
Babel
Functional Specificatio n

Distribution: COMPANY CONFIDENTIA L

Title:
Drawing Number:
Issue:
Author:
Date:
Change Number:

Babel Functional Specification
0384,020/FS
E * * * * DRAFT * * * *
KSR
10.10.91
n/a

Last Issue: D (DRAF T of 8.10.91)

Contents:

page
1. Projec t overview 2
2. MN S concepts 3
3. MN S configuration 7
4. MN S client station startup 1 1
5. MN S published interfaces 1 1
6. NetF S and NetPrint 1 3
7. Leve l 4 Fileserver 1 3
8. Mixin g MNS and non-MNS stations 1 3
9. Connectin g other computers to an MNS network 1 4
10. Platform/OS support 1 4
11. Outline development/test strategy 1 4
12. Product organisation and packaging 1 4
13. External dependencies 1 5
Appendices

A. L 4 fileserver access via standard TCP/IP networks 1 8
B. Drive r Control Interface 1 9
C. Addres s Transform Protocol 2 4
D. MN S frame formats and data transfer procedures 2 6

Published by and Copyright © 1991 Acorn Computers Ltd., Fulbourn Road, Cherry Hinton, Cambridge, CB1 4JN, England

0384,020/FS Issue E****DRAFT**** Sheet 1 of 27

Functional Specification Babel

1. Project Babel overview

Project Babel will implement a networking system provisionally known as Multi Network System (MNS). Babe l
will bring the benefits of industry standard TCP/IP and Ethernet networking into the schools education sector.

MNS is a way of organising a TCP/IP based network which is suitable for users and network managers already
familiar with our Econet offerings. I t will initially enable non-disruptive migration away from Econet to Ethernet
and will eventually form the basis of well-structured whole-school networks.

MNS will enable a new Ethernet segment to be linked transparently to an existing installed Econet, retaining the
familiar Econet naming, addressing and user interface conventions across the whole expanded network. Similarly,
MNS will enable departmental clusters based on Ethernet or Econet or some future hardware system such as cordless
to link together via a backbone Ethernet. In the future, whole site networks may be able to link themselves together
via MNS and appropriate wide-area communications technology.

The industry standard nature of Ethernet and TCP/IP will introduce concepts of Open Systems networking into
the schools education sector. Over time, mixed networks of Archimedes, PCs, Apple and UNIX computers may
develop as suitable applications for interworking are found.

MNS implementation will be founded upon TCP/IP software already developed for AES32 TCP/IP Protocol Suite.
Some modifications to the Internet module component of AES32 will be required, but these modifications may be
fed back into a future version of AES32, in order to maintain consistency between the two products. TCP/IP
Protocol Suite includes applications, running over TCP/IP, which are suitable for Tertiary and VAS users. MNS
will include applications, running over TCP/IP, which are suitable for school users. The two products will
complement each other in our product range.

The MNS product package will include a version of Level 4 Fileserver software optimised for use over Ethernet.
This will include !Server, !Manager and !Spooler.

MNS software will be licensed to third parties for inclusion in ROM on third party Ethernet cards for A3000 and
other ARM-based platforms.

1.1 Future development

In the short term, many MNS installations will be small scale, consisting of just one or two Ethernet and Econet
partitions on a single site. However project Babel will introduce the basic concepts and technology which will
enable larger site-wide and multi-site network systems to develop over time. A s interest in achieving modern
network infrastructures in schools grows, so the market for support services, new applications and other third party
products to maintain, exploit and expand that infrastructure will grow at the same time. An active but unpredictable
marketplace for networking products and services in the schools education sector will emerge, with MNS as
the catalyst.

Sheet 2 of 27 0384,020/FS Issue B **** DRAFT ****

Functional Specification Babel

2. MNS concepts

Functionally, an MNS network is a TCP/IP network containing a number of subnets linked by A5000 (or A420/A440)
computers acting as gateways. However , it is the MNS veneer which will provide the unique selling proposition
for our customers.

The way an MNS network is organised is reflected in the structure of an MNS network address. This is based upon
a standard TCP/IP address but with an extra layer of meaning, derived from the requirements of our users in our
core markets, superimposed. Users will normally address a network services by its name, rather than its address.

An MNS network address is a 4-byte quantity, expressed in the form:

site.partition.net.station

Examples: 1.1.3. 2 1.127.127. 6 2.1.6.1 2

The meaning of each byte in an MNS network address is as follows:

site A number of sites may be linked together to form a site group. This number identifies an individual
site within a site group, and so must be unique within the group. A site group may contain between
1 and 127 sites. A site is connected to another site within a group via a site gateway and a suitable
wide-area comms link.

partition A site contains one or more partitions. A partition contains one or more physical nets of the same type.
Two partitions of different types (e.g Econet, Ethernet) may be linked together by an A5000 or A400
series computer functioning as a partition gateway. A partition gateway contains two hardware
interfaces, connecting the machine to a net in each adjacent partition. IP messages are relayed
between the two partitions via these interfaces.

The partition number identifies an individual partition. It needs to be unique only within the local site,
not the entire site group. A site may contain up to 255 partitions. Partition numbers have arbitrary
values between 1 and 255.

net Thi s number identifies an individual physical net. Note that two Econets linked together by an Econet
bridge will constitute two distinct nets, whereas two Ethernets linked together via an Ethernet bridge
will consitute a single net. This is because two bridged Ethernets appears to users to be a single
Ethernet whereas two bridged Econets remain distinct. Hence in an Ethernet based partition there will
always be exactly one net, but in an Econet based partition there may be several nets.

The net number must be unique within an entire site group, NOT just the local site or the partition
containing the net.

The net number is functionally equivalent to, and if the underlying net is an Econet MUST
when possible (i.e when several nets are linked by Econet bridges) have the same actual value as,
an Econet net number. Net numbers have arbitrary values between 1 and 25S. although a numbering
scheme to visibly distinguish Econet from Ethernet nets within the system may be recommended,
e.g Econets in range 1 - 126, Ethernets in range 128 - 254, with the backbone network (a special
case) as net number 127. Net numbers 0 and 255 are reserved.

Sheet 3 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

station Thi s number identifies a host station connected to a net. The number must be unique on that
individual net. Station numbers have arbitrary values between 1 and 255. A partition gateway
will have the same station number on both connected nets.

The MNS interpretation of an address in the form
site.partition.net.station

is
"machine net.station , located within site.partition"

For example, the MNS interpretation of a command - in the normal TCP/IP emphasis - to:
"send data to host 1.3.129.16"

is actually:
"send data to station 129.16 ... (which is located within partition number 3 in site number 1)"

or, more meaningfully:
"send data to station 129.16 ... (which is located within partition science in site StTriniansUpper).

The emphasis is on the field pairing net.station . Network applications need to display and handle only these two
bytes (although most user interfaces will deal in service names which are then mapped transparently by software into
a net.station address). This is identical to native Econet syntax. On physical Econets the numbers themselves will be
the same when possible. The remaining MNS address fields site.partition represent additional routing information
needed by the underlying TCP/IP software in order to route data to the destination physical network. MNS software
will have learned, via previous transparent network exchanges with an MNS-configured L4 fileserver machine, the
actual site.partition location of each accessible physical network, and so the user will not be required to supply this
information. I t will be filled in automatically by software.

2.1 MNS station address configuration

In line with Econet convention, the station number will be configured on each host computer via ! Setstation.

The remaining fields of the MNS address for each station will subsequently be constructed automatically by MNS
software at startup time, dependant upon the relative location of the station within the MNS network at that time.

The semi-automatic address configuration of client stations is achieved via transparent communication with an L4
fileserver machine set up with MNS configuration information in file format This MNS information will enable the
fileserver to export on request site, partition and net numbers to client stations within its own partition. This is to
enable each client to know its own unique full MNS address and also know the location of every net in the system.

2 2 Mappin g MNS addresses to TCP/IP addresses

The mapping between an MNS address in the form

site.partition.net.station

and the standard interpretation of a Class A IP address is as follows:

i) Th e site number maps into a Class A IP network number.
ii) Th e partition number maps into a Class A IP subnetwork number (mask 0xffff0000).
iii) Th e two bytes net.station together map into a 16-bit Class A IP host identifier.

i.e. net.subnet.host.host

Sheet 4 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

23 The MNS site model

2.4 Protocols

MNS is founded upon TCP/IP family protocols, including IP, ARP and Reverse ARP. The primary transport protocol
will be UDP enhanced by an acknowledgement mechanism. TCP itself, as a stream oriented protocol, will not be
required in this context.

Sheet 5 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

2.5 Example

Note: In the above diagram, the various nets wil be visible to users, respectively, as
1.X
2.X
3.X
4.X
127.X (backbone)
128.X

Sheet 6 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

3. MNS configuratio n

3.1 !SetStation

This is a desktop application similar to !Configure, to set operational parameters into CMOS RAM. Variables are:

net type This variable selects the type of the local IP-based network. Options are MNS (default)
or STANDARD (a standard TCP/IP network).

address configure This variable sets the mode by which the local station obtains a full IP network
address. Options are LOCAL or REMOTE. Remot e means that a network server should
be interrogated via Reverse ARP. This is the default mode. Local means that this
information is stored in a local file and will be supplied by local software.

If net type is MNS then this variable must always be REMOTE.

If net type is STANDARD then this variable is LOCAL only if this software is being
used in conjunction with Internet software components from TCP/IP Protocol Suite
(which has its own configuration procedures via !Internet.!Configure), otherwise
REMOTE.

device type This variable sets the name of the hardware device used to access the network. This is
a two or three byte text string assigned by the interface manufacturer. Current Acorn
values are "et" (Ethernet 1), "en" (Ethernet 2) and "eco" (Econet). The special type
"file" indicates that this information is supplied via a local file.

If net type is MNS then this variable
i) is file if the station is an MNS-configured L4 fileserver or partition gateway, in

which case the device parameters are specified in a CONFIGURE file on the server.
ii) must be a real interface name in all client stations.

If net type is STANDARD then this variable
i) is file if address configure is LOCAL (ref !I nternet.!Configure).
ii) must be a real interface name if address configure is REMOTE.

Station number This variable sets the station number, in the range 1 - 255.

If net type is MNS then this variable
i) set s the MNS station number, which must be unique on the immediate MNS net.
ii) sets the Econet station number if the underlying network is Econet, to the

same value.

Note: I n MNS, a partition gateway will be connected to two partitions and hence two
nets. Although the net numbers of the two nets will be different, the partition gateway
must have the same station number (set here) on bom nets.

If net type i s STANDARD then this variable
i) set s the Econet station number if the connected physical network is Econet.
ii) is null if the connected physical network is Ethernet.

Sheet 7 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

3.2 MNS server configuration files

Two MNS configuration files are kept in the .MNS subdirectory of the L4FS !Server application, viz
<Server$Dir>.MNS

Both are plain text files, created with a text editor (from templates included in the product) by the network
manager. Bot h files must be kept secure.

3.2.1 MAP

The file <Server$Dir>.MNS.MA P contain s the "map" of the entire MNS network. A copy of this file is kept
in the MNS configuration directory of at least one L4 fileserver within each partition of the MNS network.
Information extracted from this file enable s the server machine to provide client stations within the connected
partition (including other L4 fileservers not so configured) with their own unique full MNS addresses and also
information about the relative locations of each net in the system for routing purposes. MAP file format is:

site

site

.partition

.partition

.partition

.net

.net

.net

.net # commen t

.net # etc. .

Example1: multi-site networ k containin g severa l dep t partition s + backbone,
incorporatin g multipl e Econe t an d Ethernet nets .

StTriniansUpper
.compsciA

.compsciB

.science

.art

.business

.127

.1

.2

.3

.128

.129

.4

.130

.127

computer bloc k Econet : 3 nets linke d b y bridge s
l. X 2. X 3. X

new compblock Etherne t 128. X

science block etherne t 129. X

artroom econe t 4. X

business studie s dep t etherne t 130. X

127. X i s backbone interconnec t etherne t

StTriniansLower

. science
.5
.6

lowe r schoo l scienc e econet : 2 nets + bridg e
5. X 6. X

The names of sites and partitions in the MAP file will be converted automatically into MNS site and partition
numbers. Names are converted in read order, from the start of the file. If a number is provided instead of a name
to identify a site or partition then that number will be used. Nets must be specified by number only.

Sheet 8 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

In the example above:

name StTriniansUpper will generate sit e numbe r 1

name StTriniansLower will generate sit e numbe r 2

name [StTriniansUpper] .compsciA will generate partitio n numbe r 1

name [StTriniansUpper] .compsciB will generate partitio n numbe r 2

name [StTriniansUpper] .science will generate partitio n numbe r 3

name [StTriniansUpper] .art will generate partitio n numbe r 4

name [StTriniansUpper] .business will generate partition numbe r 5

number [StTriniansUpper] .127 will generate partitio n numbe r 127

name [StTriniansLower] .science will generate partitio n numbe r 1

Adding in the net numbers the following full MNS addresses will be generated, in order. The <station> field will
be added in by each individual station, via its own configured ! Setstation value :

1.1.1.<station> #

1.1.2.<station> #

1.1.3.<station> #

1.2.128.<station> #

1.3.129.<station> #

1.4.4.<station> #

1.5.130.<station> #

1.127.127.<station> #

2.1.5.<station> #

2.1.6.<station> #

StTriniansUpper

StTriniansUpper

StTriniansUpper

StTriniansUpper

StTriniansUpper

StTriniansUpper

StTriniansUpper

StTriniansUpper

StTriniansLower

StTriniansLower

.compsciA.1.<station>

.compsciA.2.<station>

.compsciA.3.<station>

.compsciB.128.<station>

.science.129.<station>

.art.4.<station>

.business.130.<station>

.127.127.<station>

.science.5.<station>

.science.6.<station>

Note: the above example also illustrates the rule that partition numbers need be unique only within its local site,
whereas net numbers must be unique within the whole multi-site system.

Example2: single-sit e networ k consistin g o f 1 Ethernet partition/ne t

DotheboysComp

.comproom # 128.X

.128

Generated MNS addresses wil l be:

1.1.128.<station >

Example3: single-sit e networ k consistin g o f a 1 Econet + 1 Ethernet partition .

BashStCTC

.compstudiesA # Econet l.X

.1

.compstudiesB # Ethernet 128.X

.128

Generated MNS addresses wil l be:

l.l.l.<station >

1.2.128.<station >

Sheet 9 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

3.2.2 CONFIGURE

The file <Server$Dir> .MNS.CONFIGURE contain s MNS configuration information for an individual L4 fileserver
machine within the MNS network. Whereas the MAP file is the same throughout the system, this file will be unique
on each MNS-configured L4 fileserver. Th e information in this file will:

a) enable the L4 fileserver to identify its own relative position within the complete MNS network, and so be able to
disseminate correct MNS addresse s to client stations.

b) enable underlying host TCP/IP software in the server to be configured to route messages if there are two hardware
interfaces present, and so enable the L4 fileserver to also act as a partition gateway between adjacent MNS partitions.

File format is (# = comment):

Site i s <sitename>

Econet i s <partition_name> | <partition number >

SlotN i s <partition_name> | <partition_number > <device_type >

<sitename> an d <partition_name> | <partition_number> appea r i n MAP

<device_type> i s manufacturer's nam e for the interface car d (e g "en", "et")

File contain s two or three non-comment/whit e spac e field s (on e per line>.

If this hos t serve r is also a partition gatewa y the n ther e wil l be

three lines , otherwis e two.

Example1 :

partitio n compsci A i s Econet, partitio n backbon e i s Ethernet accesse d

b y an Acorn Etherne t I I podule. Host wil l be a partition gateway .

Site i s StTriniansUppe r

Econet i s compsci A

Slot0 i s 127 en

Example2 :

partitio n compsci B i s Ethernet accesse d by an Acorn Ethernet I podule,

partitio n backbon e i s Ethernet accesse d by an Acorn Etherne t I I podule.

Hos t wil l be a partition gateway .

Site i s StTriniansUppe r

Slot0 i s compsciB et

Slotl i s 127 en

Example3 :

partitio n comproo m i s Ethernet accesse d by an Acorn Etherne t I I podule.

thi s i s a simple MNS configuration consistin g of a single sit e containin g a

singl e partition. Hos t wil l not need to act as a partition gateway .

Site i s DotheboysCom p

Slot0 i s comproom en

Sheet 10 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

4. MNS client station startup

Once loaded and running over the configured network interface device, the MNS software must:

a) initialis e the hardware interface to be used to connect to the network. This is done after reading the MNS
device type previously configured into CMOS RAM via !SetStation.

b) discove r its own full MNS (IP) address. This will be done via a Reverse ARP request/response exchange with
a local MNS-configured L4 fileserver, with the client supplying a 6 byte pseudo-Ethernet address in the form
station:net:0:0:0:0 and the server returning a 4 octet IP address in the MNS format site.partition.net.station.

c) obtai n information derived from a local MNS-configured L4 fileserver's MAP file which enables the client to
map user-supplied net.station addresses into four byte MNS addresses in the form site.partition.net.station,
and hence into standard IP addresses in the form net.subnet.host.host. This information is obtained via a second
exchange of messages with the local L4 fileserver, via Address Transform Protocol, described in Appendix D.

d) obtai n IP routing tables from which enable IP datagrams to be routed within the network. Routing within an MNS
network conforms to standard Internet conventions; routing tables are obtained via RIP (routed) transactions.

5. MNS published interfaces

5.1 Application program interface

The API to an MNS network is a functional superset of the Econet SWI interface. Existing user applications which
access Econet will not require modification at the network interface apart from textual editing of SWI names as follows:

Econet_CreateReceive => MNS_CreateReceive (SWI &43d40)
Econet_ExamineReceive => MNS_ExamineReceive (SWI &43d41)
Econet_ReadReceive => MNS_ReadReceive (SWI &43d42)
Econet_AbandonReceive => MNS_AbandonReceive (SWI &43d43)
Econet_WaitForReception => MNS_WaitForReception (SWI &43d44)
Econet_EnumerateReceive => MNS_EnumerateReceive (SWI &43d45)
Econet_StartTransmit => MNS_StartTransmit (SWI &43d46)
Econet_PollTransmit => MNS_PollTransmit (SWI &43d47)
Econet_AbandonTransmit => MNS_AbandonTransmit (SWI &43d48)
EconetDoTransmit => MNS_DoTransmit (SWI &43d49)
Econet_ReadLocalStationAndNet => MNS_ReadLocalStationAndNet (SWI &43d4a)
Econet_ConvertStatusToString => MNS_ConvertStatusToString (SWI &43d4b)
Econet_ConvertStatusToError => MNS_ConvertStatusToError (SWI &43d4c)
Econet_ReadProtection => MNS_ReadProtection (SWI &43d4d)
Econet_SetProtection => MNS_SetProtection (SWI &43d4e)
Econet_ReadStationNumber => MNS_ReadStationNumber (SWI &43d4f)
Econet_PrintBanner => MNS_PrintBanner (SWI&43d50)
Econet_ReleasePort => MNS_ReleasePort (SWI &43d52)
Econet_AllocatePort => MNS_AllocatePort (SWI &43d53)
Econet_DeAllocatePort => MNS_DeAllocatePort (SWI &43d54)
Econet_ClaimPort => MNS_ClaimPort (SWI &43d55)
Econet_StartImmediate => MNS_StartImmediate (SWI &43d56)
Econet_DoImmediate => MNS_DoImmediate (SWI &43d57)

Sheet 11 of 27 0384,020/FS Issue B****DRAFT****

http://netsubnet.host.host

Functional Specification Babel

The MNS SWI set also includes one extra call with no functional equivalent in Econet:

MNS.ReadTransportType (SW I &43d58)

Reads whether a remote station must be accessed via UDP/IP or raw Econet protocols.

On entry R0 = station number
Rl = network number

On exit R0 = station number
Rl = network number
R2 = type value

Use Thi s call enquires whether the given station must be accessed via UDP/IP protoccols, e.g an
MNS-configured L4 fileserver connected to Ethernet, or via raw Econet, e.g a Filestore or
an L4 fileserver connected to the same Econet. On exit, R2 has the following value:

1 UDP/I P
2 Econe t

This call enables user software to optimise variable parameters such as buffer sizes or count and
delay values for individual I/O operations, depending upon the type of the underlying transport
service used to reach the destination station.

An MNS support module will receive MNS SWI calls from user software and - if the destination station must be
accessed via UDP/IP - map the commands into socket interface calls to the Internet module having expanded the
associated two octet net.station address parameters into four octet site.partition.net.station MNS (IP) addresses.
If the local partition is Econet and the destination station is also connected to this partition then the MNS SWI calls
will always be mapped directly into the equivalent Econet SWI calls (even if the destination station is MNS-
configured) to avoid unnecessary UDP/IP protocol overheads for this localised transaction.

When transmitting to a station via UDP/IP, MNS_PollTransmit an d MNS_DoTransmit will return only the error
values Status_NetError an d Status_NotListening i n the event of failure. When transmitting over raw Econet other
Econet-specific error values may be returned. MNS data transfer procedures are described in Appendix D.

5.1.1 Immediate operations and events

MNS will support a set of immediate operations which are functionally the same as the equivalent set of Econet
immediate operations. Argument syntax and semantics are the same, including the set of OS_Procedure calls , except
that the prefix is MNS_. Procedures for performing immediate operations over UDP/IP are described in Appendix D.

1 MNS_Pee k 6 MNS_Hal t
2 MNS_Pok e 7 MNS_Continu e
3 MNS_JS R 8 MNS_MachinePee k
4 MNS_UserProcedureCal l 9 MNS_GetRegister s
5 MNS_OSProcedureCal l

MNS will share four event numbers with Econet, Event_MNS_UserRPC (8) and Event_MNS_OSProc(16),
Event_MNS_Rx (14) and Event_MNS_Tx (15).

Reference: RISC OS Programmer's Reference Manual (for functional details of equivalent Econet operations)

Sheet 12 of 27 0384.020/FS Issue B****DRAFT****

Functional Specification Babel

5.2 Driver control interface

A software interface will control the flow of contro l information and data passing between a device driver module
and a user protocol module, in this case the Internet module.

Reference: Appendix B.

6. NetFS and NetPrint

MNS client services are functionally the same as existing Econet applications, i.e NetFS and NetPrint. Configuration,
user and program interfaces t o these services are the same as to current versions. Internally the NetFS and NetPrint
will be modified to use MNS_ReadTransportType an d optimise individual transmissions for either UDP/IP or Econet.

References: Archimedes User Guide
RISC OS Programmer's Reference Manual

7. Level 4 Fileserver

The file and print server functionality of the L4 fileserver software included with MNS product will be the
same as the Econet-only L4FS product which is current at time of launch. This includes !Spooler, !Manager and
!Server components. The software will be modified internally for optimum performance over Ethernet via UDP/IP,
and small display alterations will be made to distinguish the MNS version visually from the Econet-only version.

Reference: Level 4 Fileserver Functional Specification

In an MNS network, an L4 fileserver will often also be configured to provide MNS services as well, such
as disseminating client station addresses and address-map information and/or acting as a gateway between two
adjacent partitions. This enhanced service is reflected in the way that product will be sold, via a combined
MNS/L4FS software pack. A new subdirectory within the L4FS !Spooler application directory, called .MNS,
will contain MNS configuration files as described in Section 3 of this document

8. Mixing MNS and non-MNS stations

Client stations configured with MNS software will be able to connect to the same Econet as stations not configured
with MNS software, such as BBC and Master 128 computers.

Client stations configured with MNS will be able to access MNS-configured machines in all other MNS partitions
via partition gateways and IP messages. Stations not configured with MNS will be able to access machines only
in the local Econet partition via raw Econet messages. The names and addresses of machines on the local Econet
will be the same to users of both types of client stations.

Client stations connected to Ethernet MUST be configured with MNS software.

8.1 Fileserver access

Client stations configured with MNS on an Econet will be able to access non-MNS fileservers, such as Level 3
fileservers and Filestores, connected to the same Econet Clien t stations without MNS will also be able to
access MNS-configured L4 fileservers connected to the same Econet.

Sheet 13 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

9. Connecting other computers to an MNS network

An MN S network is a real TCP/IP network. The MNS addresses generated from a server's MAP file are
valid IP addresses and the overall network represents a valid Class A TCP/IP site network with subnets. Routing
within the system follows standard IP routing conventions.

Therefore other types of computer which support TCP/IP, such as PCs, Apple or UNIX machines, will be able
to connect into an Ethernet partition of an MNS TCP/IP network - but must be configured with full IP addresses
in line with those auto-generated by MNS software (see configuration examples in Section 3). These other types
of computer will not support Acorn NetFS and NetPrint protocols and so will not be able to access L4 fileservers,
but will be able to run "standard" application-level protocols (eg NFS, Telnet) to communicate with each other
on top of the MNS TCP/IP transport base . (Note: A RISC OS computer configured with TCP/IP Protocol Suite
software would be able to communicate with a UNIX computer over an MNS network).

10. Platform/OS suppor t

MNS software will run on any Acorn computer with 1Mbyte RAM or more, under RISC OS 2.00 or later. A local
hard or floppy disc will not be required on client stations when the MNS software is loaded out of an Ethernet podule
ROM. A local disc will be required on an MNS-configured L4 fileserver / partition gateway.

11. Outlin e development/test strategy

MNS and TCP/IP components will be written in 'C' language, using ANSI C Release 4 in the Desktop C environment
Existing NetFS and NetPrint modules are written in ARM assembler.

A small standalone test network consisting of short segments of Econet and Ethernet and a small number of A3000
A400 and A5000 stations will be the main development base. Alpha testing will be done on the internal Acorn network.
The beta test phase will involve a number of external school test sites, selected and monitored in association with
EBU, but including at least one participant in the Educational Link Scheme. An important requirement for the
beta test phase is to ensure that external test sites are able to come "on-line" as quickly as possible, with an adequate
number of participating machines. A number of Ethernet 2 interface cards and possibly also a number of A420 or
A440 computers to act as test stations may need to be requisitioned as loan stock for beta test sites, or else offered to
beta test sites at reduced cost as an incentive to participate.

12. Product organisation and packaging

The major product deliverable is a combined MNS/L4FS software pack.

Slip case: "ACOR N SOFTWARE"
Slip case inner box: "MULT I NETWORK SYSTEM / LEVEL 4 FILESERVER"

Level 4 Fileserver Network Manager's Guide
Acorn Multi Network System Handbook

Release note Registratio n document Sit e license agreement

2 X L4FS floppy discs (optimise d for Ethernet and including MNS configuration files and software components)
1 X MNS station configuration floppy disc (MN S client station software components, !SetStation)

Sheet 14 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

12.1 Manual style and contents

12.1.1 Level 4 Fileserver Network Manager's Guide

This manual will follow the same format as the current version, but updated textually to reflect use over an MNS
network rather than raw Econet alone. A brief extra section will describe in overview the additional MNS subdirectory
within the L4FS !Spooler application directory, but will refer the reader to the Acorn MNS Handbook for a detailed
description of the files within.

12.1.2 Acorn Multi Network System Handbook

This manual will be a tutorial description of Acorn Multi Network System, structured to reach not only the
technically aware school network manager but also the less technically aware school administrator. The handbook
will present the ideas and principles underpinning MNS as well as guidance about laying out a school MNS
network and instruction about configuring the various parts of the system. Some practical guidance about the use
and maintenance of both Ethernet and Econet within an MNS network will be provided, with advice about how
to expand the system over time.

12.2 Artwork design approach

Artwork on the inner slip case will include design motifs from the current Level 4 Fileserver product inner slip case
combined with new design motifs illustrating the extra MNS functionality within this product.

Artwork on the Level 4 Fileserver Network Manager's Guide will be the same as the current version.

Artwork on the Acorn MNS Handbook will feature the same new MNS design motifs as will appear on the inner
slip case.

12.3 ROM products

A podule ROM for Ethernet II will be produced, containing a driver module, MNS modules, the Internet
module and the optimised versions of NetFS and NetPrint. This will be sold with the card, in association with
the main MNS/L4FS software/manual pack via a site licensing arrangement. A further licensing arrangement
will enable third party developers to ship their own Ethernet interfaces with the same software components already
located in on-board ROM. This will ensure that third party cards can link properly into an installed MNS network.

A demonstration MNS version of the RISC OS 3 ROM will be produced for evaluation, in EPROM. In this version
the RISC OS Application suite will be replaced with MNS software, as network users can down-load the displaced
applications from network fileservers.

13. External dependencie s

13.1 Low cost Ethernet cards

The availability of low cost (100-150 pounds REP) third party Ethernet cards for our ARM-based platforms at
launch time will greatly increase the chances of success for MNS in the schools. Minimum requirement will be support
for 10BASE2 ("cheapernet" or "thin wire" Ethernet) plus a podule ROM to hold the MNS software. 10BASE2, with a
low cable cost and segment length of 185 metres will be the main Ethernet variant in local room or departmental

Sheet 15 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

partitions, which is where most end-user machines will be concentrated. Longer backbone partitions, for example
backbones which need to connect up different buildings, may be 10BASES ("thick wire") Ethernet This has a higher
cable cost but is physically rugged and can support segment lengths up to 500 metres. Short , localised backbone
partitions may be based upon 10BASE2 Ethernet

Note: Acorn's Ethernet II podule supports both 10BASES and 10BASE2. Hence this product would complement
third party Ethernet cards in the marketplace if the latter support only 10BASE2 for cost reasons.

13.2 Ethernet infrastructure

The basic structure of an MNS site network is one of physically distinct subnets or partitions, probably often
functionally and geographically associated with a particular room, department or curriculum area, which are
interlinked via A5000 or A420/A440 gateway computers. This structure means that relatively expensive Ethernet
infrastructure hardware - repeaters and bridges - will not often be needed to create a site-wide MNS system. However
the MNS model will accommodate them when they are necessary, for example in a complex backbone partition.

13.3 Cheapernet partitions

The best way of installing Cheapernet in the classroom is to use a Thin Wire Ethernet Port system, manufactured
either by Acorn or by a third party Ethernet equipment supplier [perhaps badged by Acorn]. This system features
cable concealed in trunking around the walls, with socket box style outlet ports positioned at intervals. Station s are
connected to the outlet ports by drop leads; connectin g and disconnecting a station does not interrupt the signal path
The following diagram illustrates a classroom-sized MNS partition configured in this way. [This type and size of
partition installation might usefully be offered by Acorn as a single packaged product similar to an Econet cluster.]

KEY
a thick wire Ethernet (MNS backbone partition)
b thin wire Ethernet (MNS department partition)
c thin wire Ethernet port connecting cable
d thin wire Ethernet port outlet box
e thick wire Ethernet drop cable + transceiver

Note: the backbone partition may also be thin wire Ethernet

A MNS-configured L4 fileserver and partition gateway
B Cheapernet-hosted client station

Cheapernet partition layout

Sheet 16 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

13.4 Backbone Ethernet partitions

The precise layout of a backbone partition, which will usually interlink departmental partitions, will depend upon
the architectural plan of each individual site and the desired extent of the integrated network within the site.
In large installations the backbone partition may, for example, call for a single long "snake" of 10BASE5 Ethernet
cable or perhaps a more complex structure involving risers, multiport repeaters and multiple Cheapernet segments.
Small installations may require no more than a short single segment of Cheapernet.

Correct design and installation of the backbone partition will be crucial to the success of a whole site network.
Collaboration between Acorn (or its dealers) and a third party company offering specialist Ethernet design services
may be beneficial in this case.

13.5 Econet partitions

Econet partitions will be configured in the same way as existing Econet clusters, with or without optional local
application servers such as Nexus or SCSIShare, or management tools such as ClassROM. Th e same principles which
now apply to clusters will also apply to Econet-based MNS partitions, i n terms of careful use of bridges and limitations
on the number of stations connected to each Econet segment. A n existing cluster may be integrated easily into a
developing MNS environment (perhaps formed by the installation of a new Ethernet backbone to interlink existing
departmental nets). An existing L4 cluster fileserver may be upgraded to become an MNS partition gateway by the
addition of an Ethernet card.

KEY
a thick wire Ethernet (MNS backbone partition) A MNS-configured L4 fileserver and partition gateway
b Econet (MNS department partition) B Econet-hosted client station
c Econet socket box C Application server (Nexus / SCSIShare) - OPTIONAL
d Econet clock box
e Econet terminator
f bridge to adjoining Econet
g thick wire Ethernet drop cable + transceiver
Note: the backbone partition may also be thin wire Ethernet

Econet partition layout

Sheet 17 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

Appendix A

L4 fileserver access via a standard TCP/IP network

A RISC OS user may sometimes want to access a L4 fileserver across an Ethernet-based standard TCP/IP
network such as Acorn's own internal network, or a University campus network. Such a network will not be
structured according to MNS rules, and so the MNS conventions which allow two byte net.station addresses
to be mapped easily into 4 byte IP addresses will not be available. Required destination IP addresses may be
in any address class format

To achieve this, the user must configure the net type variable in !SetStation to STANDARD. This causes the
MNS software to employ the following alternative address transformation mechanism.

The standard four byte IP address of the destination L4 fileserver is mapped into a two byte pseudo net.station
address, with the special network number 255. Thi s is the address seen by users and handled by NetFS and L4FS
software. Th e list of address mappings is stored on L4 fileservers in the file <Stations$Dir>. STATIONS
and is disseminated to client RISC OS stations via protocol exchanges described in Appendix D.

Note: Eac h client station may own its own local version of <Stations$Dir>.STATIONS. This may contain a
a personalised set of address mappings to complement or override mappings obtained from network servers.

The STATIONS file format is (# = comment):

255.station a.b.c.d

Examples:

255.1 89.0.2.31

255.2 89.0.2.64

255.3 88.0.2.16

255.4 128.3.16.56

Sheet 18 of 27 0384,020/FS Issue B****DRAFT****

http://net.sta.tion

Functional Specification Babel

Appendix B

Driver Control Interface

This appendix describes the interface between a protocol module and a network device driver module used by the
protocol. The interface will enable multiple protocol stacks to control multiple different device drivers simultaneously,
if required.

The interface is optimised in its detail to handle device drivers for Ethernet, which will be the core LAN type
in MNS. Driver s for other types of network will need to emulate Ethernet in these details at this interface and map
"virtual Ethernet" values into real values meaningful to the actual connected network.

Specifically:

i) physical network addresses are 48 bit quantities.

ii) the values of physical network frame types "owned" by protocol modules are expressed as Ethernet frame type
values. Example:

Internet owns three types of physical frame, namel y frames containing IP, ARP and Reverse ARP
protocol messages. The driver module will be informed via the values &800, &806 and &8035 respectively.

B.l Servic e calls

When loaded, a network interface driver module will perform various internal and hardware initialisation functions.
It will then wait for a protocol module , such as Internet, to search for driver modules controlling network interfaces
which the protocol wishes to access. This is done via the service call Service_FindNetworkDriver. Subsequently,
if a protocol module terminates it will notify associated driver modules via Service_ProtocolDying.

Service_FindNetworkDriver (Servic e Call &84)

On entry Rl = &84 (reaso n code)
R2 = pointer to name of network driver sought ("et", "en", etc)
R3 = pointer to Protocol Information Block describing this protocol

On exit All registers preserved (if not claimed)

If claimed:
Rl = 0
R2 preserved
R3 = pointer to Driver Information Block describing available driver module

Use Service_FindNetworkDriver makes a logical connection between a protocol module and a driver
module, enabling information about each other to be exchanged.

Sheet 19 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

Service_ProtocolDying (Servic e Call &83)

On entry R l = &83 (reaso n code)
R2 = ID of exiting protocol

On exit Al l registers preserved to pass on

Use Service_ProtocolDying is issued by a protocol module to notify driver modules that the
protocol is exiting. The protocol ID is the same value as previously passed to the driver
in pib.pib_SCCall. Drive r modules must never claim this service call.

Protocol Information Block

struct pib {

char *pib_name ;

char pib_frtypecnt ;

unsigned shor t pib_frtype[6] ;

int pib_rxevent ;

struct mbuf **pib_freeq ;

int pib_sccall ;

};

pib_name Pointe r to name of protocol. Internet = "tcp_ip"

pib_frtypecnt Numbe r of valid fields in pib_frtype[].

pib_frtype[] Arra y of physical frame type values which are "owned" by this protocol. The driver module
will route all incoming frames with these types to this module, via an event sequence
governed by pib_rxevent.

pib_rxevent Numbe r of RISC OS event to generate when an incoming frame of the correct type is received.
This mechanism is used to pass incoming frames into the correct protocol module.

pib_freeq Addres s of free list of empty data buffers owned by this protocol module but available to the
driver module to store data associated with incoming frames of the correct type.
[Note: driver modules must never themselves free data buffers obtained from this list.]

pib_sccall I D for this protocol which will be included in Service_ProtocolDying on module termination.
Internet = 1.

Sheet 20 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

Driver Information Block

struct dib {

char *dib_name ;

int dib_units ;

int dib_swibase ;

char *dib_address[4] ;

};

dib_name Pointe r to text string name of physical interface type controlled by this driver module (e. g "en").

dib_units Numbe r of accessible physical interfaces present of the type controlled by this driver module.

dib_swibase Bas e of SWI block owned by this driver module.

dib_address[] Pointer s to physical addresses of interface cards. Each address is a 48 bit quantity.
[Note: the array size 4 represents a pragmatic limit]

Once the startup sequence is complete, the protocol module will communicate with the driver module via SWI calls,
and the driver module will interrupt the protocol module with events to indicate received frames.

B.2 SWI calls

The following set of SWI calls enable a protocol module to pass data and control commands to a device driver
module. Each different driver will own a unique chunk of SWI numbers whose base is passed to a protocol module
at startup time via the Driver Information Block. SWI numbers offset sequentially from the SWI chunk base will
correspond functionally to the commands described below.

DCI_NetworkIfStart (SW I &(dib_swibase + 0))

Start a physical interface unit controlled by the driver module owning dib_swibase.

On entry R 0 = interface unit number (0 - 3)
On exit Register s preserved
Use Calle d by protocol module to start interface and enable subsequent I/O.

DCI_NetworkIfUp (SW I &(dib_swibase + 1))

Restart a physical interface unit.

On entry R 0 = unit number (0 - 3)

On exit Register s preserved

Use Calle d by protocol module to restart interface and reenable subsequent I/O, after an earlier call of
SWI_NetworkIfDown.

Sheet 21 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

DCI_NetworkIfDown (SW I &(dib_swibase + 2))

Disable a physical interface unit

On entry R0 = unit number (0 - 3)

On exit Register s preserved

Use Calle d by protocol module to disable indicated interface and disallow subsequent I/O.

DCI_NetworkIfSend(SWI &(dib_swibas e + 3))

Transmit data via a physical interface unit.

On entry R l = unit number (0 - 3)
R2 = frame type
R3 = pointer to destination physical address: 48 bit (6 byte) quantity
R4 = pointer to data buffer chain for transmission

R5 = event number to call on completion or error (or zero for no event required)

On exit Register s preserved

Use Calle d by protocol module to transmit data, held in a chain of buffers. The destination physical
address and a frame type value identifying the sending protocol are specified. If the protocol
module wishes to be notified about the status of the transmission (beyond any error value which
may be passed back directly on SWI exit) then the event number (> 0) will be specified.

B.3 Events

An event may be generated by a driver module to indicate that a data transmission request has been processed or that
a frame has been received from the network. Different event numbers are owned by different protocol modules, and
are supplied to driver modules via SWI_NetworkIfSend (for tx) and Service_FindNetworkDriver (for rx) calls.

TX Event

On entry to event handler R0 = tx event number (specified by protocol module)
Rl = pointer to data buffer chain containing tx data
R2 = pointer to name of interface controlled by this driver ("et", "en", etc)
R3 = physical unit number (0 - 3)
R4 = error number (driver specific) or zero = ok

A transmission event does not necessarily imply that a frame has been successfully transmitted and received by the
target host, merely that the local operation has been completed - either with or without a detected hardware error - and
so the protocol module may free the associated data buffer chain. A protocol module has the option of requesting
an event or no event with each SWI call to transmit data.

Sheet 22 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

RX Event

On entry to event handler R0 rx event number (protocol specified)
pointer to data buffer chain containing rx data
pointer to name of interface controlled by this driver ("et", "en", etc)
physical unit number (0 - 3)
rx frame type

Rl
R2
R3
R4

A receive event means that an incoming frame "addressed" (via the frame type field) to a protocol module has been
received and stored within the addressed data buffer chain obtained for this purpose from the protocol module's freelist.
Once the event is generated, the driver module must forget about the associated buffer chain. It will be received by
the protocol module's event handler and in due course returned by the protocol module to its own freelist.

The first mbuf in the chain does not contain frame data. The first four bytes contains a pointer to a Driver Information
Block describing this driver. The next six bytes contain the 48-bit physical address of the source of the received frame.

B.4 Data buffer s

Data passes across the interface between the protocol and driver modules via structures called mbufs. These are the
same data structures as used internally within the BSD UNIX kernel, and also within the RISC OS Internet module,
for handling network data. The procedures for manipulating mbuf chains are also the same. Each mbuf is 128 bytes
in size and can store internally up to 112 data bytes. The basic format is:

struct mbu f {

struct mbu f *m_next ; / * mbuf chai n pointer * /

u_long m_offset ; / * offset fro m star t o f mbuf t o start o f

active dat a withi n m_dat[] * /

short m_len ; / * length o f active dat a i n m_dat[] * /

short m_type ; / * not used by driver module * /

u_char m_dat[112] ; / * data storag e are a * /

struct mbu f *m_act ; / * not used by driver module * /

Sheet 23 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

Appendix C

Address Transform Protoco l

Address Transform Protocol (ATP) is an Acorn client request I server response protocol running over UDP.
It enables a client station to request a list of address pairings, which will enable the client station subsequently to map
any user-supplied net.station address into a full four byte address known to the underlying IP network. The four byte
address will be in MNS format (i.e IP Class A) if the local network is an MNS network, or in standard IP format
(i.e any IP Class) if the local network is a standard TCP/IP network.

The UDP port number used by ATP is &8100.

C.l AT P Message format

0 8 1 6

OPERATION COUNT

NET STATION

IP ADDRESS (octets 0-1)

IP ADDRESS (octets 2-3)

ATP Message Format

Field OPERATION specifies an mns_transform_request (1), an mns_transform_response (2), a
standard_transform_request (3) or a standard_transform_response (4).

Field COUNT indicates the number of ADDRESS BLOCKS in the following list. Thi s will be zero in a request
message, a positive number in a response. Each address block is a six byte quantity. The first two bytes give
a net.station pair; the following four bytes give the corresponding IP address, either in MNS or standard IP format
depending upon the operation type.

C.2 mns_transform

In this mode a client station on an MNS network can obtain an address list derived from an MNS-configured L4
fileserver's MAP file which enables it to map user-supplied two byte net.station addresses into four byte MNS
addresses, adding the additional site.partition information, e.g

129.16 = > 1.3.129.1 6

The list of addresses specifies the address of every net within the local MNS system. The station octet is not
relevant in this procedure and is set to zero in both parts of the address block.

Sheet 24 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

C3 standard_transfor m

In this mode a client machine on a standard TCP/IP network can obtain an address list derived from an L4 fileserver's
STATIONS file whic h enables the client to map specific user-supplied net.station addresses into specific four byte
standard IP addresses. These specific addresses will usually correspond to L4 fileservers connected to the network.
E.g:

255.1 = > 89.0.2.3 1

The net address 255 is reserved for this facility, which means that up to 255 direct mappings are possible by this
mechanism. The station number is a logical number which does not necessarily correspond to a configured physical
Econet station number on the addressed machine.

Sheet 25 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

Appendix D

MNS frame formats and data transfer procedure s

D.l Data transfer over raw Econet

MNS_StartTransmit an d MNS_DoTransmit SWI calls map directly into the equivalent Econet SWI calls when
the target station is accessible via raw Econet. This results directly in an Econet four-way handshake exchange.
Note: MNS will always use raw Econet to access stations on the same Econet, for efficiency reasons.

D2 Data transfer over UDP/IP

The format of message frames assembled by the MNS module when it needs to transmit over UDP/IP is as
followa:

0 8 1 6

FRAME_TYPE FLAG_BYTE

SEQUENCE _NUMBER

USER_ DATA

MNS Frame Format

A two way handshake mechanism is used to control data delivery. Field FRAME_TYPE specifie s either
data_frame (1) or data_frame_ack (2) . Each data_frame must be positively acknowledged before the next
transmission can begin. I f a receiving station cannot deliver the message, for example due to lack of buffer space,
then it will discard the message and not return an acknowledgement. Th e transmitting station will timeout and
retransmit, according to the values of the Count (R6) and Delay (R7) parameters to the initiating user SWI calls.
Lack of acknowledgement after the specified number of retransmission will result in a Status_NotListening (3) status
return value at the MNS SWI interface. The generic error value Status_NetError (2) will be returned on all other
error conditions detected by the MNS software.

Field FLAG BYTE contains the flag byte (R0) parameter to the user SWI call in a data_frame message.

Field USER_DATA is variable length in data_frame messages, absent in data frame_ack messages.

Field SEQUENCE_NUMBER enable s a receiving station to check that a received frame is not a retransmission of a
previously acknowledged frame, which might occur if the earlier acknowledgement was lost in transit

The port number (Rl) SWI parameter maps directly into a UDP port number as an offset from the MNS base port
number &8000. Thi s means that MNS data transfer operations use UDP port numbers &8001 - &80FF, with the
Address Transform Protocol using UDP port &8100.

Sheet 26 of 27 0384,020/FS Issue B****DRAFT****

Functional Specification Babel

Sheet 27 of 27 0384,020/FS Issue B****DRAFT****

D3 Immediate operations

An immediate operation will be carried out via the following messages, which follow the basic format for
MNS frames.

Field FRAME_TYPE specifie s either immediate_op (3) or immediate_op_reply (4).

Field FLAG_BYTE specifie s the operation type.

Field SEQUENCE_NUMBER protect s against duplicated transmissions, as for data frames.

Field USER_DATA contain s the immediate op data field.

The UDP port number used for immediate operations is &8000.

	Contents
	1. Project Babel overview
	1.1 Future development

	2. MNS concepts
	2.1 MNS station address configuration
	2.2 Mapping MNS addresses to TCP/IP addresses
	2.3 The MNS site model
	2.4 Protocols
	2.5 Example

	3. MNS configuration
	3.1 !SetStation
	3.2 MNS server configuration files
	3.2.1 MAP
	3.2.2 CONFIGURE

	4. MNS client station startup
	5. MNS published interfaces
	5.1 Application program interface
	5.1.1 Immediate operations and events

	5.2 Driver control interface

	6. NetFS and NetPrint
	7. Level 4 Fileserver
	8. Mixing MNS and non-MNS stations
	8.1 Fileserver access

	9. Connecting other computers to an MNS network
	10. Platform/OS support
	11. Outline development/test strategy
	12. Product organisation and packaging
	12.1 Manual style and contents
	12.1.1 Level 4 Fileserver Network Manager's Guide
	12.1.2 Acorn Multi Network System Handbook

	12.2 Artwork design approach
	12.3 ROM products

	13. External dependencies
	13.1 Low cost Ethernet cards
	13.2 Ethernet infrastructure
	13.3 Cheapernet partitions
	13.4 Backbone Ethernet partitions
	13.5 Econet partitions

	Appendix A - L4 fileserver access via a standard TCP/IP network
	Appendix B - Driver Control Interface
	B.1 Service calls
	B.2 SWI calls
	B.3 Events
	B.4 Data buffers

	Appendix C - Address Transform Protocol
	C.1 ATP Message format
	C.2 mns_transform
	C3 standard_transform

	Appendix D - MNS frame formats and data transfer procedures
	D.1 Data transfer over raw Econet
	D.2 Data transfer over UDP/IP
	D.3 Immediate operations

