

150 U%=USR &FFCE call OSFIND and put the result

in the variable U%

160 ch%=U% AND &FF mask off U% so that the

channel number (in the A
register) is shown

170 PRINT ch% display the channel number

Control blocks

Two of these six routines, OSFILE and OSGBPB, make
use of control blocks. These are small areas of memory set
aside to hold the data that you want the routine to handle.
Within a block, data is arranged in fields of varying sizes.
The arrangement of control blocks varies with different
routines and operations. A typical 18-byte block might be
arranged like this:

 16

0 2 bytes of data
2 4 bytes of data
6
10
14
18

The numbers at the left of the diagram are the addresses in
decimal of each field, given as an offset from the location
of the start of the block. Each field will hold a particular
piece of data. The reference section gives details, for each
routine, of what kind of data to put in each field.

When you use OSFILE or OSGBPB, you reserve memory
for the block, fill the block, and give the routine pointers
to the block.

Filling a control block

To fill the control block, you use the indirection operators.
In this example, the control block starts at location cb%.

 control block
0 ←?cb%
2 ←cb%!2
6
10 ←cb%!10
14
18

Pointing to a control block

To point to the control block, you split the start address of
the block – the variable cb% – between the X and Y
registers.

 17

Using a control block

The following example changes the reload address of the
file DATA to %6000, using the routine OSFILE.

10 DIM cb% 20 set aside memory for a
20 DIM file% 30 control block (cb%) and a

string file%

30 $file%="DATA" put the filename DATA into

memory at the value of the
variable file%

40 !cb%=file% fill the control block with
50 cb%!2=&6000 the data it needs

60 X%=cb% point to the control block,
70 Y%=cb% DIV 256 by splitting the contents of the

variable cb% between the
variables X% and Y%, for
transfer to the X and Y
registers

80 A%=2 select function 2, which

changes the reload address

90 CALL &FFDD call OSFILE, whose entry

address is &FFDD

The routine then executes, using the control block you
have set up.

Starting work

You can now start programming with the Econet filing
system, using the six operating system routines we have
mentioned. You will find details of all their addresses,
functions, control blocks and results in the reference
section at the back of this guide.

 18

Programming with the
network

This section tells you how to write programs that send
data between Econet stations. There are two kinds of
network communication: co-operative and immediate. Co-
operative operations require the participation of two
stations: you will need to run a TRANSMIT program at
one station and a RECEIVE program at the other.
Immediate operations enable you to communicate with
another station just by running one program at your
station.

Both types of operation are controlled by software in the
Econet EPROM. To use them, you need not have Econet
as your selected filing system (you could be working
under the disc filing system, for example).

Like filing system programs, network programs make use
of operating system routines. The two you will use are:

� OSWORD
� OSBYTE.

OSWORD works with a control block. Routines and
control blocks are explained in the previous section,
Programming with the filing system.

In this section, we work through an example of a co-
operative operation, which enables you to use your
keyboard to play musical notes at another station. This
operation uses a TRANSMIT program and a RECEIVE
program: there are full listings of both programs at the
back of the guide.

There is a third kind of co-operative operation,
BROADCAST, which is described in the reference
section.

 19

Transmitting and receiving

When you send data through the network, you specify:

� a station number
� a port number.

In network programming, station numbers are two-byte
values. The most-significant byte is usually zero, and is
used only in installations where several networks are
connected together. The numbers you can use are & 01 to
&FE. Stations &00 and &FF are special cases. In
transmitting operations, they are reserved for
BROADCAST; in a RECEIVE program, you can specify
station &00, in which case your station will accept
messages from any other station.

Port numbers allow stations to carry on more than one
conversation at a time. You specify a particular port at
 the receiving station, on which it will accept your
message. The station will be able to receive other
messages at the same time:
− from your station, on other ports
− from other stations, on the same port.

The range &01 to &FF is available. For your
TRANSMIT and RECEIVE programs to work, the
receiving port number must match the transmitting one.
You can set up a station to receive on port &00, in which
case it will accept every message sent it, whichever port
numbers those transmissions gave.

Stations &EB and &FE are normally the printer server
and the file server. Ports &90 to &9F, &DO and &D1 are
reserved.

The TRANSMIT and RECEIVE programs each use:

� a control block
� a data buffer.

 20

Each control block contains details of:
− the type and status of the operation
− the number of the station transmitting or receiving
− the port number
− the address of the data buffer.

The transmitting station’s data buffer is the area of
memory that will contain the data to be transmitted; the
receiving station’s buffer is the area where that data will
be stored, once it has been received.

In your TRANSMIT program, you:

� set up your TRANSMIT control block and your

buffer
� fill the control block
� put the data you want to send into the buffer
� call OSWORD to start the transmission, pointing to

your control block.

The NFS software will take a copy of the TRANSMIT
control block, and put the copy in its own memory. The
data in that copy will change, depending on the status of
the transmission – so you can find out what stage the
transmission has reached by examining the copy. You do
this by:

� calling OSBYTE, to check that the transmission has

finished, and whether or not it has succeeded.

transmitter receiver

buffer control block control block buffer

 21

In the RECEIVE program, you:

� set up a buffer into which you will receive data, and a

RECEIVE control block
� fill the control block
� call OSWORD to open the RECEIVE block, so that

your station is ready to receive data.

Again, the NFS software will make a copy of your block.
The OSWORD call will give you a number by which you
will be able to refer to that copy, so that you can check the
progress of the reception. You do this by:

� calling OSBYTE, giving the RECEIVE control block

number.

When some data has arrived, you:

� call OSWORD again to read and delete the control

block copy
� read the data received.

The control blocks you use look like this:

 TRANSMIT
0 control byte must be set when the

routine starts to any
value, like &80, in
which the top bit is set:
will be reset to 0 if the
transmission fails to
start

1 destination port the number of the port
you want to transmit to
(1 byte)

2 destination station the number of the
station you want to
transmit to (2 bytes)

4 address of buffer start (4 bytes)
8 address of buffer end (4 bytes)
12

 22

 RECEIVE
0 &00
1 flag indicates whether the

block is ready to receive;
should be set to &7F
when the routine starts;
when a transmission is
received, the
TRANSMIT control byte
is written here

2 receiving port (1 byte)
3 station (2 bytes)
5 address of buffer start (4 bytes)
9 address of buffer end (4 bytes)
13

The addresses of the starts and ends of the buffers are
four-byte values, so that 16-bit and 32-bit second
processors can be used.

The operating system has room for up to 16 control block
copies. Reading a block back using OSWORD has the
effect of deleting the copy; you can also use OSBYTE to
delete a control block copy without reading it back.

When you have written the TRANSMIT and RECEIVE
programs, you run them simultaneously at the two stations
you want to use. It is vital to make sure that the two
programs agree on which station numbers you are using,
and which port you want to receive at.

Checking for errors

Writing programs to communicate between two machines
is more complicated than writing for a single machine.
This is partly because there are several ways in which an
attempt to transfer data could fail, and you need to be able
to identify what went wrong and take appropriate action.

 23

In particular, a transmission may fail to start because:

� another transmission is in progress from the

transmitting station
� the transmitting station’s disc drive is in use: that is,

the disc drive is actually spinning.

A transmission may start but fail to finish because:

� your TRANSMIT and RECEIVE control blocks fail

to match
� you are trying to send more data than the RECEIVE

block is set up to accept
� there’s something wrong with the network (your

station is not plugged in, the clock or the terminators
are not switched on, or there’s a hardware fault)

� a packet of data has been damaged by electrical
interference (this happens very rarely, but your
programs should allow for the possibility).

In your program, you will need to distinguish between
three possible results:
− success
− fatal error
− non-fatal error.

In the first case, data will successfully have been
transmitted. In the second, there is something wrong with
the network or the control blocks, so that there is no point
in trying to transmit again. In either case, you will want
the program to continue, and not repeat the transmission.

The third category, non-fatal error, covers cases where the
transmission may have failed for a temporary reason:
− electrical interference
− the remote station is busy, and therefore does not
− for the moment have an open RECEIVE control

block
− the network is at that moment busy.

In these cases it’s worth trying to transmit several times
before finally deciding that the operation has
failed – most likely because the station you are trying to
transmit to is not plugged in, or does not have a
RECEIVE block set up.

 24

If an error has occurred, the OSBYTE call used to check a
transmission’s progress will return one of these values:

&40 network jammed fatal
&41 packet damaged or RECEIVE buffer

too small
non-fatal

&42 receiving station not listening
(perhaps because the control blocks
don’t match)

non-fatal

&43 not plugged in, or clock not switched
on

fatal

&44 Program error: a badly-formed
TRANSMIT control block

fatal

Constructing a TRANSMIT program

1 Reserve memory for your control block and buffer.

70 max_tx_length%=20
90 DIM cblock%13,txbuffer% max_tx_length%

Line 90 reserves memory for your TRANSMIT control
block and your buffer. Line 70 sets the variable
max_tx_length% to the maximum amount of data you
expect to transmit.

2 Fill the control block.

310 cblock%?1=port%
320 cblock%!2=station%
330 cblock%!4= txbuffer%
340 cblock%!8= txbuffer%+length%
430 ?cblock%=&80

The values of port%, station%, txbuffer% and length%
would be given elsewhere in your program.

3 Say what will be transmitted.

140 key%=GET
150 PRINT CHR$key%;
160 ?txbuffer%=key%

These lines print and put into the buffer a character

 25

representing the key you press at the transmitting station.

4 Give the OSWORD routine its entry values.

410 X%=cblock%:Y%=cblock% DIV 256:A%=&10

This sets the X and Y registers to point to your control
block, and the A register to function &10, OSWORD’s
TRANSMIT function.

5 Call OSWORD.

60 OSWORD=&FFFl:OSBYTE=&FFF4
(program lines)
440 CALL OSWORD

Line 60 puts the entry addresses of each of the routines
you will use into variables; 440 then calls
OSWORD.

6 Make sure your transmission has been able to start.

When a transmission fails to start, the control byte is
set to 0; so you read your TRANSMIT control block,
looking at the control byte. If it’s 0, try to start
transmitting again. Otherwise, go on to the next stage
of the program.

360 REPEAT
(lines starting the transmission)
450 UNTIL ?cblock%<>0

Inside this loop is a line that resets the control byte to the
correct value each time:

430 ?cblock%=&80

7 Check whether your transmission has finished. The

process is called polling.

490 REPEAT
500 A%=&32:U%=USR OSBYTE
510 UNTIL (U% AND &8000)=0

These lines repeatedly examine the status of the
transmission. Line 500 sets the A register to &32, the
“poll transmit” function, calls OSBYTE, and has the result
put into the variable U%.

When a transmission is completed, the top bit of the X
register is set to 0. Line 510 masks off this element of U%
by ANDing U% with the binary value 1000000000000000
– in hex, &8000.

 26

8 Check the result of the transmission.

350 tries%=10:delay%=50
360 REPEAT
(lines setting up and starting transmission)
550 txresult%=(U% AND &FF00) DIV 256
555 nonfatal%=txresult%=&41 OR txresult%=&42
560 IF nonfatal% THEN
PROCdelay(delay%):tries%=tries%-l
570 UNTIL tries%=0 OR NOT nonfatal%

Line 550 masks off the X register byte in the four-byte
value of U%, and puts the contents of X into the
variable txresult%. The other lines mean:
− if the value in X is &41 or &42 (that is, non-fatal),

delay (using a procedure defined elsewhere in the
program), and try again, up to ten times.

9 Check what error occurred, if any. You do this by

including lines which:
− examine txresult%
− print out something like “Success” if txresult% is 0
− otherwise, print an appropriate error message,

depending on the value of txresult%
− end the program.

Constructing a RECEIVE program

1 Reserve memory for your control block and data

buffer.

40 max_rx_length%=20
50 DIM cblock%13,rxbuffer% max_rx_length%

2 Fill the control block.

215 ?cblock%=0
220 cblock%?l=&7F
230 cblock%?2=port%
240 cblock%!3=station%
250 cblock%!5=rxbuffer%
260 cblock%!9=rxbuffer%+max_rx_length%

 27

3 Give OSWORD its entry values.

300 X%=cblock%:Y%=cblock% DIV 256:A%=&11

4 Call OSWORD.

30 OS WORD=&FFF1: OSBYTE=&FFF4
310 CALL OSWORD
320 rxcb_number%=?cblock%

OSWORD takes a copy of your control block, and gives
you a number by which you will refer to the copy; line
320 puts this number into the variable rxcb_number%.

Your machine is now waiting, ready to receive data.

5 Call OSBYTE to poll the RECEIVE control block.

360 A%=&33:X%=rxcb_number%
370 REPEAT:U%=USR OSBYTE
380 UNTIL (U% AND &8000)<>0

These lines repeatedly call OSBYTE, sending the routine:
− the function number &33
− the control block number.

The result of the routine is returned in the X register, and
is the control byte of the NFS copy of your RECEIVE
block. This byte will change, when the buffer receives
data, from &7F to some value with the top bit set. The
OSBYTE call repeats itself until the top bit of the X
register changes to 1.

Once that has occurred, the data is in the buffer.

6 Use OSWORD to check the result of the reception,

by reading back the network copy of the RECEIVE
control block.

420 X%=cblock%:Y%=cblock% DIV 256:A%=&11
430 ?cblock%=rxcb_number%:CALL OSWORD

These lines call OSWORD, sending the routine:
− the function number &11
− a pointer to the area you want to copy the control

block into
− the RECEIVE control block number.

 28

The routine copies the control block, altering it to contain:
− the number of the station that sent the data (if the

original control block gives 0 for the station number)
− the number of the port the data was received on

(again, if the original had 0)
− the new value of the “end buffer” pointer (this value

changes depending on the amount of data received
into the buffer).

7 Find out how much data was actually received.

440 bytes_received%=cblock%!9-cblock%!5

This line subtracts the value of the “end buffer” pointer
from the value of the “start buffer” pointer.

8 Read the data.

110 key%=?rxbuffer%
120 PROCSOUND(key%)

Line 120 invokes a procedure, defined elsewhere in the
program, that will translate the key data received into
sound.

Immediate operations

Immediate operations are those which you can carry out
without the co-operation of another station: you do not
need to set up any program at the other station. One
immediate operation, for example, enables you to read an
area of another station’s memory.

To carry out an immediate operation, follow the steps you
go through in a TRANSMIT program. The control block
you use will be different with different operations; the
details you need are in the reference section.

You can protect your station against another station’s
immediate operations with an OSWORD call. Again,
details are in the reference section.

 29

Other OSWORD and OSBYTE calls

There are several other useful OSWORD and OSBYTE
calls, which you can use to program with the network.

call A set

to
first byte of
control block
set to

function

OSWORD &13 function code reading and writing
station information

OSWORD &14 &00 communicating
with the file server

OSWORD &14 &01 sending text
messages

OSWORD &14 &02 causing a remote
error

OSBYTE &35 severing a remote
connection

These calls are described in detail in the reference section.

 30

Frames and the four-way
handshake

This section describes what happens during a TRANSMIT
operation. The sequence of events is determined by
software which drives a controller chip – the MC68B54
Advanced Data Link controller – in the Econet interface
in your BBC Microcomputer. The 68B54 sends data in
bundles called packets or frames.

During a single Econet TRANSMIT operation, four
frames are exchanged. The sequence is called a four-way
handshake:

1 the source station sends out an “Are you there‘?”

frame, called a scout

2 the destination station sends back an

acknowledgement

3 the source station sends its data

4 the destination station returns a final

acknowledgment.

During a four-way handshake, no-one else can use the
network.

The handshake ensures that a transmitter can tell for
certain whether its message has been successfully
received: if the final acknowledgement arrives, the data
must have reached its destination.

The four-way handshake

The scout frame is ten bytes long, and is arranged like
this:

1 byte 2 bytes 2 bytes 1 byte 1 byte 2 bytes 1 byte
flag destina-

tion
station

source
station

control
byte

port byte CRC flag

The opening and closing flags mark the beginning and end
of the frame, and always contain 01111110. Information
about the destination and source stations

 31

is held in each case as a pair of bytes: the first of the pair
contains the station number itself. The CRC is a 16-bit
cyclic redundancy check, the result of a calculation
carried out on all the bits (except the flags and any
inserted zeros) in the frame.

The destination station now compares the scout with its
open RECEIVE control blocks, to try to find a match.
While the search takes place, it sends out a stream of flags
to prevent other stations from claiming the line. The
process is called flag fill.

If it finds a match, it stops flag fill and sends an
acknowledgement in a frame eight bytes long, arranged
like this:

1 byte 2 bytes 2 bytes 2 bytes 1 byte
flag destina-

tion
station

source
station

CRC flag

When it receives this acknowledgement frame, the
transmitting station begins to send its data. The length of
the data frame depends on the size of the data; its
arrangement is like this:

1 byte 2 bytes 2 bytes 2 bytes 1 byte
flag destina-

tion
station

source
station

data CRC flag

Finally, as long as the transfer was successful, the
receiving station sends its second acknowledgement,
identical in form to the first.

If the final acknowledgement does not get through, the
transmitter cannot be sure whether the data was received
or not. In some applications, it may be risky to re-
transmit, because the receiving station might, at the end of
the process, have two sets of identical data. This problem
is characteristic of the four-way handshake protocol. The
solution is to identify each transmission with a number,
either in the data itself or in the control byte, so that the
receiver can distinguish between a retransmission and a
new transmission.

 32

The monitor utility

Every Econet system has on its master disc a utility
program called NETMON (in Level 1 File Servers) or
NETMONITOR (in Level Z). This program enables you
to see frames on the screen – making it easy, for example,
to find out what has gone wrong when a transmission
fails.

Type: *NETMON[RETURN]
on a Level 1 system

or: *NETMONITOR[RETURN]
on a Level 2 system

A message like this will appear:

Screen: ECONET MONITOR 001

1E

From now on, every communication on the network will
show up on your screen.

EXAMPLE

In this example, a user at station 189 *DELETEs a file.

FE00BD0080v99

BD00FEv00

FE00BD00900001020444454C455445v0D

BD00FEv00 i

BD00FE0080v90 FE00BDv00 BD00FE0000v00 FEBDv00 i

 scout acknowledgement data acknowledgement

The process involves two four-way handshakes. The four
frames in each handshake are arranged horizontally: scout,
acknowledgement, data, acknowledgement. In each frame,
the flags and the CRC are not shown. The “i” at the end of
each line shows that the network is, at that point, idle.

From this screen display, you can see immediately the
contents of each frame. For example, the first scout shown
contains:

 33

1 byte 2 bytes 2 bytes 1 byte 1 byte 2 bytes 1 byte
flag destina-

tion
station

source
station

control
byte

port
byte

CRC flag

 FE 00 BD 00 80 99

FE is the file server number, 254 in decimal, and BD is
the station number, 189. The “v” character shows that the
frame has been checked, using the CRC, and is valid.

To make the screen easy to read, the program:
− shows a space between each frame
− starts a new line after every “i”
− truncates long data frames.

The monitor facility is useful for checking up on
transmission failures. This screen, for example, shows a
scout frame that has received no acknowledgement:

FE00BD0080v99 i

The result of this would be a &42 error.

In this example, station 189 has tried to send station
1more data than its buffer was set up to receive:

0100BD0080v99 BD0001v00 0100BD00AABBCCb i

The four-way handshake has been aborted in the middle
of the data packet. The “b” indicates an aborted
handshake.

Apart from i, v and b, three other status letters can appear:

e CRC check has failed, because of noise on the network or

electrical interference
d the data carrier detect input to the 68B54 has changed:

probably, no clock signal is being received
o overrun: the network is running too fast for the monitor

To leave the monitor program
press: [CTRL][BREAK]

 34

Additional Econet
commands

This section describes a set of Econet commands which
are not covered in one or both of the other Econet user
guides, because their use can affect the security of the
network.

Copying another station’s screen *VIEW

Type: *VIEW <station number>[RETURN]

to copy the screen of the station number specified on to
your screen.

If the screen of the station you wish to view is in a screen
mode with a higher number than your own, it will change
the mode of your screen to that of the other station.

If the number is lower you will get an error message,
“Mode <number>”. This is to prevent the change of mode
overwriting your BASIC workspace. You can read the
remote machine’s mode after such an error: instructions
are in the section Econet error handling.

EXAMPLE

if you want to view a screen in mode 3 while yours is in
mode 7 you will see the error message “Mode 3” on your
screen.

You can also view another user by specifying the user
identifier.

Type: *VIEW JPB[RETURN]

to copy JPB’s screen on to yours, if JPB is logged on to the
file server. If he is logged on at more that one station you
will copy the screen of the station at which he logged on
first.

 35

You can include *VIEW in programs. For example, if you
want to stop your own prompt appearing on your screen in
the middle of the one you have copied, write the following
short BASIC program to prevent the prompt appearing
until you press [ESCAPE].

To view station 100

10 *VIEW 100
20 REPEAT:UNTIL0:REM LOOP FOREVER

Taking over
another station

*REMOTE and *ROFF

This takes over the other machine completely and disables
its keyboard.

Type: *REMOTE <station number>[RETURN]

EXAMPLE

To take over the user JOE at station 200, if you are at
station 100

type: *REMOTE 200[RETURN]
or: *REMOTE JOE[RETURN]

If you now type RUN at station 100, whatever instructions
you type will be carried out at JOE’s station and he will
have no control over it.

To sever the connection

type: *ROFF[RETURN]

Pressing [BREAK] at the station which has been taken
over, or switching it off, does not break the remote link.
Pressing [BREAK] on your machine may cause “Not
Listening” or “No Reply” messages on the remote
machine, if it tries to communicate with you after the link
is broken.

 36

Sending short messages *NOTIFY

You can send a one-line message to another station using
*NOTIFY.

Type: *NOTIFY <station> <message>[RETURN]
or: *NOTIFY <user id> <message>[RETURN]

EXAMPLE

To send a message from station 100 to JOE at station 200

type: *NOTIFY 200 HOW ARE YOU? [RETURN]

The message will go into the keyboard buffer of JOE’s
machine, which will beep and print

--100: HOW ARE YOU? –

No carriage return is printed so JOE can delete the
message before continuing.

Protecting your
station

*PROT and *UNPROT

You can stop other users using *REMOTE, *VIEW and
*NOTIFY on your station by typing

*PROT[RETURN]

and remove the protection by typing

*UNPROT[RETURN]

Any station which tries to contact yours using *NOTIFY
after it has been protected will get a “Not listening”
message. If a user tries to use *REMOTE or *VIEW the
keyboard will be disabled until [ESCAPE] is pressed.

NOTE: if you are using file server software version 3.34
station numbers 240-254 are known as privileged stations
in the Econet, and are able to by-pass this protection.

 37

Filing system
programming

This section describes the six operating system routines
used for programming with the Econet filing system:

� OSFILE
� OSFIND
� OSARGS
� OSBPUT
� OSBGET
� OSGBPB.

On exit, in general:

� N, V and Z are undefined
� the interrupt state is preserved.

Interrupts may be enabled during the operation.

 38

programming with the filing system

OSFILE file or directory information

entry address &FFDD vector address &212
entry A function code
 X, Y pointer to control block
exit A in function &05: type of object found
 in function &06: 0 if object not found
 X undefined
 Y undefined
 C undefined

control block

0 address of filename
2 reload address
6 execution address
10 start address or length
14 end address or attributes
18

functions

&FF loads file at specified reload address, or, if low byte

of execution address parameter is not zero, at file’s
own reload address. Control block is updated with
file’s catalogue information (load address,
execution address, length, attributes).

&00 saves file, and reads its catalogue information into

control block.

&01 changes file’s reload address, execution address

and attributes to values given.

&02 changes file’s reload address to value given. Only

reload address need be given in control block.

&03 changes file’s execution address to value given.

Only execution address need be given in control
block.

&04 changes file’s attributes to values given. Only

attributes need be given in control block.

 39

&05 reads object’s catalogue information into control
block. On exit, A indicates type of object:

&00 no object found
&01 file found
&02 directory found.

&06 deletes object. If no object found, A is set to 0 on

exit.

file attributes

A file’s attributes are held as a four-byte item, arranged in
the control block as follows:

byte bits state meaning
14 7 undefined.
 6 undefined
 5 0 not writable by other users
 1 writable by other users
 4 0 not readable by other users
 1 readable by other users
 3 0 not locked
 1 locked
 2 undefined
 1 0 not writable by owner
 1 writable by owner
 0 0 not readable by owner
 1 readable by owner
15 days
16 0 to 3 months
 4 to 7 years since 1981
17 undefined

 40

Programming with the filing system

OSFIND opening and closing objects

entry address &FFCE vector address &21C
entry A function code
 X, Y in functions &40, &80 and &C0: pointer

to filename
exit A in functions &40, &80 and &C0: channel

number
 X undefined
 Y undefined
 C undefined

functions

&40 opens file for input only; returns channel number in

A.

&80 creates and opens file for update; returns channel

number in A.

&C0 opens file for update; returns channel number in A. If

file does not exist, A=0.

&00 closes channel number in Y; if Y is 0, closes all open

objects.

Programming with the filing system

OSARGS attributes of open object

entry address &FFDA vector address &214
entry A function code
 X address of first of four locations in zero

page
 Y channel number; if 0, selects special

operation

 41

exit A in function &00: 0 or, if Y=O on entry,

indicates filing system type
in function &01: 0 or, if Y=O on entry,
undefined
in function &02: 0 or, if Y=O on entry,
indicates version number of NFS

 X undefined
 Y undefined
 C undefined

functions

&00 puts value of sequential pointer into locations

indicated by X, and returns 0 in A. If Y is 0 on
entry, returns in A a value to indicate current
filing system:

0 no current filing system
1 cassette, 1200 baud
2 cassette, 300 baud
3 ROM
4 disc
5 Econet
6 teletext/prestel.

&01 updates sequential pointer from locations

indicated by X; if pointer is moved past file end,
file is extended with zeros and zero is returned in
A. If Y is 0 on entry, returns pointers to the
command line of the last command sent to the
file server in the locations indicated by X, so that
decoding of a command line can take place
inside a program loaded as a command. In NFS
version 3.34, pointer is set to position in
command line immediately after +. In version
3.40, pointer is set to first non-space position
after command itself.

&02 puts file’s extent into location indicated by X,

and returns 0 in A. If Y is 0 on entry, returns in A
a value to indicate NFS version number:

2 NFS version 3.34
1 NFS version 3.40 or greater.

 42

Programming with the filing system

OSBPUT write byte

entry address &FFD4 vector address &218
entry A byte to be written
 X undefined
 Y channel number
exit A preserved
 X preserved
 Y preserved
 C undefined

function

writes byte to file at position of sequential pointer.

Programming with the filing system

OSBGET read byte

entry address &FFD7 vector address &216
entry A undefined
 X undefined
 Y channel number
exit A byte read if operation successful, &FE if

reading the byte after end of file
 X preserved
 Y preserved
 C 1 if reading the byte after end of file, 0

otherwise

function

reads byte from file at position of sequential pointer.

 43

programming with the filing system

OSGBPB read and write bytes

entry address &FFD1 vector address &21A
entry A function code
 X, Y pointer to control block
exit A undefined
 X undefined
 Y undefined
 C undefined

control block

0 channel number (in function &08: cycle
number)

1 data pointer
5 number of bytes (in function &08: number of

files)
9 number of bytes (in function &08: number of

files)
13

functions

&01 writes specified number of bytes to file, from area of

memory pointed to by data pointer. File pointer
indicates where in file writing should start. On exit,
file pointer updated to point to byte after last one
written to file, and “number of bytes” field indicates
how many bytes were not transferred.

&02 writes specified number of bytes to file, from area of

memory pointed to by data pointer. Sequential
pointer indicates where in file writing should start.
On exit, “number of bytes” field indicates how many
bytes were not transferred.

&03 reads specified number of bytes to area of memory

pointed to by data pointer. File pointer indicates
where in file reading should start. On exit, file
pointer updated to point to byte after last one read
from file, and “number of bytes” field indicates how
many bytes were not transferred.

 44

&04 reads specified number of bytes to area of memory

pointed to by data pointer. Sequential pointer
indicates where in file reading should start. On exit,
“number of bytes” field indicates how many bytes
were not transferred.

&05 using data pointer, reads into memory:

− length of disc title (1 byte)
− disc title (ASCII string, up to 16 bytes)
− user’s option (1 byte).

&06 using data pointer, reads into memory:

− a zero byte
− length of name of currently-selected directory (1

byte)
− directory name (ASCII string, up to 10 bytes)
− &00 for owner access or &FF for public access.

&07 using data pointer, reads into memory:

− a zero byte
− length of name of currently-selected library (1

byte)
− library name (ASCII string, up to 8 bytes)
− &00 for owner access or &FF for public access.

&08 reads specified number of filenames into memory.

Returns filenames in order, each preceded by a length byte
and left-justified in a field of ten characters padded with
spaces.

Attempts to transfer more than 250 bytes in one operation
will give a “No reply” error.

The directory pointer points to the number in directory
where reading should start: 0 refers to first filename, 1 to
second, and so on. If no entries are transferred, directory
pointer given points outside number of entries in
directory. Pointer is incremented by number of entries
transferred: it should not be more than 255.

 45

Network programming

This section describes:

� the three co-operative operations
� the seven immediate operations
� five useful OSWORD and OSBYTE calls.

 46

programming with the network
co-operative operations

TRANSMIT

Setting up the TRANSMIT control block
call: OSWORD

entry address &FFF1 vector address &20C
entry A &10
 X, Y pointer to TRANSMIT control block
exit A undefined
 X undefined
 Y undefined
 C undefined

control block

0 control byte: on entry, set top bit; byte will be
zero if transmission fails to start

1 destination port
2 destination station
4 address of buffer start
8 address of buffer end
12

Polling transmission
call: OSBYTE

entry address &FFF4 vector address &20A
entry A &32
 X undefined
 Y undefined

 47

exit A undefined
 X status of transmission: 0 if

transmission successfully
completed, otherwise:

 bit state meaning
 7 0 completed
 1 in progress
 6 0 successful
 1 failed
 5 0
 0-4 error code if failed, zero

if not
 Y undefined
 C undefined

error codes

&40 line jammed
&41 some part of four-way handshake lost or damaged
&42 no scout acknowledgement in four-way handshake
&43 no clock
&44 bad TRANSMIT control block

 48

programming with the network
co-operative operations

RECEIVE

Setting up the RECEIVE control block
call: OSWORD

entry address &FFF1 vector address &20C
entry A &11
 X, Y pointer to RECEIVE control block
exit A undefined
 X undefined
 Y undefined
 C undefined

control block

0 &00: is set to control block number on exit;
will be set to 0 if unable to open block
because space limit reached

1 flag: must be set to &7F on entry; when
transmission is received, control byte from
remote station’s TRANSMIT control block is
copied here

2 port
3 station
5 address of buffer start
9 address of buffer end
13

The network software can open only a limited number of
control blocks (about 16).

Polling reception
call: OSBYTE

entry address &FFF4 vector address &20A
entry A &33
 X RECEIVE control block number
 Y undefined

 49

exit A undefined
 X flag: if the top bit is set, a

message has
been received

 Y undefined
 C undefined

Reading the RECEIVE control block
call: OSWORD

entry address &FFF1 vector address &20C
entry A &11
 X, Y pointers to area into which RECEIVE

control block will be copied

The routine copies the fields of the RECEIVE control
block from the flag down into memory, deleting the
original.

area reserved

0 RECEIVE control block number
1 area for RECEIVE control block:

flag
2 port
3 station
5 address of buffer start
9 address of buffer end
13

The transmitting station, port number and new address of
the buffer end are given in the block.

 50

Deleting a RECEIVE control block
call: OSWORD

entry address &FFF4 vector address &20A
entry A &34
 X control block number
exit X control block number

 51

programming with the network
co-operative operations

BROADCAST

A special version of TRANSMIT. Sends eight bytes direct
from transmit control block to every station with a
RECEIVE block set for station &00, and the appropriate
port number. Bytes 4 to 11 in the transmit control block
contain the data to send. In software versions 3.34 and
3.40 data arrives in the “data pointer” fields of the
RECEIVE control block, in later versions it arrives in the
RECEIVE buffer. The BROADCAST transmit control
block is as follows.

control block

0 control byte
1 destination port
2 &FF
4 &FF
8 data (8 bytes only)
12

 52

programming with the network
immediate operations

PEEK

Copies a block of memory from remote station into a
buffer in your station.

Setting up the PEEK control block
call: OSWORD

entry address &FFF1 vector address &20C
entry A &10
 X, Y pointer to control block

control block

0 &81
1 &00
2 remote station
4 address of buffer start
8 address of buffer end
12 address of data start in remote station
16

Polling transmission
call: OSBYTE

entry address &FFF4 vector address &20A
entry A &32
 X undefined
 Y undefined
exit as in polling in TRANSMIT

 53

programming with the network
immediate operations

POKE

Copies the contents of a buffer in your station into
memory at remote station.

Setting up the POKE control block
call: OSWORD

entry address &FFF1 vector address &20C
entry A &10
 X, Y pointer to control block

control block

0 &82
1 &00
2 remote station
4 address of buffer start
8 address of buffer end
12 address of data start in remote station
16

Polling transmission
call: OSBYTE

entry address &FFF4 vector address &20A
entry A &32
 X undefined
 Y undefined
exit as in polling in TRANSMIT

 54

programming with the network
immediate operations

JSR

Sends an argument block to remote station and passes
control to the routine at the specified address in the remote
station.

Sending the argument block
call: OSWORD

entry address &FFF1 vector address &20C
entry A &10
 X, Y pointer to control block

control block

0 &83
1 &00
2 remote station
4 address of argument block start
8 address of argument block end
12 call address in remote station
16

The routine is entered with interrupts disabled, and they
should be enabled if the routine takes more than about a
millisecond to complete. The remote routine can read the
data passed to it using OSWORD with A set to &12. The
JSR user procedure and operating system procedure bits in
the protection mask of the remote station are
automatically set to prevent the argument block buffer
from being overwritten by another call before it is read,
though this protection does not apply to calls from
privileged stations. The routine should return with RTS.
Maximum size of argument block: 128 bytes.

 55

Reading the argument block
call: OSWORD

entry address &FFF1 vector address &20C
entry A &12
 X, Y pointer to control block
On exit, first two bytes of control block hold number of
calling station. Contents of argument block buffer follow.

The JSR user procedure, and operating system procedure
bits in the protection mask are automatically set back to
their previous states by this call.
Finding the number of arguments received
call: OSWORD

entry address &FFF1 vector address &20C
entry A &13
 X, Y pointer to control block

control block

0 &09
1 &00; will be set to number of arguments
2 &00; will be set to argument block buffer size

 56

programming with the network
immediate operations

User procedure call

Sends an argument block to remote station, and causes
event number 8.

Setting up the user procedure call control block
call: OSWORD

entry address &FFF1 vector address &20C
entry A &10
 X, Y pointer to control block

control block

0 &84
1 &00
2 remote station
4 address of argument block start
8 address of argument block end
12 procedure number
14

See BBC User Guide for description of events. If event
number 8 is enabled, the event routine is entered with the
procedure number on X, Y. Event number 8 is enabled by
*FX14,8 and disabled by *FX13,8. Argument block is
accessed as described for the JSR operation and notes
there on protection apply.

Polling transmission
call: OSBYTE

entry address &FFF4 vector address &20A
entry A &32
 X undefined
 Y undefined
exit as in polling in TRANSMIT

 57

programming with the network
immediate operations

Machine type

Returns code to indicate machine type and NFS
version of remote station. Equivalent to a PEEK of an area
of Econet software in the station.

Setting up the “machine type” control block
call: OSWORD

entry address &FFF1 vector address &20C
entry A &10
 X, Y pointer to control block

control block

0 &88
1 &00
2 remote station
4 address of buffer start
8 address of buffer end
12

The first four bytes in the remote machine are relevant:

byte value meaning
1 &01 BBC Microcomputer
 &02 Acorn Atom
 &03 Acorn System 3 or 4
 &04 Acorn System 5

2 &00

3 &34 NFS software version x.34
 &35 NFS software version x.40

4 &03 NFS software version 3.xx

 58

Polling transmission
call: OSBYTE

entry address &FFF4 vector address &20A
entry A &32
 X undefined
 Y undefined
exit as in polling in TRANSMIT

 59

programming with the network
immediate operations

Halt

Halts foreground process in remote station, so that its
memory can be read and written without interference from
any program running.

Setting up the “halt” control block
call: OSWORD

entry address &FFF1 vector address &20C
entry A &10
 X, Y pointer to control block

control block

0 &86
1 &00
2 remote station
4

Interrupts are not disabled, so operating system functions
and user background processes are allowed to continue. A
second processor fitted to remote station will not be
halted, unless it communicates with halted input/output
processor.

Polling transmission
call: OSBYTE

entry address &FFF4 vector address &20A
entry A &32
 X undefined
 Y undefined
exit as in polling in TRANSMIT

 60

programming with the network
immediate operations

Continue

Allows foreground process at remote station to continue
after a “halt”.

Setting up the “continue” control block
call: OSWORD

entry address &FFF1 vector address &20C
entry A &10
 X, Y pointer to control block

control block

0 &87
1 &00
2 remote station
4

Polling transmission
call: OSBYTE

entry address &FFF4 vector address &20A
entry A &32
 X undefined
 Y undefined
exit as in polling in TRANSMIT

 61

programming with the network
Protection against immediate operations
call: OSWORD

entry address &FFF1 vector address &20C
entry A &13
 X, Y pointer to control block
exit A undefined
 X undefined
 Y undefined
 C undefined

control block

0 &05
1 value of protection mask
2

protection mask

bit state meaning
0 0 PEEK allowed
 1 PEEK not allowed
1 0 POKE allowed
 1 POKE not allowed
2 0 JSR allowed
 1 JSR not allowed
3 0 user procedure call allowed
 1 user procedure call not allowed
4 0 operating system procedure call

allowed
 1 operating system procedure call

not allowed
5 0 “halt” allowed
 1 “halt” not allowed

The operating system procedure call is used by the
*REMOTE, *VIEW and *NOTIFY commands, and is not
documented in this guide. It is not possible to protect
against “continue” or “machine type” calls. Machines with
NFS version 3.34 cannot protect themselves against
privileged stations (those with numbers 240 to 256).
Machines with versions 3.40 and above can.

 62

programming with the network
other OSWORD and OSBYTE calls

Station information

call: OSWORD

entry address &FFF1 vector address &20C
entry A &13
 X, Y pointer to control block
exit A undefined
 X undefined
 Y undefined
 C undefined

control block

0 function code
1 data
4

function codes
code operation number of bytes
0 read file server number 2
1 write file server number 2
2 read printer server number 2
3 write printer server number 2
4 read protection mask 1
5 write protection mask 1
6 read user environment: main directory,

currently selected directory and library in
order

3

7 write user environment 3
8 read local station number 2
9 read number of arguments and size of

argument block buffer size (in bytes, in
order)

2

10 read error number 1

Reading and writing of information related to the file
server (function codes 0, 1, 6, 7) should only be carried
out with the Econet selected as the current filing system.

Code 10 reads internal error number of a composite error,
and returns mode number after “Mode x” error.

 63

programming with the network
other OSWORD and OSBYTE calls
Communicating with the file server
call: OSWORD

entry address &FFF1 vector address &20C
entry A &14
 X, Y pointer to control block
exit A undefined
 X undefined
 Y undefined
 C undefined

control block

0 &00
1 size of rest of block
2 &00; will be set to reply port number
3 function code
4 &00; will be set to channel number of your

main directory
5 &00; will be set to channel number of your

currently selected directory
6 & 00; will bc set to channel number of your

currently selected library
7 rest of file server transmit block

Locations 2 to 6 form the transmit header. Of these, fields
4, 5 and 6 hold the set of channel numbers known as the
user environment.

The function code selects the operation to be performed
by the file server. Twenty seven different functions are
available.

After the transmit header, you give any other information
the file server needs to carry out the operation you have
specified

 64

Communicating with the file server continued

When your station receives a reply from the file server,
the transmit header and the transmitted data are replaced
by a receive header and, in most operations, the data that
has been received. The control block will now look like
this:

control block

0 &00
1 size of rest of block
2 command code
3 return code
4 rest of file server receive block

The command code is zero if the operation is complete
and successful, in which case the conversation ends. If
non-zero, the operation continues with further messages.

The return code is zero if no errors occurred during
execution of the previous command step. If not zero, the
value is an Econet error number and data returned is the
error message held as an ASCII string terminated by &0D
(carriage return).

The program should know the maximum amount of data
to expect from the current operation step and be able to
accomodate it in the OSWORD control block. The
RECEIVE header and data are never longer than &80
bytes.

Note that this call will only send to the filing system
command port and receive at the local station reply port,
and therefore cannot be used to carry out conversations
which use other ports, such as in LOAD and SAVE
operations.

This OSWORD routine may not be called from within an
interrupt or event routine.

 65

Changing the user environment

To read and change your user environment, use the
OSWORD “Station information” call, described above.
Set the function code to &06 to read your user
environment or &07 to change it.

Function codes

All the 27 function codes are listed here, but only the
codes likely to be useful to programmers are described in
full.

function code 0

command line decoding

function code 1 SAVE

function code 2 LOAD

function code 3 examine

File server provides information about files in named
directory. You give:

� position in directory of first file to be examined
� number of files to be examined.

Value of ARG selects type of information.

1/client to file server

bytes
1-5 Standard transmit header
6 ARG
7 entry point to directory
8 number of entries
9+ name of directory

2/file server to client bytes
bytes
1-2 standard receive header
3 number of entries examined
4+ depends on ARG

 66

Communicating with the file server continued

ARG 0

4-13 file title
14-17 reload address
18-21 execution address
22 access LWR/WR (bottom 5 bits)
23 date: day
24 date: year since 1981 (4 bits), month (4

bits)
25-27 system internal name
28-30 size of file

Filename is left-justified in a field of ten characters
padded with spaces. Access and data in standard format.
The frame of 27 bytes is repeated for each file examined.

ARG 1

4+ character string of all information
String contains all file information, ready to be printed
out. A separate string, delimited by a zero byte, is given
for each file. Final delimiter is followed by a &80 byte.

ARG 2

4 10 (used by BBC Microcomputer
operating system)

5-14 filename
Filename justified as in ARG 0.

ARG 3

4+ filename followed by formatted access
string

Delimiters as for ARG 1.

 67

function code 4 read catalogue header

function code 5

load as command

function code 6

OPEN

function code 7

CLOSE

function code 8

read byte

function code 9

write byte

function code 10

read bytes

function code 11

write bytes

function code 12

read random access information

function code 13

write random access information

function code 14

read disc names

Returns information on stated number of disc drives,
starting with drive specified

1/client to file server

bytes
1-5 standard transmit header
6 first drive number
7 number of drives

2/file server to client bytes
bytes
1-2 standard receive header
3 number of drives found
4 drive number of first drive requested
5-20 name of disc in drive
21 drive number of second drive requested
22-37 name of disc in drive
38+ information on remaining drives in same

format

 68

Communicating with the file server continued

Disc name is left-justified in field of sixteen characters
padded with spaces.

function code 15

read logged-on users

Returns information on stated number of logged-on users,
starting with user specified.

1/client to file server

bytes
1-5 standard transmit header
6 first user
7 number of users

2/file server to client bytes
bytes
1-2 standard receive header
3 number of users found
4-5 machine number where user is logged on
6-15 user identifier
16 user’s privilege
17+ other entries in same format

User privilege: 0 for unprivileged, 1 for privileged.
User identifier is left-justified in field of ten characters
padded with spaces.

function code 16

read date and time

1/client to file server

bytes
1-5 standard transmit header

 69

2/file server to client bytes

bytes
1-2 standard receive header
3-4 date
5 time: hours
6 time: minutes
7 time: seconds

Date is held in same format as in function code 3, ARG 0.
Bytes 5-7 are zeros if file server has no time board
attached.

function code 17 read end-of-file status

function code 18 read object information

function code 19 write file information

function code 20 delete object

function code 21 read user environment

function code 22 write autostart option

function code 23 end session
1/client to file server

bytes
1-5 standard transmit header

2/file server to client bytes
bytes
1-2 standard receive header

function code 24 read user information
1/client to file server

bytes
1-5 standard transmit header
6+ user name

 70

Communicating with the file server continued

2/file server to client bytes

bytes
1-2 standard receive header
3 date
4-5 machine number at which user is logged

on
User privilege: 0 for unprivileged, 1 for privileged.

function code 25 read file server version number
1/client to file server

bytes
1-5 standard transmit header

2/file server to client bytes
bytes
1-2 standard receive header
3+ version number

Version number is returned as a character string,
terminated by carriage return.

function code 26 read file server free space
1/client to file server

bytes
1-5 standard transmit header
6+ disc name

2/file server to client bytes
bytes
1-2 standard receive header
3-5 number of free blocks on disc

 71

programming with the network
other OSWORD and OSBYTE calls
Sending text messages
call: OSWORD

entry address &FFF1 vector address &20C
entry A &14
 X, Y pointer to control block
exit A undefined
 X undefined
 Y undefined
 C undefined

control block

0 &01
1 destination station
3 message string

This call sends messages in the same way as
*NOTIFY. The message string should be ended with
&00 (ASCII null) or &0D (ASCII carriage return).
 Maximum length of control block:

� 250 bytes normally
� 128 bytes when call is made from second processor.

Do not call this routine from within an interrupt or event
routine.

 72

programming with the network
other OSWORD and OSBYTE calls
Causing a remote error
call: OSWORD

entry address &FFF1 vector address &20C
entry A &14
 X, Y pointer to control block
exit A undefined
 X undefined
 Y undefined
 C undefined

control block

0 &02
1 destination station
3

This call causes a fatal error in a remote machine, to
terminate execution of a program and re-enter the current
language. It can be used to make sure a text message will
appear on the display. BASIC I does not recognise the fatal
error: it cannot be trapped by an ON ERROR statement.
BASIC II performs correctly. Do not call this routine from
within an interrupt or event routine.

programming with the network
other OSWORD and OSBYTE calls
Severing a remote connection
call: OSWORD

entry address &FFF4 vector address &20A
entry A &35

This routine severs a connection set up by *REMOTE: it
is equivalent to *ROF'F.

 73

Listing of example
TRANSMIT and RECEIVE programs

Below are full listings of the example TRANSMIT and
RECEIVE programs discussed in the section
Programming with the network.

TRANSMIT program

10 REM Program to produce sounds
20 REM on a remote machine
30 REM
40 REM --------------------
50 REM
60 OSWORD=&FFF1:OSBYTE=&FFF4
70 max_tx_length%=20:REM maximum size of transmitted packet
80 txport%=100:REM transmit port
90 DIM cblock% 13,txbuffer% max_tx_length%
100 REM Read in the station number
110 INPUT "Remote station: "S%
120 PRINT "Now press keys..."
130 REPEAT
140 key%=GET:REM Read a key
150 PRINT CHR$key%;
160 ?txbuffer%=key%:REM Put the key in the transmit buffer
170 REM and transmit a buffer of length 1 to station S%
180 tx_result%=FNTRANSMIT(S%,txport%,1)
190 UNTIL tx_result%<>0:REM Loop until a transmit fails
200 REM Then check error number
210 ON tx_result%-&3F GOTO 220,230,240,250,260
220 PRINT"Line jammed":END
230 PRINT"Net error":END
240 PRINT"Not Listening":END
250 PRINT"No clock":END
260 PRINT"Bad TRANSMIT control block":END
270 DEF FNTRANSMIT(station%,port%,length%)
280 LOCAL X%,Y%,A%,tries%,delay%,U%,txresult%,nonfatal%
290 REM First set up the control block
300 REM
310 cblock%?1=port%:REM port number
320 cblock%!2=station%:REM station number (2 bytes)
330 cblock%!4=txbuffer%:REM pointer to data buffer
340 cblock%!8=txbuffer%+length%:REM Pointer to data buffer end
350 tries%=10:delay%=50
360 REPEAT
370 REM
380 REM Now attempt to start the transmission

 74

390 REM First, set the registers A, X and Y
400 REM (X and Y point to the control block)
410 X%=cblock%:Y%=cblock% DIV 256:A%=&10
420 REPEAT
430 ?cblock%=&80:REM Set the control byte
440 CALL OSWORD
450 UNTIL ?cblock%<>0 :REM Repeat until the transmit starts
460 REM
470 REM Now poll the TRANSMIT block until completion
480 REM
490 REPEAT
500 A%=&32:U%=USR OSBYTE
510 UNTIL (U% AND &8000)=0:REM Check top bit of the X register
520 REM
530 REM Now check if an error, and if a re-try is required
540 REM
550 txresult%=(U% AND &FF00) DIV 256:REM Mask off the X register
555 nonfatal%=txresult%=&41 OR txresult%=&42
560 IF nonfatal% THEN PROCdelay(delay%):tries%=tries%-1
570 UNTIL tries%=0 OR NOT nonfatal%
580 REM Continue to loop until either a fatal error
590 REM or a successful transmission,
600 REM or all re-tries have failed
610 REM
620 =txresult%:REM return result
630 REM
640 REM --------------------
650 REM
660 DEF PROCdelay(n%)
670 REM Wait for n% centiseconds
680 LOCAL limit%
690 limit%=TIME +n%
700 REPEAT
710 UNTIL TIME >=limit%
720 ENDPROC

RECEIVE program

10 REM Receive a key pressed by a remote station
20 REM
30 OSWORD=&FFF1:OSBYTE=&FFF4
40 max_rx_length%=20
50 DIM cblock% 13,rxbuffer% max_rx_length%
55 port%=100
60 REM
70 REM --------------------
80 REM
85 INPUT "From station: "S%
90 REPEAT
100 PROCRECEIVE(S%,port%):REM Wait for a reception from S%
110 key%=?rxbuffer%:REM Read the data sent
120 PROCsound(key%)
130 UNTIL FALSE :REM Repeat forever

 75

140 REM
150 REM -------------
160 REM
170 DEF PROCRECEIVE(station%,port%)
180 REM Set up a RECEIVE block and wait for some
190 REM data to arrive from <station%> on <port%>
200 REM
210 REM First, set up the control block
215 ?cblock%=0
220 cblock%?1=&7F:REM Receive flag
230 cblock%?2=port%
240 cblock%!3=station%
250 cblock%!5=rxbuffer%:REM Pointer to buffer
260 cblock%!9=rxbuffer%+max_rx_length%:REM Pointer to buffer end
270 REM
280 REM Now call OSWORD to open the RECEIVE block
290 REM
300 X%=cblock%:Y%=cblock% DIV 256:A%=&11
310 CALL OSWORD
320 rxcb_number%=?cblock%:REM Read RECEIVE control block number
330 REM
340 REM Now wait for a reception
350 REM
360 A%=&33:X%=rxcb_number%
370 REPEAT:U%=USR OSBYTE
380 UNTIL (U% AND &8000)<>0
390 REM
400 REM A reception has happened, so read the control block back
410 REM
420 X%=cblock%:Y%=cblock% DIV 256:A%=&11
430 ?cblock%=rxcb_number%:CALL OSWORD
440 bytes_received%=cblock%!9-cblock%!5:REM Find out bytes received
450 ENDPROC:REM Reception now completed, and data is in the buffer
470 REM
480 REM -------------------
490 REM
500 DEF PROCsound(key%)
510 LOCAL keys$,pitch%
520 ENVELOPE 1,5,1,-1,1,1,1,1,126,-3,-3,-3,126,0
530 keys$="Q2W3ER5T6Y7UI9O0P@^[_"
540 pitch%=INSTR(keys$,CHR$key%)*4
550 SOUND &11,1,pitch%,-1
560 ENDPROC

 76

Econet error handling

The BBC Microcomputer can only cope with error
numbers from the Econet file server in the range &A8 to
&C0 (decimal 168 to 192), but the file server can generate
many more errors than this range allows. To overcome this
problem, &A8 is used as a composite error number, so that
it covers every error with a number less than &AO.

To find the true number of an &A8 error,
call: OSWORD

entry address &FFF1 vector address &20C
entry A &13
 X, Y pointer to control block
exit A undefined
 X undefined
 Y undefined
 C undefined

control block

0 &0A
1 &00; will be set to true error number
3

 77

Circuit diagrams

Econet interface on the
BBC Microcomputer

 78

Econet terminator and clock boxes

Components marked * are fitted on terminator boxes only.
Components marked + are fitted on clock boxes only.

 79

Index

Abbreviations 6
Acknowledgement frame 31
Addresses

buffers 6
control blocks 6
entry 9
vector 9

Advanced data link controller 30
AND 14, 25
Argument block 54
Assembler 5

BASIC I and II 8
BROADCAST 51

CALL 8, 11, 13
Closing objects (using OSFIND) 40
Commands

additional 34
including in programs 7

Control blocks (using) 15, 19
Control byte 21
“Continue” operation 60
Conventions (used in this guide) 6
Co-operative operations 18, 46
CRC 31

Data buffer 19
Date and time (finding) 68
DIM 10, 24
Directory information (using OSFILE to find) 38
Disc names (reading) 67
DIV 12

Entry address 9
Entry values 11
Error handling 22, 62, 76
Events (causing) 56

 80

Fields 15
Files

attributes 39
examining 65
information (using OSFILE to find) 38

File server
communicating with 63
finding free space 70
finding station number 62
finding version number 70

Filing system
current system (using OSARGS to find) 41
programming with 7, 37
and see NFS

Flag 22
Four-way handshake 30
Frames 30

“Halt” operation 59

Immediate operations 18, 28, 52
Indirection operators 10, 16

JSR operation 54

Logged-on users (reading) 68

Machine type (finding) 57
Masking 14

*NETMON and *NETMONITOR 32
Network (programming with) 18, 45
NFS

copying control blocks 20
finding version number 41, 57

*NOTIFY 36, 71

Operating system routines (using) 8
Opening objects (using OSFIND) 40

in RECEIVE 48
in TRANSMIT 46

OSARGS 40
OSBGET 42
OSBPUT 42

 81

OSBYTE
A set to &32 25, 46, 52-60
A set to &33 27, 48
A set to &34 50
A set to &35 72

OSCLI 7
OSFILE 9, 38
OSFIND 15, 40
OSGBPB 15, 43
OSWORD

A set to &10 25, 46, 52-60
A set to &11 27, 48, 49
A set to &12 55
A set to &13 55, 61, 62, 76
A set to &14 63, 71, 72

PEEK operation 52
POKE operation 53
Polling 25
In RECEIVE 48
In TRANSMIT 46
Port number 19
Printer server

finding station number 62
Privileged stations 36, 61
Programs

to change a reload address 17
to open a file 15
to RECEIVE 26, 74
to TRANSMIT 24, 73

*PROT 36
Protection (against immediate operations) 28, 61, 62

Reading bytes

using OSBGET 42
using OSGBPB 43

RECEIVE 18, 48
Receive header 64
Registers 6, 11
*REMOTE 35, 72
Remote error (causing) 72
*ROFF 35

Scout frame 30
Station number 19
Station information (using OSWORD to find) 62

 82

Text messages (sending) 71
Transmit header 63
TRANSMIT 18, 46

*UNPROT 36
User environment 62, 63, 65
User information (reading) 69
User procedure call 56
USR 8, 11, 13

Vector address 9
*VIEW 34

Writing bytes

using OSBPUT 42
using OSGBPB 43

