The

o Ultimate
Assembly
Language
Development
Tool ...

Reference
and
Tutorial Guide

SYSTE“ SOFTWARE SOUTH YORKSHIRE SYSTEMS FOR TRAINING AND MANAGEMENT
.KLIMITED. 12 COLLEGIATE CRESCENT SHEFFIELD S102BA. Tel. (0742) 682321 /‘

ADE plus User Guide

Published in the United Kingdom by:

South Yorkshire Systems for Training Education
and Management Limited,

12 Collegiate Crescent,

Sheffield, S10 2BA,

England.

Copyright © 1986 South Yorkshire Systems for Training Education
and Management LEimited.

First Published 1986

All rights reserved. This book and accompanying software is copyright. No part | }
of this book or accompanying software may be copied or stored by any means ~
whatsoever whether mechanical, photographic or electronic. While every
precaution has been taken in the preparation of this book and accompanying
software, the publisher assumes no responsibility for errors or omissions. Neither

is any liability assumed for damages resulting from the use of this book and
accompanying software.

A companion volume to this user guide, The ADE plus Technical Reference Guide,
is sold separately and obtainable from the above address. The Technical Reference
Guide explains in detail how the user can extend the ADE plus toolkit by writing
additional ROM modules with the basic kit.

Release Note - 2nd March 1987

ADE pl
Release Note 2 March 1987

For the latest information please consult the file called README on the ADE plus
disc.

The files shipped with this version are:

$.A4080
This file copies the 40 track DFS disc on to an 80 track blank formatted disc. It is
" only shipped with the 40 track disc.

CONVERT

A BASIC program to convert BASIC assembler source into ADE format. Type CH
"CONVERT" (from BASIC) and follow the instructions on the screen. You may
still need to edit the resultant file.

Many thanks to Dr Oliver Blatchford who improved this program.

BOOT
An EXEC file to load the ROM images MMU and ASM into sideways RAM. Not

shipped on the 40 track disc.

MMU
ASM
The ADE plus ROM images. Not shipped on the 40 track version.

DEBUG
The debugger in ROM image form. Once this is loaded press crtl-break and enter
ADE plus. The ROM is now accessible through the DEBUG command.

DEBUGL
. RAM version of DEBUG. Memory used is 6C00-7C00 and 88-8F. To start this
¢ debugger check you are in MODE 7 or a slowdown mode and type *DEBUGL (or
use LBUG).

DEBUGH .
RAM version of DEBUG for second processor. Memory limits E800-F800, 88-

8F. To run this debugger (with second processor) type *DEBUGH.

LBUG
Loader for DEBUGL. This allows a sideways RAM page to be selected. A decimal

parameter is specified, eg
*LBUG 6.
to debug page 6. DEBUGL must be present.

PRSRAM
Utility to protect all ROM images in sideways RAM from the ADE print buffer.

1

ease Note - 2nd March 1987

DS

A symbolic disassembler. The source for this program is in T.DS. To use the
enter
*DS <code file> (<a{mbol file>)

where <symbol file> is a file of symbols output by the ADE linker.

FILTER
The file filter program as detailed in the user guide. The source for this is T Filter.

MKDS]
A batch file to assemble and link the symbolic disassembler.

MKF
A batch file to assemble and link the FILTER program. % J

Directory T 2

T. FILTER
Source for L. filter.

T.DS
Source for L..DS.

T.MACLIB
Source for M.MACLIB.

T.TEST
Source of all 65C00 series op codes
used by ADE plus.

T.ADV
Example assembly program.

T.DEMO
Demo program as mentioned in the ’
user guide. s

T.LBUG
Source for LBUG.

T.PRSRAM
Source for PRSRAM.

Release Note - 2nd March 1987

Directory H

H.ADELIB
Header file for the library
L.ADELIB.

Directory M

MMACLIB
Example macro library
See TMACLIB to find out
what is in it.

Directory L
L.ADELIB
Example linker library
used by DS and FILTER.

LDS
Linker module for DS.

LFILTER
Linker module for FILTER.

LLBUG :
Linker module for LBUG.

e - Tl g s 4 -

mimll

I. ﬂl-]_u‘. ey, Tﬂmhmm w nml&

‘ Tl i des) AT :
i “f Vi g#mﬁhwhhamm s "

l r.e.mhﬁmm m'wm'
» ¥ e biit o T an?

mmi-..uﬂdmm -“"HW '

J ”F “-‘ .

BLAIA -
mmmé Boga 1 |

.munimﬁﬁ&' |
-ﬂETl’m mﬂwj}ﬁ’

ROLSN
Luuumm ol]

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Index

ADE plus User Guide
CONTENTS

Introduction

The ADE plus Memory Management Unit
The ADE plus Editor

The Macro Assembler

The Linker

Utilities

Acknowledgements

The authors wish to thank all those who have helped in the development of ADE
plus. Thanks are due to all the original developers of ADE and customers over the
years who have made valuable suggestions. We have tried to include all of the best
ideas that you have come up with. Thanks are due (again) to Ray for trials work
and to Nigel for trials and suggestions for this user guide. Programming was by
Steve with helpful assistance from Dave, who also wrote the BASIC program

conversion utility.

DE plus User Guide

Introduction

Chapter 1 | Introduction

1.1 On receiving ADE plus...

The first thing you need to do is install the software in your
machine. You should have received the software on disc,
EPROM or cartridge. Follow the notes below for the package
you have.

ADFS and DFS discs

The minimum system consists of two 16K ROM images, the
ADE plus MMU and the 65C00 series macro assembler. The
disc also contains ROM images for the SPY debugger and
example software. These latter two programs can be loaded as
required. To load the main system you will need two pages of
sideways RAM. The disc is designed for use with the MASTER
series microcomputers and you should check that your
MASTER is configured for at least this amount of RAM by
correctly setting the ROM/RAM links inside the machine. This
is explained in the user guide. If you have just received your
MASTER it will be correctly configured. If you are working
with a BBC B with no sideways RAM, or only 16K on a ROM
board, you cannot use this version of the software and you will
need to exchange it for the EPROM version.

Insert the disc in the drive and SHIFT-BREAK it. The disc
should then load into sideways RAM using the SRLOAD
command on the MASTER MOS. Press CTRL-BREAK at the
end of this procedure so that the software registers with the
MOS. You will need to follow this procedure every time you
power up. You can now proceed to Section 1.2.

EPROMs

You will have received two 16K EPROMs and a disc in DFS
format (or ADFS by request). The disc contains the SPY
debugger and the demonstration software. The debugger is
supplied in two versions, one running in main memory and one
in sideways RAM. Plug the two EPROM:s into any two slots in
your machine. Make sure that the ADE plus MMU is in a higher
priority socket than the 65C00 series assembler. Ideally both
EPROMs should be in a lower priority socket than BASIC
because the ADE plus MMU needs to be initialised witha *ADE
plus command rather than simply being the first ROM seen and
entered on a hard break or power up. When the ROMs are
installed the title ADE plus should appear on the screen at
power up or after a BREAK.

1-1

us User Guide

Cartridge
Plug the cartridge into either of the sockets on the MASTER.
The software occupies 32K in two consecutive 16K pages.

The Disc Software

Having loaded your main system as outlined above you may also
need to use some of the additional software on the disc. There
are two directories for this software. Directory H contains
versions of the additional software running at &8000. This
software will only run in sideways RAM because it uses RAM
workspace in the range &8000-&CO000. The other directory is
L. Programs in this directory will run in main RAM between
&2000 and &7C00. The programs include:

DEBUG: adebugger

FILTER: A file character filter program.

DEMO: A trivial program used in the next section as an
introduction to ADE plus.

These programs are in the main directory. Directory T
contains the source. Directory M contains the macro library.
Directory L contains linker libraries and modules.

A BASIC program CONY is supplied. This will do much of the
work in converting BASIC assembly language programs to
ADE plus format. Simply CH."CONV" and follow the
instructions. The input file that this utility converts is expected
to be a BASIC program in internal format stored on disc.

The disc also contains a file called README!', which can be
loaded into the ADE plus editor for viewing. This file contains
further information on using ADE plus and the disc utilities, as
well as any alterations to this User Guide.

It should be noted that extensive use is made of Macros in the
cxamples in this guide. It is, therefore, necessary to ensure that
a disc containing the appropriate Macro library is present
before trying to assemble the examples.

1.3

Introduction

Introducing ADE plus

ADE plus is a modular program development toolkit for
developing programs in machine code to run on the BBC
microcomputer series. The word modular implies that the
system comes in discreet parts and can be expanded. Later you
should be able to add a Z80 assembler module, an advanced
editor and an advanced debugger. You may also obtain the
ADE plus technical guide which explains how the system
operates and how you can write your own modules to 'plug in'.
Toolkit implies that ADE plus is more than just another macro
assembler. All the modules in the ADE plus system interlink to
give you complete flexibility about the way in which you
develop your programs. ADE plus contains full linking and
library facilities which mean that once you have written and
debugged a routine you need never write it again. Your
programs can be built in pieces and linked together with library
functions supplied by you or other users. Throughout the
tutorial, dialogue with the computer is shown in courier type
and user input is in italics. Unless otherwise specified, enter
RETURN after each line of input. This introductory tutorial
assumes you have used the BASIC assembler, or some other
assembler, and are familiar with concepts such as "two pass" and
"code origin" etc. If you are an absolute beginner you should
read an introductory text or the notes in the BBC micro user
guide before proceeding to use ADE plus.

System overview
The two 16K programs you have loaded into your computer in
ROM or RAM pages consist of the following:

The ADE plus memory management unit (MMU) central to the
operation of the system. The MMU is the first thing you will
encounter on entering ADE plus.

A 65C00 series macro assembler which will produce programs
ready to run or linker modules to be linked.

A text editor to create new programs and edit old ones.

A macro librarian to create macro libraries.

A linker librarian to create linker libraries.

Getting started

To enter the ADE plus system, type *ADE. This command can
also be used to re-initialise the system if you get into trouble. If

you have a clock in your machine (eg MASTER) or the time of
day is available from the network then you can skip the next

plus User Guide

section. If not, you will see the message:
ADE plus
Time, date:

Enter the time and date, just the time, or neither. To enter
neither (the time will be set to midnight, 00:00) press return.
To enter only the time, enter the hours (24 hour clock) followed
by a colon followed by the minutes:-

Time, date: 10:15

To enter the time and date, enter the time as above, type a
comma and the date, which may be in any format up to 16
characters. (The date is just a string stored in memory to ADE

plus.)
Time, date: 10:15, Fri 10th Oct 86

If ADE plus gets the time from your system you will not see the
above message. Everyone wiu then see the ADE plus MMU
prompt:

10:15 =>_

(Or whatever time you entered.) ADE plus has set the system
timer clock from your input so that all BBC microcomputers
will function in the same way. This clock may not be as
accurate as a built-in CMOS clock or Econet clock but is good
enough to tell you that you have been working too long and
should take a break! The assembler timings are also taken from
this clock and may not be as accurate as a quartz stop watch,
depending on how much time your filing system steals from the
system clock due to missed interrupts.

Above the prompt you will see a screen of status information.
This shows the state of the MMU and you can recall this screen
at any time the MMU prompt is displayed by typing STAT. Try
it now; the screen is repeated, and the latest time displayed with
the next prompt. STAT is an ADE plus MMU command.
Understanding the status screen is the key to making best use of
your computing resources with the ADE plus system. A typical
display is:

1-5

Introduction

SYSTEM ADE plus 1.0
10th Oct 86

Available memory 83K : 16K protected

Input 23K
Output 14K
Printer unbuffered

Workspace 30K

Assembler options: NONE
Linker options : NONE

ADE/Linker in slot 15

65C00 assembler in slot 2
Advanced editor not installed
Debugger not installed

10:16 =>_

Lets look at each line in turn. The date is as entered or does not
appear. The amount of available memory is the total RAM
found in the system less the amount used for the screen display.
If you are using a shadow screen, this is zero. In the above
example the total was made up from 23K of free memory in the
BBC B used, 16K of sideways RAM (on a rom card) and 44K of
free memory on the second processor attached to the system.
The status screen tells you how the memory management unit
has divided up that memory. 16K is marked 'protected’. This is
because on this system the ADE plus MMU program was in the
16K of sideways RAM. ADE plus is smart enough to avoid
writing over itself with printout or assembler code! The three
lines 'Input’, 'Output’ and Printer' refer to the three principle
buffers used by the ADE plus system. Please read the next
section carefully as a good understanding of how ADE plus
buffers things will help you get the best out of your software.

A buffer is an area of memory that the MMU has reserved for a
specific task. The input buffer is a continuous block of memory
reserved for source programs and linker modules being linked.
In other words, data travelling into the ADE plus system goes
through the input buffer. The larger this buffer is, the faster the
system will perform because disc accesses will be fewer in
number. If you do not have a second processor the input buffer
will be zero initially and show as 'unbuffered'. You can alter
this with the INPUT command. ADE plus MMU picks the
largest available block of memory that is not in sideways RAM
(other than the workspace, see below) to be the input buffer.
When using a second processor the input buffer will be on the
IO processor between PAGE and the bottom of screen memory
unless this is less than 14K, in which case 14K of second
processor memory will be used. Changing screen mode changes

lus User Guide

your own advanced editor or patch VIEW to work with ADE
plus. Details about how to do this are provided in the ADE plus
Technical Reference Guide.

Getting down to work

We have so far covered a few of the basic MMU commands.
You should be able to view the status screen and alter the buffer
sizes if you do not have a second processor. A full list of MMU
commands can be obtained by typing the word COMMANDS
(or C.). This replaces the conventional *HELP page, since the
MMU commands are not available outside the ADE system.
You will notice the RESET command. This sets the buffers to
the initial values if you get in a mess with them.

Make sure you have an input buffer of at least 2K. Put the
demonstration disc in the drive and enter:

10:30 => EDIT T.DEMO HEIGIH

In a second the screen will go into mode 3 and the file TDEMO
will be displayed. You are now in the ADE plus editor. We
will not edit the program yet, just read it and get the idea about
what is going to happen. The program has an ORG of &2000 so
this is where it will run when we assemble it. The QSTR
statement is one of the many assembler pseudo ops, as is ORG.
When you assemble the program it will prompt you to enter
your name, stored under 'name’. Later in the program the use
of an inline string variable, $name, inserts this string into the
program, printing it out with the rest of the message. It is
important to realise it is the assembler that will ask you for your
name, not the program when it runs. To run the program press
escape. You are now in the command mode of the editor. The
name of the file is given at the top of the screen together with
free memory. The file is currently in the workspace, and the
free memory is the amount of workspace left. Enter the editor
command:

> RUN LGERELLE

The editor now copies the file to the input buffer and calls the
assembler. Enter your name:

ADE6500
What is your name? Urblunk EE{GEIN

Pass 2..

.] . . .
Do arnsl mat an - enxtbiseounitan a4 20 d s e T at T e alied ¥

1-90

Introductior

Greetings Urblunk, welcome to ADE plus!
10:35 =>_

The assembly has completed and the program run. Let's
assemble the program again without going back into the editor.
Type the command:

10:36 => ASM =*,G

Again you may enter your name or a different name and the
program runs at the end of the assembly. You have just entered
an assembly (ASM) command. If it didn't work check you
typed a space before =. The * is the name given by ADE plus to
the file currently in the input buffer, so we are saying "assemble
the file in the input buffer and run it". The running bit comes
from the G which must be preceded by a comma. This is a
temporary option, the G or GO option, telling the assembler to
run the program at the end of pass 2. You can also enter your
name on the assembler command line instead of during
assembly. Type:

10:37 => ASM =*,G/Fred

The assembler now gets on with the job of assembling without
pausing to query you. The name printed will be Fred. Fred is
preceded by a slash on the assembler command. The slash tells
the assembler that the options (if any) have finished and that the
following text is a list of answers to assembler QUERY and
QSTR statements.

To edit the program in the input buffer, type:
10:39 => EDIT *

(E.* will suffice). The program is displayed. Press escape.
Now type:

> SEARCH message

The text is redisplayed with the cursor at the start of the word
'message’ in the comment on the line beginning "start". If it
came up "Not found" then check that you typed the word
"message” in lower case. Now, you could press function key 1
to go to the next occurence (next line) but the ADE plus editor
has a special key called the GOTO label key, function key 2.
Press this and the cursor goes to the label 'message’ in the
program. This key will become indispensable as you get to use
this editor. Move the cursor along to the word Greetings with

18 User Guide

the available memory and causes ADE plus to reassign its
buffers. Enter the command:

10:16 =>MODE 3

If you get an error, check that there is a space between MODE
and 3. Now type STAT and the screen should be redisplayed.
The input buffer may now be 14K and the output buffer 8K. If
not, you are using a shadow screen and gaining more memory.

The output buffer is used for the output of the assembler, linker
and librarians. Again the bigger this memory size the faster the
system will perform. The output buffer is in this case taken
initially from 14K of memory in the second processor. After
typing MODE 3, 8K of free memory is left on the IO processor
so this is used as the output buffer and 14K is used as the input
buffer.

The printer buffer is made up of all the available sideways RAM
that is not marked ‘protected’. The print spool system
interrupts the normal OS calls to buffer printout and stores it in
the sideways RAM. Once initialised this print spooling system
will work in BASIC or from any place since it works in line
with the operating system. The print spooling system uses the
cassette file workspace in page 3 and so cannot be used with
cassette systems.

ADE plus will *LOAD and *SAVE files to the buffers
wherever possible. Failing that, it will fill or empty the buffers
using OSGBPB. If your buffers are always bigger than the
source and object files the system will perform at peak
efficiency. It is often faster to split assembler source programs
into include files than to try to assemble one long source. Also
note that the ADE plus editor will work with the input buffer,
allowing programs to be edited, assembled, run and re-edited
without recourse to disc at all.

If your system shows ‘unbuffered’ for the input and output
buffers you do not have a second processor (or an active co-
processor on the Master Turbo). You may then set the amount
of memory you wish to allocate using the INPUT and OUTPUT
commands. This memory will be taken away from the
workspace. If you do not allocate any, the ADE plus modules
will allocate 1K per buffer from the workspace on a temporary
basis each time they are called (to do an assembly for example).
Do not try to change the buffer sizes if you are using a second
processor since they are already optimised. Many ADE plus
MMU commands cause the buffers to be re-calculated because
the amount of total available memory has changed. To set the

Introduction

input buffer to SK, for example, type the command:

10:20 => INPUT 5

You can alter the size of the print spool buffer by protecting or
unprotecting pages of sideways RAM. If you unprotect pages
with ADE plus software on them the system will eventually
crash as the software is eaten by the printout. The command
PRINT O turns off print spooling and PRINT 1 turns it on.

The next line on the ADE plus status screen, below the buffer
allocations, shows the amount of workspace. This is memory on
the main processor which is initially between OSHWM and
HIMEM, though some may be allocated to the buffers as
outlined above.

Two lines then detail the 'Assembler options' and the Linker
options'. There are 52 flags maintained by the ADE plus MMU
that can be set to true or false. 26 of these are allocated to the
assembler and 26 to the linker. Specific assemblers may not use
all the available flags, and details of which are relevant are
given in the reference guide for the assembler you are using.
The assembler flags are set with the OPT command; the linker
flags with the LOPT command. These flags are global, that is,
they apply to every assembly or linking operation. Local
options may be set in the assembler command line or source
program or linker command line that only apply to one
operation. These flags are never altered by the assembler or
linker, only by the MMU. For example, to set option L on the
assembler type:

10:22 => OPT L

Now type STAT again. The assembler option list shows L. This
means that every assembly will produce a listing unless
cancelled by an option -L on the assembly command line. To
reset an option (set the flag to false) precede it by a minus sign.

10:23 => OPT -L

The status display now reads NONE again (when you next type
STAT).

Finally, on the status screen, a list of ROM modules (or RAM
images) is given. ADE plus MMU looks for the advanced
editor, a 65C00 series assembler, a Z80 assembler and a
debugger. If these are found they are listed. In the event of the
advanced editor not being available, ADE plus will direct
EDIT commands to its own basic text editor. You can write

vor Guido

the arrow key and type 'Warmest'. Note the rest of the line
moves along to accornmodate the new text. This is because you
are in 'insert’' mode in the editor. Press function key O and you
will be able to overtype the word 'Greetings'. Press fO followed
by ' wishes'. We now have an unwanted 'gs' on the end of the
line. Press function key 9 twice to delete two characters in front
of the cursor. Now press function key 6 to insert a line. The
current line moves down to accommodate a new line. Press
shift and the left arrow key to move the cursor to the start of the
line and type "; my message”. This liné, starting with a colon, is
an assembler comment line. Press escape. Note that the editor
status now says "Insert OFF" because you pressed f0. Pressing
fO again in editing mode will turn the insert feature back on.
Type RUN to run this amended program. The editor is fully
explained in chapter 3.

Using the disc

Next, we will assemble a file from and to disc. The
demonstration disc contains a program called ADV in the T
directory. Assemble this program to AD (in the root directory,
$).

11:00 => ASM AD=T.ADV

If all goes well you should end up with the assembler report, at
the end of pass two of the assembly, and a program called AD
ready to *RUN. Run the program to satisfy your curiosity then
assemble it again and examine the assembler report:

End of absolute assembly
0 error(s)
0 warning(s)

Assembly time : 5.46
CPU time (ADE) : 0.47
FS time (MOS) : 4.99

Free space 28679 bytes

ADE plus

11:00 =>_

The timings may differ on your system. The actual time
depends on the speed of the DFS and the position of the file on
the disc. If it is near the middle of the disc, the program will

take longer to assemble due to the time spent simply moving the
disc head.

Introduction

Firstly the report tells us this was an absolute assembly. This
means that the program output can be *RUN. The alternative
type of assembly is a linker assembly, in which case the output
must be processed by the linker before it can be *RUN. No
errors or warnings were given. The timings show that most of
the time was spent accessing the disc even though the program
was *LOADed and SAVED. That is because ADE plus is a fast
assembler! There is still 28K of free memory for symbols and
macros.

It is also possible with the 65C00 assembler to assemble from
disc but produce no output or output to memory. To output to
memory and run the program, enter:

11:02 => ASM =T.ADV,G

Remember the G option? There is no output filename in front
of the equals sign so no file is produced. All the ADE file
processing programs take commands in the form
<output>=<input>. If you omit the G option then no output at
all is generated and the program is simply scanned for errors.

Next, edit the program T.ADV and introduce some errors.
Check the screen is in mode 3 (type MODE 3) then type:

11:05 => EDIT T.ADV

When the file is displayed, press escape (edit command mode)
and type:

> GOTO 16

This is a command to tell the editor to go to line 16. This GOTO
editor command is useful to debug programs because the
assembler gives you the line number in its error reports as we
shall see. The screen displays the text with the cursor on the line:

BEQ DONE
Change this to
BEQ DOME

Move the cursor to the next line and change CMP to CPM.
Change the label WHITE to +WHITE in line 4 and change the X
register to a Z register in line 14. Now press escape and type:

> QUIT

suide

The MMU prompt reappears. Enter the command:
11:10 => ASM =*

This performs a syntax check on the program in memory.
During pass 2 the listing will display:

>S 0000: 4 +WHITE EQU RED+7

>S 200A: 14 LDA TEXT,2
>U 200F:FOEE 16 BEQ .DOME

>0 2011: 17 CPM #'*

>U 2035: 38 CPX #WHITE+1

These are lines containing errors. The errors are U for
unknown symbol and O for illegal opcode and S for syntax
error. The two syntax errors are from very different causes
and the reports are all brief. This kind of report is often
satisfactory to more experienced programmers who do not want
reams of output. However, get the assembler to give you a more
detailed report:

11:11 => ASM =*,E

You should end the line by pressing ctrl-N before return to
paginate the VDU output, otherwise the flood of information
will disappear off the top of the screen. The two syntax errors,
for example, now show as:

>S 0000: 4 +WHITE EQU RED+7

xkxx*x FRROR 8BD7 : line starts with illegal char
>S 200A:B1lF5 14 LDA TEXT,2

***%x* ERROR 8D44 : Y register expected

This information should be sufficient for the beginner to sort
out text problems in the source code. Of course X can be used
instead of Y, Y here means 'index register'. The error code, in
hex, is of use if you think the assembler is mistaken and should
not have produced the error. It is the location in the software
from which the error was generated. Please send in this number
with any queries to SYSTEM Ltd. about bugs you think may
exist in the assembler. More experienced programmers,
especially enthusiasts, can use the reference to look at the
software and fix the bug. Please write to us with your fixes!

To obtain an error summary (only) enter the command line in
the form:

11:15 => ASM =*, 5

Option E stands for extended error reporting. Option S for
error summary. The summary is printed at the end of pass 2.
The error codes are stored in the workspace, so the room
available for symbols will be slightly reduced. In this case the
errors list as:

File:* 1line 4 line starts with illegal character
File:* 1line 38 unknown symbol

Many programmers like to list the errors to a file while they go
away and make tea. This is possible. A listing file will capture
all output on pass 2. If the program is assembled with no 'list
on' commands then this file will be an error file:

11:20 => ASM /ERRS=T.ADV, S

The error file is called ERRS. It is placed on the left-hand side
of the equals sign in the command line because it is an output
file. It is preceded by a slash to distinguish it from the object
output file. Both files may be included, eg: ASM
AD/ERRS=T.ADV,S

Enter the command:
11:25 => TYPE ERRS

to list the error file. TYPE is a disc based filing system
command. ADE plus MMU refers unknown commands to the
current filing system in two ways. Firstly, if a file of the
command name exists the file is executed as a batch file of ADE
plus commands. Secondly, if no file is found the command is
passed to the filing system directly through OSCLI. This may
execute a filing system command, such as *TYPE. Being able to
store ADE plus MMU commands in files and execute them by
typing the name of the file will come to be second nature as you
progress with the system. The assembler command line is
complex because of the flexibility of options and files allowed.
Thus complex and often used command lines can be saved in a
file and executed. For example, to make the last assembly a
single command, enter the editor by typing EDIT with no file
name. If an old file appears, or rubbish, or the editor goes into
command mode, type NEW from command mode and press
escape. You now have a blank sheet!

Enter one line: ASM /ERRS=T.ADV, S
Press escape and type the command:

>SAVE ASM1

us User Guide

Now type the command QUIT to take you back to the ADE plus
MMU prompt. Enter the line:

11:50 => AsMI

The command stored in the file ASM1 is executed. In the course
of program development the same assembly needs to be
repeated often, so this facility will prove to be very useful. A
batch file, as this is called, can contain many lines containing
input to your assemblies (to QUERY and QSTR) as well as
linker commands. The file name is simply *EXECed if it exists.
You cannot use one of the inbuilt ADE plus command names as
a file name for a batch file, but you can use FS command names
such as TYPE and LIST. However these make the FS
commands inaccessible. To overcome these two restrictions,
any command preceded by a slash will be *EXECed (ie treated
as a batch file) and any command preceded by an asterisk will,
of course, be passed straight to the operating system command
line interpreter.

You should now have a good grasp of the way the system
functions. If you are not going to use the linker facilities
straight away, read the assembler reference section and begin
writing your own programs. Chapter 3 explains all the editor
function keys if you are using the inbuilt editor.

The next section in this tutorial guide explains how the linker
operates.

14

Introduction

Introducing the Linker

You should be familiar with the normal operation of the
assembler before you proceed with this section.

A simple assembler such as the inbuilt BASIC assembler or
other assemblers running on the BBC micro translates source
statements into machine code a line at a time. This is done in two
passes. The first simply ascertains the length of each instruction
and assigns a value to each symbol declared in the program. In
the second pass the assembler takes the symbolic values and
substitutes them in the source program producing the final
machine code. Everything must be known in pass two or errors
will result. This means that if one program wishes to refer to
another, all the entry points in the second program must be
precisely defined with EQUates in the first program. In a
program development environment the values of symbols will
change continually as the program grows or shrinks. The only
way of writing large programs was as a single gigantic source
which could take many minutes to assemble. The purpose of the
linker is to allow you to write programs in pieces, where the
value of the symbols may change but where one piece, or
module, can find out the correct values of symbols in another
module. By this method sources can be kept reasonably short
and assembled quickly. The assembler produces a "semi
machine code" output file for each module. The linker
combines all of these modules to produce an executable
program. The linker modules output by the assembler are only
slightly larger than pure machine code files, so they take up
much less space on the disc than the source programs.
Consequently linking, which is mostly disc access and only a
little calculation, is much faster than assembly.

In order to explain how the linker operates a short program will
be developed. You can use any editor for this. It is assumed that
you have understood the first section of this introduction, so the
source program will be presented as text without detailed
instructions about activating the editor, pressing escape and so
on. b

- plus User Guide

Enter the following text as the first part of the program:

MODULE part_1

text EXT
SYSEXEC ENT

LDX =il
:loop INX

LDA text,X

BEQ :done

JSR OSWRCH

JMP :loop
:done RTS

Save this file as T.PARTI. Let's examine this trivial program .
line at a time. The MODULE statement declares that the
program is a linker module, not an executable program. The
module is called part_1. You can choose any name up to 32
characters. Next, "text" is defined as an external symbol using
EXT. This means that when the program references "text" it is
referring to something in another program that is not defined
here. The actual value of "text" is supplied by the linker, not the
assembler. SYSEXEC is then declared as a global symbol. This
is done using the ENT pseudo-op. You can have as many ENT
symbols as you wish, but normally they are the labels for the
entry points to routines that may be called from other modules,
The symbol name SYSEXEC has special significance because
the linker will put the final value of this symbol (if defined) in
the catalog exec address for the program. SYSEXEC is the label
that the filing system will call when it has loaded the program.
:loop and :done are local labels because they start with a colon.
Local labels can be re-used even in the same assembly using the
block statement. (See assembler reference section.) OSWRCH is
called to print the characters of "text". Notice that OSWRCH is
not defined in the program, even as an external symbol. The
assembler pre-defines all the operating system labels at the start
of each assembly unless you tell it not to on the assembly
command line. This module will take characters from "text"
and print them until it finds a zero. Now let's define a second
module of text.

MODULE part_2

; text for linker example

text ENT
STR "Now is the time™
STR "For all good men"
STR "To come to the"
STR "ADE of their™
STR RCounteyy

BRK

Introduction

Save this file as T.PART2. We now have the text for two
modules on disc. The second module contains "text" as an
ENTry point. Symbols may be declared as ENT only once, but
many modules may each declare them as EXT. The line starting
with a semicolon is a comment line. In the BASIC assembler a
comment line begins with a back slash. ADE plus will accept a
back slash or a semicolon as a comment marker. STR is a
pseudo-op to generate a string of text bytes with a RETURN
character on the end of each (ASCII 13).

Now each module is separately assembled. From the ADE plus
MMU prompt enter:

ASM partl=T.partl
ASM part2=T.part2

In both cases the programs should assemble without error.
Notice that the assembler report now reads "End of linker
module assembly”. If any errors have occured, correct the
programs and reassemble them. To link the two modules, enter:

Link prog=partl,part2

The display should look somthing like this:

ADE plus Linker V 1.0
program error summary..

prog
No linker errors

Linker symbol table
SYSEXEC <P> 0800 text <P> 080F

The actual values for the symbols may vary. The source
programs contained no ORG statements to tell the assembler
where to put the program. The output to the linker from the
assembler is relocatable, that means it can be put anywhere in
memory by the linker. We did not tell the linker where to put
the program so it placed it in the lowest available free memory.
In this case a second processor was used so the program went at
0800 hex. The linker has placed the text at the end of the little
routine and assigned the value 80F to "text". This value will be
substituted in the main program loop, in the statement LDA
text,X. Try to run the program:

*RUN PROG
country!DE oftheire

us User Guide

The output is not what we expected. This is because, although
there were no linker errors, there was a programming error.
The routine OSWRCH treats the ASCII RETURN character as
"return to start of line". A line feed is also needed. The correct
routine to call was OSASCI. Only T.PARTI needs to be
changed and assembled then the program can be re-linked.
When you are dealing with big programs the virtues of all this
will become apparent. Amend T.PART!] to call OSASCI, then
re-link as shown above. Remember to reassemble the program
or you will link the old unchanged module! The program
should run correctly. If you got an error message "Not linker
file" check you are linking partl and not T.part1!

To demonstrate the relocation function of the linker, enter:

LINK prog=part2,partl

The symbol table shows the text at the start of the program and
the label SYSEXEC as 0847 hex. Check the catalog information
with *INFO. The exec address in the catalog is correctly set to
0847 so the program will still run with *PROG.

Clearly this is a trivial example, but using the linker with
various command line options allows a lot of new and exciting
programming techniques to be developed. Firstly, libraries of
preassembled modules can be used This allows preassembled
modules written by others to be used in your program - floating
point libraries, filing system libraries and so on. The routines
will be automatically relocated and woven into your program.
By specifying a different library, debugging routines may be
called. Once debugging is complete, switch to the "run time"
library and the final program is produced. The linker also
allows large programs to be split into "overlays”. A main
program is written and then the subroutines split into groups
which are largely independent. Each group of subroutines is
held in a separate file on disc and loaded when required,
allowing common memory to be used.

To understand how to program with overlays and libraries, it is
necessary to understand how the linker functions and what is
meant by sections in a program. The linker recognises four
kinds of data:

1. Relocatable program data. This is machine code and binary
data (such as the above two examples). The linker strings all the
relocatable program data end to end to make one continuous
block of code that is saved with the file name given on the left of
the equals sign in the linker command line.

2. Relocatable zero page. The linker will allocate zero page
variables on a "first come first serve” basis. Using this method
libraries may use zero page without conflicting with user
routines because the linker sorts out the actual zero page
addresses used. These variables are defined with the RZP
pseudo-op in the assembly source program.

3. Absolute program data. This is machine code and data
written with an ORG in what is termed an absolute section..
Each absolute section produces an additional output file from
the linker. These files are meant to be used as overlays, so each
absolute section may start from the same address.

4. Absolute zero page. Variables may be defined (with EQU) to
have absolute zero page addresses. These should be variables
used by the MOS and so on whose location is fixed by another
program you cannot change. Make all your variables
relocatable zero page using RZP to avoid accidental conflicts.

Linker sections are defined in the source program with the
RSECT and ASECT statements. RSECT stands for "relocatable
(or relative) section" and ASECT for "absolute section”. All
RSECTs are strung end to end. The MODULE statement is an
implicit RSECT so there is no necessity to use RSECT and
ASECT statements unless you wish to program with ASECTs
for overlays or some other use of absolute data. An ASECT
statement must be followed by an ORG statement showing
where the section is to be assembled. Here is an example of an
overlay scheme:

An adventure game is to be produced. There is a main program
loop which will operate on a large data base. To facilitate
special graphics effects, part of the data base may be small
machine code routines that are called from the main program.
The game has five levels, so there are five overlay files for the
data and one file for the main program. The main program will
be the RSECT so that it can span several linker modules. Each
overlay will be an ASECT in one linker module. The ASECTs
all begin at &3000, say, so a check needs to be made that the
main program does not go beyond this. Relative symbols (labels
defined in the RSECT or implicit RSECT after a MODULE) are
offset from zero, so if we assemble our main program at
& 1900, we must put a check in the last module that the last
statement is less than &1700 bytes from the first.

The assembler does not know the absolute address, but all
relative symbols are given an offset value from the start of the
module. Offsets are shown in the assembly listing followed by a
' character, so that JSR LOOPZ for example might produce the

1-19

plus User Guide

output 20 06 09' showing that a symbol &906 bytes from the
start of the program has been referenced.

The ASECT files will be given names by the linker based on the
main program name followed by a three digit number (up to
255). The first four letters from the main program name are
used. If the name is less than four characters it is padded with
Zeros.

Advanced Linker Techniques

Producing a memory map

To produce a memory allocation map from the linker, specify
the M option with LOPT at ADE command level or with M on
the linker command line. For example:

LINK =partl,part2;M

A semicolon separates the linker module list from the options.
The output may be:

Program memory map and error summary

Module: part 1
RSECT: 0800 - 080F

Module: part_2
RSECT: 080F - 0856

Producing a cross reference listing
Specify the X option on the linker command line:

LINK =partl,part2;X,M

Several options may be listed after the semicolon, separated by
commas.

Cross reference listing

Module: part_1
text:part 2

Each reference consists of <symbol name>:<module name>.
The module names are the ones specified in the MODULE
statement, not the file names.

Dumping the linker symbols to disc

A symbol table dump of all global symbols defined with ENT
may be made. The symbol table file name is on the left of the
cquals sign in the linker command line and is preceded by a
comma. This file could be used by a program to generate
BASIC statements, for example, defining all the call addresses in

Introduction

a piece of code to BASIC.

Using a symbol file

The linker U option is followed by a file name enclosed in
square brackets. This file is a symbol file (produced as outlined
above). It is loaded at the start of linker pass 1 and allows
modules to reference external labels not actually in the code, for
example the operating system labels on a different type of micro
computer. To assemble such a table, the symbols are declared in
a source program with GEQU:

MODULE tab
WRITE GEQU &A000
READ GEQU &A006

KEYSC GEQU &A010

These are then assembled to a linker module:

ASM tab=t.tab

Linked to produce a symbol table file S.tab, which remains for
all time to be used with programs requiring these symbols:

LINK ,S.tab=tab
LINK prog=modl,mod2;U[s.tab]

Specifying the load and execution address

This is done using the A (address) option and the B (begin at..)
option. Both allow 32bit hex addresses following them,
enclosed in square brackets.

LINK prog=partl,part2;A[FFFF4000]

Note that options requiring parameters (always in square
brackets) cannot be set with LOPT since this only turns a flag on
or off.

Using libraries :

Any number of libraries may be used in a linking operation. A
linker library is a collection of modules strung end to end in a
file. Libraries are made with the LLIB command. At the end of
the first pass the linker searches each library in turn and looks
for modules in it with symbols still required by the modules
being linked. If such a module is found, that module is also
linked in. Care must be taken that library modules only forward
reference modules coming later in the same library.

1-21

us User Guide

As an example, the program FILTER on the demonstration disc
uses a library containing three modules. The source for the
program is T.FILTER. The aim is to produce a program that
can be *RUN and take parameters from the command line as
follows:

*FILTER <infile> <outfile> <ASCII code>

Such as *FILTER T.FILE N.FILE 10

to remove all line feeds from a file before using it with the ADE
plus editor. The file is assembled to a linker module L.FILTER.
This is linked with the library L.ADELIB by the command:

LINK FILTER=L.FILTER/L.ADELIB

The slash precedes a list of libraries (there may be several
separated by commas). The library consists of two modules, a
filing system module and a maths module. These have been
prepared from the sources T.FSLIB and TMATHLIB. The
assembler output the linker modules L.FSLIB and L. MATHLIB
from these files then the linker librarian command LLIB was
used to make the library:

LLIB L.ADELIB=L.FSLIB,L.MATHLIB

It is important to note that when a library module is identified as
containing a missing symbol, the whole module is included in
the linker output but not necessarily the whole library. Also
note that a single linker module file will pass as a one module
library. The LLIB command simply verifies the files are linker
modules and concatenates them. The best user libraries will be
lists of many short modules containing one or two routines each.
This allows the inclusion of only the required code, making the
output file as small as possible.

Conditional linking

The linker allows each module or library to be tagged with a
conditional label. This label is the name of a symbol, which
must exist. If the value of the symbol is zero then the module or
library is not included. For example:

LINK
PROG=L.MODA, L. MODB/L.ADELIB, L. DEBUG[BUGFIX]

The last library, LDEBUG, is only included if the label
BUGFIX is non zero. This label can be easily altered to include
debugging routines or not.

MMU Command level

Chapter 2 | ADE plus memory management unit
2.1 Command level

ADE plus is initialised by the MOS command *ADE. Entering
the ROM in any other way will not initialise the memory
management unit correctly. During the initialisation stage the
memory management variables kept on page 4 are set up. None
of the units in the ADE plus system interfere with these
variables, they are 'read only'. If you run a program that
corrupts page 4 you will need to enter *ADE to reset the system.
ADE plus then prompts for a command with the time and an
arrow (see Chapter 1). This level is ADE plus command level.
The following pages give full details of each command that you
may use.

ASM

ASM <parameters>

The ASM command invokes the 65C00 series macro assembler.
The remainder of the command line, which must be separated
from ASM by at least one space, is passed to the assembler for
interpretation. See Chapter 4. Alternative assemblers may be
accessed from this command. Full details are given in the ADE
plus Technical Reference Guide available from SYSTEM.

CLOSE

CLOSE

The CLOSE command closes any open files. It is the same as
CLOSE #0 in BASIC. If a program under test has opened files
and crashed, issue this command or the assembler or linker may
not be able to open enough files. The ADE plus modules always
close all files if a fatal error occurs. This has the side effect of
halting an exec file, which in the event of a fatal error is

probably a good thing.
COMMANDS
COMMANDS

Typing COMMANDS (or C.) displays a help page giving the
full list of ADE plus commands with a guide to the expected
syntax of the remainder of the command line in each case. This
replaces the *HELP facility found on many ROMs since the
ADE plus MMU commands do not function as * MOS
commands and cannot be accessed outside the ADE plus
command level.

8 User Guide

P,

DEBUG
DEBUG <parameters>

This command calls an advanced debugger that is written to
work within the ADE plus system. The remainder of the
command line, which must be separated from DEBUG by at
least one space, is passed to the debugger for interpretation.
Full details are given in the ADE plus Technical Reference
Guide. ' ;

EDIT
EDIT (<parameters>)

The EDIT command first looks for an advanced editor in the
ADE plus system. If one is found then the remainder of the
command line, which must be separated from EDIT by at least
one space, is passed to the advanced editor for interpretation.
Full details of the interface to the advanced editor are given in
the ADE plus Technical Reference Guide. If an advanced editor
is not present then EDIT commands are passed to a small screen
editor within the ADE plus MMU chip. This editor is fully
explained in Chapter 3. All editors will accept * as a parameter
meaning the file in the input buffer and all editors will leave the
edited file in the input buffer so that it can be assembled
directly, unless the file is too large to fit in the buffer.

GO
GO <hex addr>

The GO command calls a machine code routine at <hex addr>.
The registers are undefined on entry to the routine and need not
be preserved, though the routine should exit with interrupts
enabled and the decimal flag clear, as normal. The address is
not preceded by an ampersand. On the second processor, for
example, GO F800 will call the MOS command line interpreter
from which ADE plus can be restarted by typing *ADE (not
*GO 8000).

INPUT
INPUT <size in K>
This command sets the input buffer size. INPUT 0 will leave

the input buffer unallocated. Normally, when a second
processor is used, this command need not be issued since the

2-3

MMU Command level

largest free memory area outside the main work space is given
to the input buffer. Whenever input files are smaller than the
input buffer they will be *LOADed otherwise they will be read
a buffer-full at a time with OSGBPB. If your filing system's
implementation of OSGBPB is efficient the system will run
faster with a larger input buffer because the number of disc
accesses will be reduced.

IO proc. 2nd proc.

FFFF
sideways
RAM C000
print
buffer
% 7/ 8000

(screen)

workarea

buffer B

0800

This diagram shows the full range of memory managed by the
ADE plus MMU. With a second processor attached the input
buffer will be at least 14K (buffer A). If buffer B is larger than
14K then the input buffer will be buffer B. Without a second
processor buffer B is split between the input and the output and
its size is variable, set by the INPUT and OUTPUT commands.

LINK

LINK <parameters>

The LINK command calls the ADE plus linker. The remainder
of the command line, which must be separated from LINK by at
least one space, is passed to the linker for interpretation (see
Chapter 5). The linker is built into the ADE plus MMU chip
and it is not possible to substitute a different linker. The linker
may link the output from compilers and other assemblers. Full
details of the linker data formats are supplied in the ADE plus
Technical Reference Guide.

User Guide

LLIB
LLIB <lib>=<mod>{,<mod>...} (-)

The LLIB command invokes the linker librarian which will
make a linker library from the specified list of modules. <lib>
is the name of the library file. There must be at least one
module. More modules may follow, each preceded by a
comma. A hyphen may appear anywhere in the line and will
make the librarian pause for more input. The hyphen does not
take the place of a comma separator. Any characters following
the hyphen on the same line will be ignored. For example:

11:20 => LLIB L.MATH=ADD,SUB,DIV,MUL, LOGIC-
? ,ASC,STR, FLOAT,FIX

This command instructs the librarian to make a linker library
from the files ADD, SUB, DIV, MUL, LOGIC, ASC, STR,
FLOAT and FIX. It is usual to give the modules the same name
as the file name when preparing modules for the linker
librarian, but not mandatory. The library feature will work
best if each file in the library contains only one or two routines.
This is because the linker will include the whole of a module in
its output if it finds a required symbol in the module's entry list.
Libraries should contain groups of related modules. If modules
A, B and C say all use common subroutines, put these in a
module D and include D in the library after A, B and C. Also,
make sure all the labels in the modules' entry lists do not get
duplicated in programs using the library. For example, filing
system routines could all start with "FS_". Also remember
when using libraries that the linker distinguishes between lower
and upper case. Stick to one convention for your labels. The
suggested convention is that library routines are labelled in
UPPER CASE, whilst program labels are normally in lower
case but ENTry points begin with an Upper case letter. This
will avoid any duplication of symbol names.

LOPT
LOPT (-)<opt>{,<opt>...}

The LOPT command sets and resets the linker option flags. A
global set of these flags is held by the MMU in its work space.
The linker copies these into its local variables when a LINK
command is interpreted. Preceding an option by - resets the
option (to false or off). Otherwise the option is set (to true or
on). The options remain in force until changed by another
LOPT command or reset when *ADE is typed. The current
options are displayed with the STAT command. Some linker

25

MMU Command leve

options take parameters enclosed in square brackets. These
options cannot be set with the LOPT command.

MLIB
MLIB <lib>=<source>

The MLIB command invokes the macro librarian to make up a
macro library from a single source file. The source file should
contain just MACRO definitions in standard ADE plus format.
This file (and hence, indirectly, the library) is edited in the
normal way. The library file is constructed with a catalogue
giving details of the whereabouts of each macro in the file. This
catalogue is loaded with the MACLIB command by the
assembler. Any macro can then be found quickly by random
access. Full details of the macro library format are found in the
ADE plus Technical Reference Guide.

MODE
MODE <screen mode>

Change the current screen mode and re-calculate the buffer
sizes. Do not change mode by any other means. The ADE plus
editor selects mode 3 or mode 7 on entry, depending on whether
you were using a 40 or 80 column screen and returns to the
original mode on exit. The assembler and linker base their
workspace calculations on details given by the MMU, which
takes the top of free memory in the IO processor each time
MODE is changed.

OPT
OPT (-)<opt>{,<opt>...}

Set the assembler options globally with the OPT command.
Unlike the linker, all the assembler options consist of flags and
can all be set permanently with OPT. The options consist of the
letters A to Z. Preceding an option with a minus sign resets that
option. (See LOPT). A full list of assembler options is given in
Chapter 4.

veor Gulde

OUTPUT
OUTPUT <size in K>

This command sets the output buffer size. OUTPUT 0 will
leave the output buffer unallocated. Normally, when a second
processor is used, this command need not be issued since the
second largest free memory area outside the main workspace is
given to the output buffer. Whenever. output files are smaller
than the output buffer they will be *SAVEed otherwise they will
be written a buffer-full at a time with OSGBPB. If your filing
system's implementation of OSGBPB is efficient the system will
run faster with a larger output buffer because the number of
disc accesses will be reduced. :

10 proc. 2nd proc.

FFF

buffer A

print /
buffer /A //é o

(screen)

sideways

Co000

workarea

buffer B

0800

N

This diagram shows the full range of memory managed by the
ADE plus MMU. With a second processor attached the output
buffer will be 14K (buffer A) if buffer B is larger than 14K.
Otherwise the output buffer will be buffer B. Without a second
processor buffer B is split between the input and the output and
its size is variable, set by the INPUT and OUTPUT commands.

PRINT
PRINT <size>

Set the print buffer size. The only valid sizes are 0, which
disables the print buffering, or a non-zero value which enables
it. Print buffering will only be enabled if there is sideways
RAM in the system that has not been protected (see PROT,
UNPROT). All the unprotected sideways RAM is used as a

MMU Command level

print buffer. The buffer is switched on and off through normal
MOS routines once the buffer system is initialised. ADE plus
initialises the system, so if you go into BASIC at a later stage the
print buffer will still be active and BASIC will be able to spool
its print out in the same way that ADE plus does. Full details of
how the print buffer operates are supplied in the ADE plus
Technical Reference Guide. The print spooling system uses the
cassette file workspace on page 3 to hold its variables so it
cannot be used at the same time as the cassette filing system.

PROT
PROT <rom id>{,<romid>...}

The PROT command protects pages of sideways RAM from use
by the print spooling system. <rom id> is a number in decimal
between 0 and 15 referring to the respective page of sideways
RAM. If any ADE plus module is in sideways RAM then that
page is automatically protected at start up, but you could
unprotect it with UNPROT, with dire consequences. Protected
RAM is used for user programs and other ROM images.

RESET
RESET

Reset all the ADE plus MMU buffers to their initial values. This
will depend on whether a second processor is connected and
what screen memory is being used. All sideways RAM will be
available to the print spooler except for RAM used to hold ADE
plus modules. ADE plus does an implicit RESET command
when the screen memory is changed with MODE. This
command is useful if the buffers or ADE plus variables on
page 4 have been corrupted.

STAT
STAT .
The STAT command displays the values of the ADE plus MMU

variables in a comprehensible form. It is fully described in
Chapter 1.

18 User Guide

TIME
TIME (<hh:mm>)(,<date>)

Alter the time and/or the date. The time must be entered as
hh:mm (eg 10:36). The date may be entered in free format as a
string of up to 16 characters. If only the date is required then it
is entered preceded by a comma, such as TIME ,22nd July 87.
There must in that case be a space between TIME and the
comma.

UNPROT
UNPROT <romid>{,<romid...>}

Reverse the action of PROT and enable a page of sideways RAM
for use by the print spooling system. The syntax is identical to
PROT. It is possible to unprotect RAM used to hold ADE plus
modules. The effect of this will become apparent during a
printout when the code of the ADE plus module is eaten up by
the spooling system. You could lose a valuable edit, so take
special care using UNPROT. The STAT command tells you
which slots (rom ids) are used by ADE plus modules. The ADE
plus MMU is in the same slot as the linker.

ZASM

ZASM <parameters>

The ZASM command calls a Z80 assembler if one is found in
the ADE plus system and passes to it the remainder of the
command for interpretation. In fact any cross assembler, such
as 68000 or 6803, could be used here as long as it was
recognised by ADE plus. Details of how ADE plus recognises
the two different assemblers are provided in the ADE plus
Technical Reference Guide. The cross assembler must preserve
the ADE plus variables on page 4 and should make use of the
ADE plus memory management information and procedures.

MMU Command level

2.2 Minimum abbreviations for ADE plus
commands
AS. ASM CL. CLOSE
C. COMMANDS D. DEBUG
E. EDIT G. GO
L INPUT L. LINK
LL. LLIB LO. LOPT
M. MLIB MO. MODE
0. OPT Ou. OUTPUT
P. PRINT PR. PROT
R. RESET G- STAT
T. TIME u. UNPROT
Z. ZASM
2.3 Errors reported by the ADE plus MMU

1. Insufficlent buffer space

Too little memory to allocate buffer
2. Out of range

Bad parameter in ADE plus command
3. Bad parameters

Bad or missing parameters in command
4. Module not present

Required ROM or image in RAM not found
5. Buffer allocated
6. Too big
7. Out of memory

Errors allocating buffer space
8. File not found

Unable to open library source file
9. Can't write to output file

Unable to open library output file
10. Bad file specs

Librarian unable to interpret command line
1. Missing ENDM
12 Too many macros

MLIB errors

2-9

B

AR

o

e

e

PR

Al

ol '*.,'

e
a W

[& HA !

:
P,

e

*x

o

i1

s BALIS

it ooy

A B

l-||-1"‘3\

st

fiinsm

we it d

ikt

8 1

FL bR L .

Chapter 3

31

Editor reference

ADE plus Editor

The ADE plus memory management unit recognises two types
of editor. Firstly, an editor module that has been loaded into
sideways RAM or is in a ROM socket or cartridge. This editor
is probably a sophisticated mouse-based text and programming
editor that you have added to your ADE plus system. This
editor is called the Advanced Editor on the ADE plus status
screen. Secondly, if no such editor exists, a basic text editor is
built into the ADE plus MMU ROM itself. Although this editor
only performs basic functions it has one or two special features
for editing assembly language text which make it very usable.
These include block move, copy and delete and a special GOTO
LABEL key that will find the point in the text where a symbol
has been defined. This chapter explains how to use the editor.
You may, of course, prefer to use VIEW or another third party
editor in which case this chapter may be removed from the
manual.

Getting started

The ADE plus basic editor is called using the EDIT command
from ADE plus command level. The command may take one of
three forms:

EDIT <filename>
EDIT *
EDIT

EDIT <filename>

The named file is loaded into the memory work area. The file
must fit in this space or an error occurs. The editor validates the
text (see OLD below) and goes into editing mode so that the first
page of text will be shown on the screen.

EDIT *

The editor attempts to load text into the work area from the
INPUT BUFFER. Before using this command you should
understand how the ADE plus MMU functions and what is
meant by the input buffer. The text is transferred into the work
area. The editor validates the text and all being well goes into
editing mode with the first page of text displayed. An error
occurs if the text is too big for the work area.

s User Guide

EDIT

The editor does not try to load any text. It tries to validate an
existing text file in the work area (in case you left editing by
mistake) and, if it can, will go into editing mode displaying the
first page of the ‘old' text that it found. You can issue a NEW
command if this was not what you intended. Often the memory
will look like a blank text file to the editor so after typing EDIT
a blank screen appears with the cursor in the top corner. You
can begin to enter text or you can prcss escape to go into editor
command mode.

Editing mode

The normal mode for the editor is editing mode. The whole
screen is used to display text. The cursor shows where the next
text will be inserted. All the editing commands described below
may be used. When you want to issue a command to the editor
such as LOAD or SAVE, press the escape key to go into editor
command mode.

Command mode

If the editor fails to find valid text when you issue an EDIT
command it will go into command mode with the message No
text. You can always get from editing mode into command
mode by pressing the escape key. You can only leave the editor
from command mode. When in command mode you can go
back into editing mode by pressing the escape key.

Leaving the editor

You can exit from the editor back to ADE plus command level
by typing the QUIT command or by typing the RUN command,
in which case ADE plus will attempt to assemble and run the
program in memory. Both of these commands attempt to copy
the text from the work area to the mput buffer so that it may be
assembled directly, If there is no input buffer or the text is too
big then it will not be possible to assemble the current program
directly from memory. Remember ADE plus allows you to
specify the size of the input buffer.

The text window

When the editor is entered the screen mode will be 3 or 7
depending on the mode in ADE MMU command level. In mode
3 the window shows 25 lines of 79 characters. In mode 7 only
39 characters are shown. The current line sideways scrolls if
you type beyond the last column. The tab stops are pre-defined
every 8 columns.

3.7

38

Editor reference

The command screen

When in command mode the editor prints status information at
the top of the screen. This information includes some or all of
the following:

Bytes free
Free space in the text buffer in characters (or No text)

File
The current file being edited or * if the input buffer has been
loaded or No file

Insert ON or OFF
The editor is initially in insert ON mode (see below)

n markers
The number of text markers set (1 or 2) - not displayed if no
markers set

hh:mm
The time (when the editor status was last printed)

The editor prompts for a command with ">". A MOS (*)
command may be issued or any of the editor commands
described below.

Editing text

The text is edited by moving the cursor round with the cursor
arrow, shift and control keys and by using the function keys to
perform special tasks. Normally the editor is in INSERT mode
which means that text entered will be inserted before any
remaining text on the line. The maximum line length is 128
characters. By pressing function key zero the editor toggles
between insert and overtype mode. In overtype mode text
entered will replace existing text on a line. You cannot overtype
the end of a line. The cursor arrow keys are used as follows:

Guide

When moving up and down the editor keeps track of the current
column. However, remember that a tab character counts as a
single character so that when editing with tabs the cursor may
move a little as you go from line to line. When moving to a new
line the editor adds spaces to get to the correct column. When
leaving the line the editor always removes trailing spaces.

The delete key deletes backwards, but cannot delete beyond the
start of a line. Function key 9 deletes forwards on a line.
Function key 8 inserts a space character in front of the cursor.
The remaining function keys perform actions on whole lines.

Toggle insert and overtype mode. The status screen (press
ESCAPE) shows which mode is currently active.

Find next occurrence of search string. The search resumes
from the last occurrence, not from the current cursor position.
A beep means not found, else the cursor is moved to the new
string. See SEARCH command.

Go to a program label. The editor extracts a label from the
cursor position looking for delimiting characters that are not
valid as ADE plus assembler labels. It then searches from the
start of the text for a line starting with these characters. If not
found a beep will be heard, else the cursor will be moved to the
start of the line.

Editor reference

I clear line |

Clear to end of line. All the characters from the cursor to the
end of the current line are deleted.

Split line at cursor position. The line is split. The cursor
remains on the end of the line and the remaining characters will
appear on the line below. If the cursor was at the end of the line
then a blank line will be inserted.

Join lines I

Join the current line with the one below. The line below is
appended to the end of the current line.

Insert blank line. The current line becomes a blank line. Lines
below move down.

Delete line. The current line is deleted. Lines below move up.

s Usar Guide

Insert character at the cursor position. The characters to the end
of the line will be moved along even in overtype mode. This key
is normally used when editing in overtype mode and desiring to
make a small insertion.

Delete a character forwards from the cursor position. You
cannot delete the end of line character.

Pressing shift and function key O inserts a marker in the text
which will be shown as an inverse up arrow. The editor allows
up to two markers in the text and always refers to the first
marker (ie one nearest the start of the text) as marker 1 and the
second marker (nearest the end) as marker 2, regardless of the
order that the markers were inserted.

Clear both markers. A marker is a character that can be deleted
by typing over it or using the delete key. Delete markers with
shift f1 wherever they are in the text. This is done automatically
before the text is saved to disc or the input buffer.

Delete the marked block of text. All text between the markers
and the markers themselves are deleted. The cursor must be
outside the marked block. The editor will warn with a beep if
the cursor is in the hlock o there are lese *»2n 2 markers set.

3.9

3-7

Editor referenc

Move the marked block. The block is moved to the current
cursor position, same conditions as above. The block may be
copied by pressing the COPY key. Pressing shift-f3 is identical
to pressing COPY then shift-f2. Block move will only work if
there was enough memory to perform the copy first. If move or
copy cannot function because of lack of memory the editor will
beep.

Go to marker 1. The cursor is moved to the marker nearest the
start. If no markers set then the editor beeps.

Go to marker 2. The cursor is moved to the second marker. If
less than two markers set then the editor beeps.

Editor commands

The following commands may be issued from command level in
the editor. To get from editing mode to command mode press
the escape key. Pressing the escape key whilst in command
mode causes the editor to go back into editing mode. When the
EDIT command is given, if the editor fails to find text in the
work area after performing whatever load actions were
specified, it will go to command mode, with the message "No
text" in place of the "Bytes free" status. In such a case type
NEW.

NEW

This command clears the text buffer. It may be reversed
immediately afterwards by typing OLD.

or Guide

OLD

This command attempts to determine the extent of text in the
buffer. If the text is not valid then the editor will be in a No text
state and you will need to type NEW. Note that this editor
considers text containing line feeds to be invalid. A line feed
filter program is included on the demonstration disc. To run
this program, have it in the disc drive and type

*FILTER <file> (<new file>) (<char code>) (<new char>)

The new file will default to the same name as the old file
overwriting it. The char code defaults to 10 (filter line feeds)
and if no new char is specified then the line feeds will simply be
deleted.

LOAD <file>
L <file>

Load the specified file from disc into memory. The file must be
small enough to fit or a Too big error will occur. The editor
validates the file and puts the cursor at the start. Press escape to
go into editing mode and change the file.

SAVE <file>

Save the file under the name specified on disc. If the file exists
then the message "Replace? (Y/N):" will appear. Press Y or N.

CLEAR

Clear markers from the text

SEARCH <text>
S <text>

Search the text from the start for a line containing <text>. The
text need not be delimited, in which case it starts with the first
non blank. A tab character may be included by using the double
bar symbol, which the editor will translate into a tab. To
include leading spaces delimit the string with "quotes". A
double quote character will cause a quote to be placed in the
quote string, for example:

S "LDA #""A"""

The current string is printed on the status. If no string is
specified the editor searches for the next occurrence of the
string. If the string is found, the editor goes into editing mode
with the cursor at the string. If not, the message "Not found" is
printed.

Editor reference

QUIT

Attempt to save the text in the input buffer and return to ADE
plus command level. If there is no input buffer or the text is too
big, the message "Quit? (Y/N):" is displayed and you can press Y
or N as you please.

RUN

Save the text in the input buffer. If this can't be done the
command aborts with the error "Can't run". Then call the
assembler with the command line ASM =*G. This will
attempt to assemble the text and run it. Make sure your text is at
a suitable address to avoid corrupting the ADE or MOS
variables.

MODE

This command toggles the editor screen between Mode 3 and
Mode 7. Only use Mode 7 if you have a poor quality monitor.

3.10 User defined keys

The function keys f0 to f9 are set to deliver the text defined with
*KEY n when they are pressed together with SHIFT and CTRL.

8 User Guide

Assembler referen

Chapter 4 | The Macro Assembler

4.1 DESCRIPTION OF THE ASSEMBLER

The assembler is designed to facilitate assembly language
programming on the BBC series of microcomputers. The
assembler contains an extensive set of pseudo-ops that cater for
every conceivable programming requirement. Standard 65C00
series mnemonics and address mode syntax are used. The
source program may reside on disc but will be loaded into
memory if sufficient RAM is available. The size of the source
program is not limited. The assembler uses main RAM for its
workspace. This workspace holds the symbol table, the file
buffers, the macro text and the assembler's own variables. The
assembler is not used to create the source program. A text
editor must be used to do this. Any text editor may be used that
produces a standard ASCII text file. Word processors that
embed control and text formatting commands in the text will not
work. VIEW will work if format and justify are turned off.
The assembler WILL recognise VIEW rulers and use them to
format the source code listing on pass 2. Otherwise only text is
accepted.

Assembly is initiated from the ADE plus MMU prompt by the
ASM command, or by the editor run command, as described
below. The assembler translates the source program into either
a machine code file that can be directly run using the *RUN
command or a linker file of relocatable hexadecimal code that
can be linked with other files to produce the machine code object
file. During pass 1 the assembler generates a symbol table
containing the numerical values of all symbols defined by the
user. The length of each instruction is determined and any
forward references noted. These are always assumed to be non-
zero page addresses so that the assembler will generate three
byte instructions where it might have generated a two byte
instruction if no forward reference was encountered. Thus all
zero page labels should be defined before they are used. Macros
are read into main memory during pass 1. A macro must be
defined before it is used so that the assembler can work out the
correct number of bytes that each use of the macro will entail.
Macros are stored in memory in text form so they should be
defined as briefly as possible.

A second pass re-reads the source program and generates the
output file substituting the actual numerical values of all
symbols fully defined. If the output is a linker file then a list of
addresses to be relocated and a list of external (undefined)
symbols and the places where they occur is also output. A listing
will also be generated in pass 2 and the assembler will flag any

41

User Guide

N

errors that it finds in the source program. The assembler does
NOT detect logical errors in the program so a successful
assembly does not mean the program will run correctly.

The source file may be split up into include files and chain files.
Include files are inserted between two lines of another source
file, one that contains an INCLUDE statement. This 'parent’ file
may not itself be an include file. A chain file follows on from
the last statement of a preceding source file that CHaiNed it.
This feature is included for compatibility with ADE versions 1
and 2. Newcomers to this system should use include files as they
offer the flexibility of a 'control file', that is a parent file or
main source file which is simply a list of INCLUDE statements
together with all the conditional flags to be set for the assembly.

Aborting an assembly

An assembly may be terminated at any stage by pressing
ESCAPE. When this is detected all files opened by the
assembler are closed.

The assembler works with any filing system that supports
random access through OSGBPB, catalogue entries through
OSFIND and multiple file access. Usually the filing system used
will be disc (DFS, ADFS) or econet.

The Assembly Command Line

The assembler is started from an ASM command after the ADE
plus prompt. The ASM command is always followed by at least
one space. The rest of the line specifies the file to be assembled
and various options supplied to the assembler. This part is
called the assembler command line. Thus the general format for
starting an assembly is:

hh:mm => ASM fobject}{/listing]=sourcef[,opt]}{/ans(,ans]}
or

hh:mm => A {object}{Aisting}=sourcef{[,opt]}{/ans[,ans]}
User input italicised

The meaning of each item on the assembly command line is as
follows. Items in curly brackets are optional. Items in square
brackets may be repeated. Object is the object file, or output
file, which may be in relocatable or absolute form according to
the contents of the source file. Listing is a file to contain the
listing or error messages output on pass 2. The inclusion of this
file does not generate a listing. That is controlled by the LST
pseudo-op. If no listing file is specified then the listing goes to

4.3

Assembler reference

the screen or printer according to which options are used. A /'
must precede the listing file name and is not part of the name.
The object file name may be omitted and in such a case the
source code is only scanned for errors. A listing file may be
generated when no object file is being generated. An equals sign
always follows any object or listing files (even if neither are
present). The equals sign separates the output parameters from
the input parameters. Source is the name of the first source file
to be assembled. This must be present. The source file may
contain INCLUDE files and a CHN file. Opt is an assembler
option. If options are specified they follow the source file name
and each option is preceded by a comma, including the first
option. Ans is an answer to a QUERY statement in the source
program. Any number of answers may be specified and each
answer is separated by a comma. An answer is an expression
which may contain symbols but not contain forward references
or externals. The first answer is preceded by a /'. The first
answer is supplied to the first QUERY and so on. When the
assembler runs out of answers it asks for them from the
keyboard. (See QUERY). If an invalid answer is detected the
message Re-enter: is displayed and you must type in the answer
on the keyboard.

If a command line is not correctly interpreted the message:
Invalid command line

is displayed and a prompt for a new line issued. This will
usually occur if no source file is specified or the equals sign is
absent. If the source file does not exist the error file not found
will be reported.

The symbol * may'bc used for the source file when the source
file is the text currently in the input buffer. This may be a
repeat of the last assembly or a file left there by an ADE plus
editor.

Assembler Options

A number of options may be entered on the command line.
These options can also be entered in the source code using the
OPT pseudo-op. Each option is a letter A.Z (or a..z) and
controls the value of one of 26 flags in the assembler variables.
Each time the option is specified the flag is toggled on or off.
Only some of the flags affect the behaviour of the assembler.
The unused letters are reserved for future expansion.

43

User Guide

Option C - conditionals

Conditional listing. Statements that are conditioned out of the
assembly will not be listed if the C option is in effect. These
statements normally have an S (skipped) in column 18.
Statements containing errors will always be listed regardless of
the options.

Option E - extended error messages

The assembler will produce full text error messages and a
pointer to the part of the source statement giving the error.
Additional messages are generated for syntax errors and linker
rule violations.

Option F - Fix ASCII size
The assembler will fix ASCII constants as 16 bit values after
OPTF. This means that XY' could be specified as a word value
for example. Note however that after OPT F some macro
substitutions may not work as expected,

IF 0@10=l
would have to be replaced by

IF c@l'=mv

Also, using 16 bit ASCII the second quote must ALWAYS be
specified whereas it is optional with the default 8 bit.

Option G - go

The assembler will attempt to run the object program provided
the assembly was an absolute assembly and that there were no
errors. The assembler will obtain the object code from the
output buffer if possible, otherwise the object file will be *RUN.

Option H - halt exec file
The assembler will close the exec file if an error occurs so that
bad output is not linked or run.

Option L - listing

Force a listing. A listing is generated regardless of any LST
OFF statements in the source code. The assembler still
distinguishes between LST ON and LST FULL statements.

Option N - no listing
No listing is generated regardless of LST ON statements in the
source code.

Assembler reference

Option O - omit operating system labels

The assembler uses a list of default symbols as defined in the
operating system as well as TRUE and FALSE. These are
“assembled” before pass 1 unless OPT O is specified in the
assembler command line or globally in ADE plus OPT
command. It is impossible to specify OPT O in the source
program.

Option P - printer
Direct output to the printer on pass 2. Output stops after the
symbol table or a fatal error. Any listing file is unaffected.

Option Q - syntax check

The assembler does not generate any output file on pass 2. This
option is the same as omitting the object file name from the
command line and will probably be most useful in an OPT
statement in a source that you are not going to compile

immediately.

Option R - reduced instruction set

The assembler will use only the standard 6502 instructions.
65C00 series instructions will be flagged as illegal op codes
unless you provide a macro for them. Thus for 6502 work PHX
may still be used if you specify a macro (typically TXA, PHA).
The output file is identical to the 65C00 format so you may link
different modules together, some of which contain only 6502
instructions.

Option S - error summary

The assembler will generate a summary of error messages at the
end of pass 2. Each error message will give the file name, the
line number within the file and the text of the extended error
message.

Option U - upper case translation
The assembler will translate all symbols into upper case. This
gives compatability with ADE versions 1 and 2.

Option W - wait after error
The assembler will pause after an error, listing the extended
error message and the text Press any key.

4-5

lus User Guide

L4

4.5

Example Command Lines
=T.MYTEXT

Perform a syntax check on the file TMYTEXT and possibly
generate a listing if LST ON is specified. The listing goes to the
screen.

=T.MYTEXT, N

Perform a syntax check but produce no listing except for lines
containing errors.

/ERRORS=T .MYTEXT, N

Perform a syntax check and send errors to the file ERRORS' as
well as to the screen.

MYCODE=T .MYTEXT

Assemble TMYTEXT and produce an object file MYCODE.

MYCODE=T .MYTEXT, L, P

Produce an object file and force a listing of all the source to the
printer.

MYCODE=T .MYTEXT, L,P/&1900, 256+FRED, &65

Assemble, list to printer and use the response &1900 for the
first QUERY, 256+FRED for the second QUERY and &65 for
the last query.

MYCODE/LISTFILE=*,L,C/&1900, YES

Assemble from memory and send a listing to the file LISTFILE.
Do not list sections of code that are conditioned out. Answer the
first two QUERY's with &1900 and YES.

General Considerations

Use a listing file with a hard disc or RAM disc based filing
system. On floppy based systems it will slow down the
assembly. Double density systems may have enough room
on disc but large programs will soon fill a single density
floppy disc. A listing file with the N option is useful to
capture all the errors. The P option sends all the listing to
the printer but you can be more selective using the LLST

4.6

4.7

Assembler referenc

pseudo-op. Commands for assembly and linking may be put in
an EXEC file. If ADE plus does not recognise a command it
tries to execute the file of the given name.

Format of the Source Program
<label> <opcode> <operand> <comment>

The source program consists of one or more files of ASCII
characters. Each file consists of a number of lines. A line is a
sequence of characters ending in ASCII carriage return (&0D),
ASCII CRLF (&0A,0D) or the physical end of file. The
assembler contains directives to generate text data in the object
file with or without bit 7 set. Each line is divided into four
fields: the label, the opcode, the operand and the comment.
Every field is optional though certain opcodes and pseudo-ops
require certain operands and possibly require a label. The
simplest line is a blank line. A comment line is allowed, and a
line beginning with an asterisk is a comment line. Fields are
separated by 'white space’ which means one or more space
characters or tab characters. The tab character is expanded to
spaces in the listing and initially tab stops are set every 8
columns but this may be overriden by including a View format
ruler in the text. Rulers will not be listed. Only the tab stops on
the ruler apply, counted from the left hand margin. A statement
may be simply a label. An operand with no opcode is not
allowed. The label must be the first item on the line and must
not be preceded by any white space. Statements must not contain
line numbers (except as comments).

The Label

The label is usually-an optional field. A label must not begin
with a number but may contain any of the following characters:

A.Z, a.z, 0.9, full stop, unserscore, query (?)

Labels may not contain embedded blanks. A label that begins
with a colon is a local label. A global label may also be defined
with the ENT pseudo-op. The assembler differentiates between
lower and upper case in labels unless the U (uppercase) option is
specified. The underscore character is a valid character and is
always included as part of the label. A label may not start with a
numeric character. The label may be any length. Note that the
colon in front of a local label is part of the label name and must
be used whenever the label is referenced in the operand field.
Labels may be redefined under the following conditions: a label
defined with the = pseudo-op may be redefined at any point with
another = statement. These labels are normally used for
counters in macros and so on. A local label may be

47

us User Guide

redefined provided it is in a different BLOCK. No other labels
may be redefined.The length of the label is only limited by the
length of the statement. In order to avoid redefining labels in
macros a special parameter is provided within the scope of the
macro called @0. @0 is a five digit decimal number which is
incremented each time a macro is invoked. Like the user's
parameters (@1 to @9), @O is saved when macros are nested.
It should be appended to labels that are used in macros. Of
course a label can be passed to a macro as a parameter.

The assembler keeps a counter called the 'location' counter
which is the address at which the instruction will be assembled.
In a linker file the location counter is the offset from the start of
the section (except in ASECT). The label is normally given the
value of the location counter at the start of the line. Thus if a
label is defined on its own it simply receives the value of the
location counter. Another label on the next line will have the
same value. The EQU,= and QUERY pseudo-ops redefine the
value of a label to the value of the operand field.

When a label is used in an operand it is referred to as a symbol.
The assembler keeps all its labels, macros and other items
needed to assemble the source in a table called the symbol table.
When the symbol is referenced in an operand the assembler
substitutes the value from the symbol table. All absolute
symbols with values greater than 255 can be defined anywhere
in the program. Zero page symbols must be defined before they
are used. A third type of symbol is an external one. When an
external symbol is referenced the assembler makes a note of the
place in the object program that the symbols value should go.
The linker then substitutes the value into the program. If you
put a zero page label in an operand before it is defined, or any
external label, the assembler will always generate a long form (3
byte) instruction. It is good practice to include zero page
symbols at the start of the program in a DSECT. All
unknown symbols in pass 2 will be flagged as errors.

Assembler referenc

48 The Opcode

The second field of each statement is the opcode. It is separated
from the label by white space. If there is no label there must be
at least one space or tab before the opcode. The same characters
used in labels are used in opcodes. Firstly the assembler tries to
match the opcode to one of the standard 65C00 series
mnemonics, plus the alternative mnemonics for some branching
instructions allowed with this assembler. At this stage only
three character opcodes are considered and they are converted
to upper case. If the opcode is not recognised the assembler
searches for a pseudo-op, again converting the characters to
upper case. If the opcode is not a pseudo-op it must be a macro.
The assembler looks at the macros defined to date and then, if it
is not among them, in the current macro library. If the macro is
found in the library it is loaded into memory. If there is no
specified macro library or the opcode is not in it the assembler
gives up and flags an unknown instruction error in pass 2. This
sounds a lengthy process but most statements will be 65C00
mnemonics and so they will be recognised immediatly. Macro
names can be mixed upper and lower case and the case is
significant unless the U option is in effect. The assembler
recognises tokens for the 65C00 series opcodes, in the range 128
to 255. Full details are given in the ADE plus Technical
Reference Guide.

49 The Operand

The operand field of the statement is required in a precise
format by each mnemonic or pseudo-op. If the format is wrong
the assembler flags a format error in pass 2. The operand
contains an expression formed out of constants, symbols and
operators plus syntax information such as an indication of which
addressing mode is to be used. The standard addressing modes
are used, as used in the BASIC mini-assembler. The arithmetic
operations have no precedence except for the use of brackets and
are evaluated from left to right. The only arithmetic error
flagged is division by zero.

4.10 The Comment g

The comment field is used to document the program. The
assembler prints the comment in the listing but otherwise it is
ignored. A comment starts with a semicolon or back slash and
ends at the end of the line. The assembler also recognises
statements whose first non-blank character is an asterisk as
comment lines and ignores them.

49

plus User Guide

4.11

4.12

Expressions

In the description of the pseudo-ops that follow, the term
<expr> is used to denote an expression. Expressions consist of
one or more ferms separated by arithmetic operators. Each
term is a constant or symbol which may be signed, or it is
another expression in brackets (...). Expressions are long (16
bit) or short (8 bit, less than 256). If the assembler finds a
forward reference in an expression then the expression is long
even if its value turns out to be less than 256. The length of the
expression is used to generate long or short form instructions.
Expressions between &FF80 and &FFFF generate long
instructions but can be used as negative values -1..-128 in
operands that should be one byte long.

Constants .

The assembler recognises four types of constant: ASCII
constants and three types of numeric constant. Numeric
constants may be binary, decimal or hexadecimal. The first
character of a constant shows what type of constant it is.

Decimal numbers

Decimal constants consist of a sequence of ASCII digits 0..9.
These represent the integer values 0..65535. Overflow beyond
65535 is ignored so the value mod 65536 will be used.

Hexadecimal numbers

Hexadecimal constants represent numbers in base 16 and consist
of the digits 0..9, the letters A..F and an identifier $ or &. The $
or & character precedes the hexadecimal digits. The value is an
integer in the range &0000 to &FFFF. Once again overflow is
ignored. The $ or & alone represent the value zero.

Binary numbers

Binary numbers are numbers in base 2. They are used most
frequently for bit masks. The first character must be % then the
digits 0 and 1 may be used. If a digit bigger than 1 is used a bad
number error will be flagged. The percent sign on its own
represents the number zero.

ASCII constants

ASCII constants represent the ASCII code for a single character.
They are preceded by a single or double quote and may
optionally be followed by the same quote. A quote alone will
assemble a space character (&20).

Assembler reference

4.13 Strings

Some assembler pseudo-ops assemble a sequence of ASCII
characters, called a string and denoted by <string> in the pseudo-
op descriptions. The start and end of a string must be delimited
in the source code. This assembler allows any character except *
and | to be used as a delimiter. The string must start and end
with the same character, and this character is not assembled as
part of the string. Within the string the ‘escape’ characters * and
| are used as follows: The character following # is assembled
with bit seven set. The character following | has 64 subtracted
from its ASCII value making it a control character. Two up
arrows assemble an up arrow and two double bars a double bar.
Three up arrows assemble an up arrow with bit seven set 2ad
three double bars assemble a ‘control-double-bar'.

4.14 Reserved words

Only the letter A on its own is treated as a reserved word in this
assembler. A is used to denote the accumulator and may be used
as an operand. This is optional so that LSR is the same as LSR
A.

4.15 Arithmetic Operators
The assembler supports the following arithmetic operators,

which must be used as the sole separator between two terms of
an expression. Spaces are not allowed ir. expressions, except as

an ASCII constant.
=% add,subtract,multiply,divide and modulus
&, = bitwise AND,OR
=,>,<,>=,<=,<> logical operators
>>,<< shift right or left (eg 32<<2 is 128)
~pt unary NOT, minus, plus (default)
? unary symbol type

The asterisk may be used as a term in an expression and it
denotes the cumrent value of the location pointer. It is a
symbolic term so that in a relocatable assembly an expression
using * as a term is a relative expression.

The only unusual operator is ?. ? <expr> or ?<symbol> returns
the type of a symbol or expression. The possible values are 0
for absolute, 128 for relocatable and 64 for external. External
symbols have a value of 0 and relocatable symbols may be less
than 256. The assembler uses the type value to correctly
generate long instructions in these cases. You may wish to do
the same in macros.

4-11

plus User Guide

4.16

Relocatable and external expressions

Expressions are categorised into three types. Absolute
expressions are the normal type produced in none linker
assemblies. When a linker module is being assembled the
expressions may contain a relocatable part or an external part.
All operators may be used in absolute expressions but
relocatable and external symbols can only be added or
subtracted from an expression. Only one external reference
may appear in an expression. If it does, the listing will be
marked with a " in the hex code corresponding to the external
expression. 0000" signifies a simple external reference but the
external may be added or subtracted from an absolute
expression and that may use any of the operators. The linker
does not check for arithmetic overflow when adding the
external to a word value. For example:

FARCALL EXT
JSR FARCALL ; output is 20 00 00"
LDA FARCALL+6 ; output is A9 06 00"

When an expression uses relocatable symbols, its value is
flagged by a '. If several relocatable symbols are added and
subtracted the result may be absolute. For example:

DAT1 DB 4

DAT2 DB 6
LDA DAT1 ; output is A9 00 00'
LDA DAT2 ; output is A9 01 00°'
LDA DAT2-DAT1 ; output is AA 01
LDA DAT1-DAT2 ; output is A9 FF FF

If an expression attempts to add twice the relocation constant ,
or use more than one external reference, then a L (linker
violation) error will be flagged.

High and Low bytes

This assembler uses >expression to denote the low byte of the
expression (<expr> MOD 256) and <expression to denote the
high byte (<expr> DIV 256). For example:

LDX #>string
LDY #<string
JSR print_string

4.-12

Assembler reference

4.17 The Assembly Listing

The listing produced in pass 2 of the assembly consists of three
parts: the program listing, the symbol table and a report on the
assembly. The listing of each statement starts with the first error
that was flagged for that statement or three blanks followed by
the contents of the location counter in hexadecimal. If the code
is relocatable the location counter will be followed by an
apostrophe to show that its final value will be adjusted. If the
location is absolute it is followed by a colon. A space follows
and the object code is printed in hexadecimal. Normally only
the first three bytes of object code are printed but a list option
allows all bytes to be printed on successive lines. This only
affects data definitions because an instruction cannot be longer
than three bytes. The line number of the current file is listed
next in decimal. This can be suppresed by a further list option.
The line number is reset to 1 each time a new file is included or
chained. This number is for reference purposes only.

The listing is set out on pages. The format of each page is
controlled by the PAGE and WIDTH pseudo-op. The default
width is 132 characters. The default page length is 66 lines.
This includes 55 statements and the headers and footers. The
headers and footers can be turned off with a list option, in which
case the assembler prints continuous statements with no
pagination. Line feeds are sent to the printer at the end of each
line; unless, for example, you have set the printer ignore
character to ASCII &0A using *FX 6,10. Formfeeds are sent at
the foot of each page unless you set the no form feed list option,
in which case the footer is made up of blank lines. The header
consists of the file name followed by a title if specified by TTL
or a default copyright message. This is followed by the date if
available and the time if available. The time is the time at the
start of the assembly in hours and minutes and will help sort out
which is the latest listing. Finally, aligned in the right hand
margin, is the page number in decimal. The value of the
location counter is omitted on EQU,=,QUERY and conditional
pseudo-ops. Instead the operand for the statement is printed
followed by an equals sign. Statements that are conditioned out
are marked by an S in column 18 unless conditionals are not to
be listed, in which case the statements are omitted as they
generate no code. In a repeating conditional only the first
occurrence of the statement will be listed for a DO though all the
code will be listed if the full code list option is in effect. For a
REPEAT or WHILE the whole passage is listed over and over.

4-13

18 User Guide

List options
Option Meaning Yalue
0- No pagination 1

1 - No line nos. 2
2 - No formfeed 4
3 - No symbol table 8

5 - All object code 32

These symbolic names are part of the additional symbol table
held in the ROM that will be used unless OPT O is specified.
Example:

LISTO 8 + 32

Assembler reference

4.18 Assembler Pseudo-Ops

Assembler pseudo-ops are listed according to the category in
which they fall. Each pseudo-op is used like a normal opcode in
the source line.

4.19 Assembler Directives

Assembler directives are general purpose pseudo-ops which
control the value of various assembler flags and variables. In
addition, assembler directives differ according to whether the
assembly produces a linker file or an executable file. Linker
files have a MODULE statement before any code generating
statements. Executable files have an ORG statement before any
code generating statements. The common feature of these
pseudo-ops is that they do not generate any code.

ORG
(<label>) ORG <expr> (;comment)

The ORG directive establishes the value of the location counter
in an assembly producing an executable object file or in the
absolute section of a linker file or in a dummy section. In a non-
linker assembly ORG sets the load address in the object file's
catalogue entry. The expression must be absolute and not
contain forward references, so that the exact value of the
location counter is known on pass 1. If the load address is to be
different from the code origin a second ORG may be used at the
end of the program because the value put in the catalogue is the
value specified by the last ORG on pass 1. Each time an ORG is
encountered in a norr-linker assembly, the object file's execution
address is also set to the value specified, implying that execution
begins at the first byte of the file. If this is not the case then a
different execution address may be specified by using the EXEC
pseudo-op or the END statement. Remember to put the EXEC
statement after the last ORG in the program. The MSW pseudo-
op is also used to establish the exact load address on systems with
second processors. An ORG statement in a linker file is only
valid in a DSECT or ASECT. DSECTs are valid in both linker
and non-linker files and the ORG specifies the value of the
location counter for the dummy section. ASECTs are only valid
in linker modules. ORG sets the value of the ASECT location
counter which is the same as that described above for non-linker
files. If an ORG is used anywhere else in a linker file it is
ignored and produces a warning message.

4-15

plus User Guide

; Examples
ORG &2000

start QUERY Start address
ORG start

EXEC
(<label>) EXEC <expr> (;comment)

“The EXEC pseudo-op defines the address of the first byte of
executable code in a non-linker assembly. The expression must
be absolute and contain no forward references. The EXEC
statement may be the last statement in the program. The value
specified is written into the catalogue entry for the object file.
If more than one EXEC is specified, or an address specified
with the END statement, then previous EXEC statements are
ignored. Note that an ORG after an EXEC statement means
that the EXEC will be ignored. An EXEC statement in a linker
file will be ignored and produce a warning message. In the case
of a linker assembly the execution address for the program is set
by a global symbol SYSEXEC, which you may define anywhere
in one of the modules being linked.

;Example
ORG &£2000
EXEC start
DATA 1,2,3,4
start JSR init
MSW

(<label>) MSW <expr> (;comment)

The MSW pseudo-op defines the high order address of the
object file in a non-linker assembly. Although the 65C00 series
use 16 bit addressing, the operating system allows files to have a
32 bit address. The high order bytes specify whether the file is
loaded in the 10 processor or the second processor. The default
value for MSW is 0. If MSW -1 is used then programs will
always run on the IO processor. When writing ROM software
use MSW -1 if you are loading the program into sideways RAM
for testing. MSW is ignored in linker assemblies.

; Example
ORG &2000
EXEC start
MSW &FFFF

Assembler reference

DSECT
(<label>) DSECT (; comment)

The DSECT directive is used to define an area of memory, such
as page zero, a data table or jump table, without actually
generating any code in the object file. DSECT stands for
dummy section. DSECT has its own location counter which
may be set anywhere by an ORG following the DSECT
statement. At the end of the DSECT the previous location
counter is restored. The first DSECT will have an implicit
ORG of zero. At the end of the DSECT its location counter is
preserved so that the next DSECT will be continuous to it. Use
DSECT rather than EQU to define variables because it allows an
extra variable to be inserted in a list very simply and shows
explicitly the amount of storage required by each variable.
DSECTs are allowed in all assemblies. A DSECT is terminated
by a DEND in a non-linker assembly or by the occurrence of
ASECT or RSECT is a linker assembly. Symbols defined in
DSECTs are absolute symbols.

;Example
DSECT
ORG &70
var_ptr DS 2
value DS 2
DEND
DEND
(<label>) DEND (; comment)

The DEND directive signals the end of the current DSECT and
the resumption of tode generation from the previous address
saved when the DSECT was started. If your program produces
no output then look for a missing DEND. When assembling a
linker module, any use of ASECT or RSECT causes an implicit
DEND.

ASECT 2
(<label>) ASECT (; comment)

The ASECT directive is only used in linker modules. It
specifies that the linker should load the code following at an
absolute address, which must be specified by using ORG within
the ASECT. The linker will produce a separate output file for
each ASECT encountered, whose name is derived from the
main program name. This is because the BBC MOS filing
system conventions do not allow scatter loading from a single

417

)8 User Guide

object file. Conveniently it allows the use of overlays by having
one main program (the RSECT) and a number of overlays
loading in at the same absolute address. This is explained in
section 1.5 Advanced linker techniques. An example of an
ASECT would be a jump table that is to be at the top of a ROM
such as the operating system ROM. ASECT stands for Absolute
SECTion. The ASECT is terminated by an RSECT. Symbols
defined in ASECTs are absolute symbols.

» Example
ASECT
ORG &CO0
HEX "OSFS5DA66775A09"
RSECT ; resume rsect
EMBED

(<label>) EMBED <expr> (; comment)

The EMBED statement is used to embed a section of code inside
a program which should be assembled as if it were at a different
address. An embedded section is in effect data which must be
moved to the correct address at run time before it will execute.
The code in an embedded section is absolute code and the
<expr> following EMBED must be an absolute expression
containing no forward references. The embedded code is
terminated by RESUME or an ASECT, DSECT, RSECT or
ORG statement. Be careful when programming with embedded
sections. The label attached to EMBED will be the old location
pointer. The first label following it will be the new location
pointer which will initially be the value of <expr>. This
example shows a small routine to be moved to zero page and
executed there:

Assembler reference

; Example:
; Search memory buffer for byte in Y reg and leave
zero page
; polinter at &71 pointing to byte found. Rapid if
buffer is

; large.
fast_ fward ldx #end code-code_start
a1 lda code, X
sta code_start,X
dex
bpl Rl
sty cp_byte+l
Isr code_start
rts
code EMBED &70
code_start lda buf start ; patched
cp_byte cmp #0 ; patched
beq Srts
incw code_start+l
bne code_start
irts rts
end_code RESUME
RESUME

(<label>) RESUME (; comment)

RESUME marks the end of an embedded section. If RESUME
is specified without EMBED a warning is given. Similarly,
RESUME will be done automatically by the assembler if the
source code indicates a change of location pointer value through
ORG or a change of section type. In this case the assembler will
issue a warning that it is performing a RESUME operation.

RSECT
(<label>) RSECT (; comment)

The RSECT directive is used only in linker modules. It
specifies a Relative SECTion and is the default section at the
start of a linker assembly. Code generated in an RSECT is
relocatable and all symbols defined (as labels) are relative
symbols. The linker will attempt to string all RSECTs end to
end and produce the smallest executable object file. One
RSECT may include a special symbol SYSEXEC which will be
the execution address of the linked program. SYSECEC may
occur in an ASECT or DSECT but normally speaking it will be
an address in the code segment which is usually the RSECT. As
SYSEXEC is a global symbol it may only occur once in all
modules being linked. The end of the RSECT is specified by an
ASECT. DSECTs may be embedded in an RSECT since they
produce no output. Similarly an RSECT may contain an

419

Jlus User Guide

EMBEDed section of absolute code. See ASECT, ORG,
DSECT, EMBED, RESUME.

END
(<label>) END (<expr>) (; comment)

The END directive specifies the end of the assembly source

-program. Any lines following it are ignored and can be used to
document the module. If an expression is specified it is used as
the EXEC address in a non-linker assembly. If END is specified
in an include file or a WHILE or REPEAT loop then a warning
is issued and the END statement ignored. i

; Examples
END b

END start ; set exec address

MODULE
(<label>) MODULE <name> (; comment)

The MODULE directive specifies that a linker file will be
produced as the output from the current assembly. There
should be one MODULE statement per source program and it
must occur before any code generating statements since the
default is for a non-linker assembly. The module name is used
by the linker when producing the map and cross reference files.
The MODULE statement implies an RSECT but can be followed
by a directive indicating any other type of section. The name
must be between 1 and 32 characters, contain no spaces and is
not enclosed in quotes.

; Example
MODULE DATA

EQU
<label> EQU <expr> (; comment)

The EQUate pseudo-op is used to assign a value to a symbolic
label. The label must be present on the same source line and the
expression must evaluate on pass one. If the expression is
absolute then the symbol defined will be an absolute symbol. If
the expression is relative the symbol will be relative. Note that
an expression containing an even number of relative symbols
may be an absolute expression. The use of forward references
will produce an error. Symbolic labels should be used in place
of numeric constants wherever possible since they make

Assembler reference

programs easier to maintain. The operating system calls are
already predefined using equates but may be redefined using

=,

; Examples

low EQU 12
hi EQU low+20
here EQU * : PC value

zero,null EQU 0
<label> = <expr> (; comment)

The = pseudo-op allows the value of <label> to be defined (like
EQU) or redefined. = should be used with caution since it does
little type checking. Its main purpose is for setting the value of
variables used during the assembly to control conditionals and
loops.

; Examples

low = 0 ;
low = low+5 ; redefine
GEQU

<label> GEQU <expr> (; comment)

The GEQU pseudo-op stands for Global EQUate and may be
used only in the assembly of a linker module. It combines the
actions of ENT and =. The labels are set to the value specified in
<expr> which may contain no forward references or external
values. The label is then declared in the module's entry list. See
EQU, ENT, EXT.

; Examples

base GEQU &19 ; absolute
RSECT
here GEQU * ; relative
-
QUERY

<label> QUERY <prompt>

The QUERY pseudo-op is similar in operation to the EQUate
pseudo-op, in that the value of the symbol is defined. In the case
of QUERY the expression to be evaluated and assigned to the
label must be typed in at the keyboard during pass 1. <prompt>
is output to the screen as a prompt to the user. All the characters
to the end of the line are output, and the prompt is not

4-21

User Guide

considered to be a delimited string. QUERY allows the values
of labels to be changed each time the program is assembled and
its main use is for switching various conditional sections in or
out by assigning the value 0 or -1 to labels used in IF statements.
QUERY may be used to give the program ORG in a non-linker
assembly. When the prompt appears the input buffer is flushed
and most errors trapped. Entering a blank line or one that
contains an undefined symbol will cause the assembler to ask
you to type in the value again. The input to QUERYs may be
provided in advance on the assembler command line (see section
4.2). See QSTR.

; Example

start QUERY Program start

yes, YES = =

no, NO = 0

debug QUERY debugging (yes/no)
ENT

<label> ENT (;comment)

The ENT pseudo-op creates an entry in the global symbol table
passed with the object code to the linker. The symbol is assigned
the current value of the location counter which may be in
ASECT, RSECT or DSECT. If the ENTry is made in DSECT
the symbol's value is absolute as if it were in the ASECT.
Normally the entry point is the start of a subroutine that is
globally available to all the modules being linked. ENTry
symbols can be redefined with '=". Using ENT and = global
equates may be made. Global symbols are all given 16 bit values
but references to them may be 16 or 8 bit and may reference the
MSB or LSB of the symbol. The linker checks that the value fits
and will produce an error message if you try and use a global
symbol bigger than 255 in a place where an 8 bit quantity is
required.

; Example
print ENT
1da (ptr),Y
ENDM
(<label>) ENDM (; comment)

The ENDM statement defines the end of a macro definition, If
you miss the ENDM statement out in the source program the
assembler will try to save the whole source in memory as a
macro and you will probably get an "Out of memory" error
message.

Assembler reference

; Example

print MACRO
jsr _print
DATA @1, &EA
ENDM

QSTR
<label> QSTR <prompt>

The Query STRing pseudo-op issues the given <prompt> as a
prompt on the screen. The user must then type in a string which
is held in memory under the given <label>, which must be
present. The assembler reserves space for the string and inserts
the string itself in the object code when the <label> is
encountered in the opcode field preceded by a dollar. The
<label> must not be used elsewhere in the module being
assembled. The string is in the same format as used by the ASC
pseudo-op. If a $<label> is encountered as an opcode before the
string has been entered the assembly will stop with a fatal error
"Unknown in-line string". The string that is input is not
delimited.

; Example

name QSTR Enter name

copyr ASC "The owner of this"
ASC "program is: "
$name

EXT

<label> EXT (; comment)

The EXTernal pseudo-op specifies to the assembler that the
given labels are not to be defined in this module but are global
symbols whose value will be supplied by the linker. You may
use as many EXT statements as you like but the fewer global
symbols used the faster the linking process will be. An external
reference can be added or subtracted from an absolute
expression or used alone as an operand. Logal symbols should
not be used as external references because they are not
supported by the linker.

; Examples

init,graf EXT ; graph 1lib
helio,mult EXT

fs_open EXT ; MOS 1lib
EXZ

The EXternal Zero page pseudo-op is identical to EXT except
that the label so defined is zero page and generates short

423

User Guide

instructions. This label will be declared elsewhere with RZP or

GEQ or ENTs in a dummy section.
MACRO
<label> MACRO (; comment)

The MACRO pseudo-op indicates that the source lines that
follow form a macro definition. The obligatory label is the
nime of the macro. Once defined the macro may be used as an
opcode, but not a symbol. A macro is generally a short
sequence of instructions used repeatedly. By programming
extensively with macros the program looks more like a high
level language program and is easier to read. See Section 4.26
for more details about macros. MACRO definitions are held in
memory so keep them as brief as possible with comment
passages just above the MACRO statement. The macro
definition ends with the ENDM statement. Macros may contain
any assembler source statement except a further MACRO
statement. They may refer to other macros in the opcode field.
The total nesting depth for macros is limited by the amount of
available memory. Each level uses one page of memory to store
parameters and the REPEAT/WHILE stacks. Arguments may
be supplied to macros when they are invoked but the arguments
are not specified in the MACRO statement. In the definition
when an argument is to be used it is given the pre-defined name
@n where n is the argument number. Up to nine user
arguments may be used in each macro together with an
additional argument @0, which is a five byte ASCII number
supplied by the assembler. @O is used to define labels in the
macro so that each macro invocation generates different labels.
@O0 is incremented each time a macro is invoked. When one
macro calls another all the arguments including @O0 are saved.
See ENDM. '

GET
(<label>) GET <macro>,(<macro>..) (; comment)

The GET directive fetches a macro definition from the current
macro library opened with the MACLIB statement. Warnings
will be issued if the named symbols already exist or are not in
the library. GET functions differently from ADE versions 1
and 2.

; Example
MACLIB my_macs
GET incw,decw, mulw,divw

4.24

Assembler rererence

BLOCK
(<label>) BLOCK (; comment)

The BLOCK pseudo-op defines a local symbol block. If the
label is local it is part of the previous block. The scope of local
labels is limited to the BLOCK in which they are defined. This
allows the same names to be used repeatedly in different blocks
and means the programmer does not have to think up ever more
bizarre names for branch destinations etc. If a local symbol is
not found within the current BLOCK during pass 2 a U

(unknown symbol) error occurs.
; Example
BLOCK
Sl DEX
BNE Rl
BLOCK
Sl DEY
BNE :1
OPT

(<label>) OPT (-)<option>(,<options).. (; comment)

The OPT directive sets an assembler option. The options are
single letters and may be given on the assembly command line
or in the source code. Any letter A..Z may be given to set one
of 26 flags in the assembler but only certain flags will have any
effect. The current list of options is given in section 4.3. An
option may be turned off by preceding it with a minus sign. A
‘plus sign is permitted but ignored.

; Example P
OPT P,G ; print & go

—4.20 Listing Directives

The listing directives control the listing in pass 2 of the
assembly. They are optional but they can save space and
improve the readability of a program. All of the listing
directives will accept a label which is assigned to the current
value of the location counter. However most listing pseudo-ops
are not themselves printed, so the label will not appear in the
listing, though it will appear in the symbol table. It is not
recommended that labels are used in this manner. Listing
directives do not generate any code output.

425

lus User Guide

LST (LIST)
(<label>) LST ON|OFF|FULL (; comment)

The LST directive switches the listing of various source
statements on and off. LST ON switches the listing on. LST
OFF switches it off. This may be overriden using certain
assembler OPTions. LST FULL lists out all source statements
in macro expansions whereas LST ON does not. Sections of
code that are conditioned out of the assembly will normally be
listed and marked with an S. Use OPT C to suspend listing of
these conditioned out statements. LIST may be specified instead
of LST.

LLST (LLIST)
(<label>) LLST ON|OFF|FULL (;comment)

The LLST pseudo-op is identical to LST except that output goes
to the printer instead of the screen. LST and LLST can be used
independently.

LLIST may be specified instead of LLST.
TTL
(<label>) TTL <string>

The TTL pseudo-op sets the title up to a maximum of 21
characters to appear at the top of each page. The default title is
a copyright string. The string is not delimited; everything up to
the end of line is used. If the title is too long for your width of
paper, the top of each page may look untidy so keep titles brief
and to the point,

; Example

TTL Support routines
SKP
(<label>) SKP <expr> | H (; comment)

The SKiP pseudo-op skips the given number of lines on the
output device. SKP H causes a page eject.

Assembler reference

PAGE
(<label>) PAGE <expr> (;comment)

The PAGE directive sets the form length for the listing to
<expr> lines. The default is 66 lines per page, of which 61 are
printed (55 statements plus the header). The assembler always
leaves a five line gap between pages, plus a formfeed to the
printer, which can be deselected using LISTO. If the assembler
thinks the value of PAGE is too small (less than 20) it will
ignore it and issue a warning message.

WIDTH
(<label>) WIDTH <expr> (; comment)

The WIDTH directive sets the line width sent out to the printer.
The default is 132.

LISTO
(<label>) LISTO <expr> (;comment)

The LISTOption pseudo-op sets flags in an 8 bit variable to
control the listing format. The flags are toggled. The current
assignments are: Bit O (LISTO 1) controls the title line. If bit 0
is zero then no titles or page ejects or page numbers occur. Bit 1
(LISTO 2) controls the line numbering. The default is line
numbers and page numbers on. LISTO 3 will toggle both line
and page numbers. Bit 2 controls formfeeds. LISTO 4 toggles
this. The default is that formfeeds are sent to the printer. Bit 3
controls the symbol table listing. LISTO 8 means that no
symbol table is listed. Bit S controls the listing of object code
over three bytes per line. If LISTO 32 is specified then
statements generating more than three bytes of object code will
generate multiple lines.

; Example .
LISTO 32+8

4-27

18 User Guide

SYSVDU
(<label>) SYSVDU <expr>(,<expr>..) (; comment)

SYSVDU sends the LSB of each expression to OSWRCH. Use
with caution. It is basically the same as the VDU command in
BASIC. Changing screen mode to a mode that uses more
memory will probably crash the assembler. Choose the pass that
you want SYSVDU to be used in by enclosing it in a pair of
conditional statements using the # logical symbol which is true
in pass 2. The SYSVDU allows an optional output stream
specifier. This must be the first expression and must be
preceded by a #(hash). The stream is selected using FX3 and the
original stream restored at the end of the SYSVDU statement.

; Example -
IF #
SYSVDU 2
INFO Temporary version
FI

SYSVDU #0,...:;Default to VDU
SYSVDU #Z,...;Disabled

SYSVDU #8,...;Printer and VDU
SYSVDU #10,..;Printer only
SYSVDU #3,...:;RS423 only

SYSFX
(<label>) SYSFX <expr>(,<expr>(,<expr>)) (; comment)

The SYSFX command issues an OSBYTE call. It can, for
example, select different output streams using SYSFX 3... This
command is clearly open to misuse, so treat it with caution. The
first expression is loaded into the A register; the second
(optional) to the X register and the third (optional) to the Y
register. No result is returned. Use conditionals and # to decide
in which pass SYSFX will be executed.

; Example
IF ~# ; pass 1
SYSFX 6,0
FI

Assembler reference

SYSCLI
(<label>) SYSCLI <string>

SYSCLI sends the string to OSCLL. SYSCLI is a powerful
pseudo-op that allows the issue of * commands during pass 1 of
the assembly. Use with extreme caution. Use conditionals and #
to decide in which pass SYSCLI will be executed. The string is
not delimited, the remainder of the line is passed to the MOS.

; Example
PAUSE Insert next disc
SYSCLI MOUNT O
CHN File 2

INFO

(<label>) INFO <prompt>

This pseudo-op sends <prompt> to the console. It should be
used with conditional statements to give warning and progress
messages. Use with conditionals and # to decide in which pass
you wish the string to be sent to the console. <prompt> is not
delimited. All characters to the end of the line are sent.

; Example
IF ~#
INFO Assembling data
FI

STOP

(<label>) STOP <prompt>

The STOP pseudo-op causes assembly to be aborted. INFO is
called to print the message and the fatal error "Stopped" occurs.
Again, this statement should be used with conditionals to detect
an abnormal circumstance such as invalid QUERY data or a
program exceeding a predetermined memory limit.

; Example ~
IF *>&C000
STOP Too big for ROM
FI

429

lus User Guide

4.21

PAUSE
(<label>) PAUSE <prompt>

The PAUSE statement sends <string> to the console. The
assembly pauses until you press the space bar. This may be used,
for example, to prompt for a disc change. See SYSCLI, INFO,
STOP.

Data Definition Directives

These directives are used to define areas within the program.,
Directives to build address tables and messages and hex data are

these pseudo-ops may haye a label, which addresses the first byte
of the data. They may all be followed by a comment. These
pseudo-ops generate object code output.

ASC
(<label>) ASC <string> (; comment)

The ASC pseudo-op defines an ASCII string within the
program. Bit seven of each character is controlled by the up
arrow character (*). Control characters may be assembled with
a vertical bar as in *KEY commands. Two up arrows assemble
an up arrow, two vertical bars assemble a vertical bar character.
The string is delimited by the first non-blank character. The last
character is the same as this and the delimiters do not form part
of the string.

; Example
prompt ASC s>

STR
(<label>) STR <string> (; comment)

The STR pseudo-op is identical to ASC except that a carriage
return character (&0D) is appended to the string.

; Example :
LDX #>mos_basic

LDY #<mos_basic

JMP OSCLI ; exit
mos basic STR "BASIC"

provided as well as byte, word and storage allocation. All of -

Assembler reference

DC
(<label>) DC <string> (; comment)

The DC pseudo-op is identical to ASC except that bit seven is set
in the last character generated and not set in any other character.

; example

keywords DC "INPUT"
DC "PRINT"
DC "LIST"
DC "GOTO"
DB 0

MSB

(<label>) MSB ON | OFF (;comment)

Everywhere the assembler generates an ASCII character in the
output code bit 7 is first set according to the MSB pseudo-op.
The default MSB OFF means that bit seven is always zero (BBC
format). MSB ON means that bit seven will be 1. This allows
assembly for different machines such as APPLE II. Note that
this does not apply to the DC pseudo-op which explicitly strips
bit 7 on all characters except the last.

DFB (DB)
(<label>) DFB <expr>(,expr...) (; comment)

The DeFine Byte pseudo-op separately defines one or more
bytes of data. Legal values are -127 to +255. A comma
separates each defined byte. DB may also be used in place of
DFB.

; Example
DB 1,2,255,-127,-10,1low+7

DW
(<label>) DW <expr>(,<expr>...) Z: comment)

The Define Word pseudo-op defines words in 65C00 series lo-hi
format. Any label used points to the lo-byte of the first word
defined. Several words may be entered on the same line
separated by commas. See DB.

4-31

¢ User Guide

DDB
(<label>) DDB <expr>(,<expr>...) (; comment)

The Define Double Byte pseudo-op is used to define words of
memory in hilo- format. The label will point to the high byte of
the first word defined. See DB, DW.

ns
(<label>) DS <expr>(,<expr>) (; comment)

The Define Storage pseudo-op reserves space in the object
program for data. By default the assembler fills the bytes with
zeros but a second expression may be used to define the 8 bit
quantity used to fill each expression. The expression following
DS must not contain forward references since the assembler
needs to know the exact space requirements on pass 1. However
the byte used to fill the space need not be known until pass 2. If
the space allocated is large (bigger than a page) DS should be
used in a dummy section. The label points to the first byte of the
space. In linker modules DS may be used with complete
abandon to define variable sections since the assembler
generates linker information about the space reservation rather
than lots of bytes of zeros. The file produced by the linker will
still contain these bytes but it is possible to produce relocatable
un-initialised variable storage by using the linker U option or
adjusting the final object file when all the storage is at the end.

; Examples
DS 100
DS &100,&AA ; page of HEX AAs

HEX
(<label>) HEX <hex string> (; comment)

The HEX pseudo-op is used to define hexadecimal data tables.
The string must be delimited and contain an even number of
valid hex characters or else a B (bad string) error will be
flagged. The bytes are assembled in the order in which they
occur with the label pointing to the first byte.

; Example
HEX "OA23BCD7"

Assembler reference

DATA

(<label>) DATA <expr> | <string> (<expr> | <string>..)
(;comment)

DATA allows all kinds of data to be defined on the same line.
The following conventions apply. <expr> will generate a byte
of data. £<expr> will generate a word of data. Strings must be
delimited by double quotes. Hex strings must be delimited by a/

(slash).
; Example
DATA 0,124,"Mismatch"”
DATA ferr-pm, /ABIF/
RZP

<label> RZP <expr> (;comment)

RZP stands for Reserve linker Zero Page. RZP must have a
label and creates an external symbol with the label that is
marked as a zero page variable of size <expr> bytes. The linker
creates absolute addresses for each zero page variable. <expr>
must be less than 256. When making linker libraries or working
with them it is important to define all zero page variables with
RZP to avoid conflicts at link time.

; Examples
ptrl,ptr2 RZP 2
zptab RZP 10

422 Conditional Assembly Directives

Full conditional aSsembly is supported by the assembler using
IF...ELSE...FI which may be nested up to 255 levels deep. The
ELSE statement is optional. Conditional statements may be
labelled and may be followed by a comment. Be careful to note
which labels will be defined. It is wise not to use labels with
conditionals in most cases. The special symbol # may be used as
<expr> and is true on pass 2. Only non code generating pseudo-
ops should be conditionally assembled on one pass only. See
INFO, PAUSE, STOP, SYSVDU, SYSFX, SYSCLIL

433

8 User Guide

IF
(<label>) IF <expr> (; comment)
The IF pseudo-op marks the start of a conditional block. The

statements that follow are assembled if the expression is non
zero. The expression must contain no forward references or

relative symbols.
ELSE
(<label>) ELSE (; comment)

The ELSE pseudo-op may only occur inside an IF..FI block or -
the assembler will flag a C (conditional) error. The result of the
corresponding IF is reversed, so that if assembly was being

skipped it now resumes.
FI
(<label>) Fl (; comment)

The FI directive terminates a conditional block. The assembler
returns to the previously nested conditional state or carries on
assembling if the FI was the outermost one.

; Example, the starred statements are skipped
IF -1
block 1

* k& block

*kk IF _1
* ok block 5

* &k ELSE

* k& block 6
* k% FI

DO
(<label>) DO <expr> (;comment)

The DO statement causes the next non-blank line to be assembled
<expr> times. Thus, the line following it should not be a pure
comment line (no action will result) and should not contain a
label as the label will be multiply defined. The expression must
be absolute and contain no forward references.

L T S T e — . -

Assembler reference

;Example, SHR <operand>, <bits>

SHR MACRO
IF @N=1
DO el
LSR A
ELSE
DO @2
LSR @1
FI
REPEAT...UNTIL
(<label>) REPEAT (;comment)

<statement>...}
(<label>) NTIL <expr> (; comment)

REPEAT..UNTIL is a high level assembler construct. The
statements between REPEAT and UNTIL are repeatedly
assembled until the expression following UNTIL is non-zero.
This is done by moving the file pointer back to the statement
following REPEAT each time (unless in a macro). The
statements will be assembled at least once. REPEAT...UNTIL
cannot be nested within the main body of the program text, but a
REPEAT loop may occur inside a macro which is called from
within a REPEAT. In such a case the corresponding UNTIL
must occur in the same macro. REPEATS may not be nested
within the macro but a nested macro may have its own
REPEAT...UNTIL and so on. In the case of an INCLUDE file
within a REPEAT loop, the whole file may be assembled many
times. You must ensure no multiple label definitions occur.
One way to do this is to use local labels and make the first
statement a BLOCK.

; Example
DCLIST MACRO
CNT = 0 ; counter
REPEAT
DC @[CNT+1])
CNT = CNT+1
UNTIL CNT>@N
ENDM
WHHJE‘OOWEND L3

(<label>) WHILE <expr> (;comment)
{<statement>...}
(<label>) WEND

The WHILE statement is the converse of REPEAT UNTIL.
The expression is evaluated and if it is non zero then the
statements following are assembled, otherwise the assembler
reads forwards for the statement after WEND. When the
<expr> is true, then WEND causes the source file to be wound

4-35

dus User Guide

1.23

back to the WHILE statement and the <expr> is re-evaluated.
WHILE..WEND follows the same nesting rules as
REPEAT...UNTIL.

; Example
DCLIST MACRO
CNT = 1
WHILE @?[CNT]>0
DC @[CNT)
CNT = CNT+1
~ WEND
ENDM

File Control

The last group of assembler pseudo-ops deals with the various
types of file processed by the assembler. A maximum of three
files will be open in pass”l. If a listing file is specified on the
command line four files may be open in pass 2. In addition any
EXEC file or SPOOL file adds one more file open, so check
your filing system can cope before using all of these pseudo-ops.

INCLUDE
(<label>) INCLUDE <file> (; comment)

Include the file following in the source stream. The file is
inserted between the INCLUDE statement and the statement
following it. Thus a main assembly source file may just be a list
of INCLUDE statements. The main source file remains open at
the correct point throughout the assembly of the INCLUDE
file. A fatal error occurs if the file is not found.

CHN
(<label>) CHN <file> (;comment)

The CHN pseudo-op chains to the next file in the assembly
source program. A fatal error occurs if the file is not found.
The previous file is closed and the CHN file becomes the current
source. This statement makes programs compatible with ADE
versions 1 and 2 but new programs should be written using
INCLUDE for faster assembly.

Assembler reference

MACLIB
(<label>) MACLIB <file> (;comment)

MACLIB defines the file that is used to fetch macro definitions.
Macro definitions can be fetched using GET statements. In
addition, if an opcode is not found in pass one and MACLIB is
defined, then a search will automatically be made. See GET.

NOLIB
(<label>) NOLIB (; comment)

The NOLIB directive cancels the MACLIB directive. After a
NOLIB unknown opcodes will not be looked up in the current
library file. A new MACLIB may be specified after NOLIB.
NOLIB also frees 2K of workspace so, if room is tight, open
your MACLIB at the start of the source (pass 1) and read in all
the macros you need with GET, then close the library with
NOLIB. You will have 2K extra memory for symbols.

OBJ
(<label>) OBJ <file> (;comment)

The OBJ pseudo-op causes the current output file to be closed
and a new output file to be opened. No other variables are
affected, but by specifying a new ORG a second program may
be assembled which can reference the first program because it
shares the symbol table. OBIJ is not valid in linker assemblies
and produces a warning message.

; Example

OBJ jtab
ORG &FFEO ; rom jumps
JMP start
JMP procA
JMP procB

437

lus User Guide

124

Assembler Addressing Modes

This section describes how the various 65C00 and 6502
addressing modes should be specified in the assembler source
program. The addressing mode is specified by the format of the
operand field. Note that not every addressing mode is valid with
every instruction. If the assembler detects an invalid addressing
mode then a format error is flagged during pass 2.

In the descriptions that follow <addr87> is an 8 bit address in
the range 0..255. <addrl6> is a 16 bit address in the range
0..65535. <expr8> is an 8 bit expression in the range -128 to
+255. 'ix' means one of the index registers X or Y.

Operand format Addressing mode

blank implied or accumulator

A (ora) accumulator

#<expr8> immediate

<expr8> relative offset

<addr16> absolute

<addr8> absolute page zero

(<addr16>) absolute indirect

(<addr8>) zero page indirect (not 6502)

<addr16>,ix absolute indexed

<addr8>,ix zero page indexed

(<addr8>,X) pre-indexed indirect zero page

(<addr8>),Y post-indexed indirect zero page

(<expr16>,X) pre-indexed indirect absolute
(not 6502)

If the assembler detects a zero page address but there is no short
form for the instruction then the absolute form will be used if it
exists. Some addressing modes only apply to certain
instructions when assembling for 65C00 series CPUs. These
‘extended' instructions will generate format errors if you set the
restricted instruction set option either in the source or in the
assembly command line.

IMPLIED ADDRESS MODE
There is no operand. Examples TAX, SEC, PHX.
ACCUMULATOR ADDRESS MODE

The operand is an A or an a or there is no operand. Examples
ASL, ROL,DEC A, DEC, ASL A.

Assembler reference

IMMEDIATE ADDRESS MODE

A # character is followed by an 8 bit expression. Examples
LDA #&FF, CMP #Z.

RELATIVE ADDRESS MODE

Used by branching instructions to specify the offset of the
branch. The integer is the offset from the next instruction so it
effectively lies in the range -126 to +129 bytes.

ABSOLUTE ADDRESS MODE

The operand is a two byte integer stored in lo-hi format and
specifies the address to be referenced. Examples LDA &7000,
JMP START.

ZERO PAGE ADDRESS MODE

The operand is a single byte specifying an address in the range
0..&FF. Examples LDA &30, ADC accl, where accl is in the
permitted range.

ABSOLUTE INDIRECT ADDRESS MODE

The operand is a 16 bit address in brackets. Only JMP indirect
uses this mode. Example: JMP (&2000). JMP (vector). The
bug in the 6502 processor JMP () instruction has been fixed in
the 65C00 series so JMP indirect will behave differently on the
two types of CPU if the vector lies on a page boundary.

ZERO PAGE INDIRECT ADDRESS MODE

The operand is an 8 bit address in brackets. This mode is only
valid on 65C00 series processors. The addressed location and
the one following specify a 16 bit address in the same format as
the absolute indirect address mode, but the address of the vector
can be specified in one byte. Examples LDA (&40), SBC
(&12). &

ABSOLUTE INDEXED ADDRESS MODE

The operand is a 16 bit address to which the contents of the X or
Y register are added, making a final target address; for
example, LDA table,Y, BIT &2000,X. In the restricted
instruction set for the 6502 some instructions will not allow
cither index register to be used (BIT for example).

439

3uide

ZERO PAGE INDEXED ADDRESS MODE

The operand is an 8 bit address to which the contents of X or Y
are added. This forms a target address which must still be in
page zero. The Y register is only valid to load and store the X
register. Examples STX &50,Y, ROR 12,X.

PRE-INDEXED INDIRECT ADDRESS MODE (ZERO
PAGE)

The operand is an 8 bit address followed by a comma and an X
in brackets. The target address is formed by adding the X
register to the 8 bit address and using this (zero page) address as
a pointer. Examples LDA (0,X), STA (10,X).

POST-INDEXED INDIREET ADDRESS MODE

The operand is an 8 bit address in brackets followed by a comma
and a Y. The target address is the address stored in the zero
page location and the one following. To this address is added the
contents of the Y register giving a final address anywhere in
memory. Examples STA (ptr),Y, CMP (&67),Y.

PRE-INDEXED INDIRECT ADDRESS MODE
(ABSOLUTE)

The operand is a 16 bit address followed by a comma and an X
in brackets. This address mode can only be used with JMP
instructions on the 65C00 series of processors. Example JMP
(vectab,X).

Assembler reference

(2.X)

@)Y

(abX)

< £

IO L2 <2<

<<<|§

<< <|¥
o

x<c<lb

9 8
(“

v
v

Ll L L L

Ll <

Ll L2
Ll L L

<< ¢

<<

2. 2. <

<<
<<
x

x <

L Ll Ll
L Ll L L
4. X X< £

<. X< <&

Ldd LLF 3 OOCLLOOLL L3

r<

4-41

Table of opcodes part 1

ADE plus User Guide

Table of opcodes - part 1 cont.

imp acc Imd el

(abs) (zp) abx

zp X (zpX) (zp).Y (abs,X)

STX
STY
STZ
TAX
TAY
TRB
TSB
TSX
TXA
TXS
TYA

< <

Lo L L <

o<« |¥
o<« <« 18

Ox

oo
o O

y
X

Ox

List of abbreviations used in the tables:

Addressing modes Symbols

imp implied v valid on 6502 and 65C00 series

acc accumulator 0 - only valid on 65C00 series

imd immediate X only valid with X register index

rel relative y only valid with Y register index

abs absolute » equivalent to accumulator mode

zp zero page

(abs) indirect (absolute)

(zp) indirect (zero page)

ab,X absolute indexed

zp, X zero page indexed

(zp.X) pre-indexed indirect

(zp).Y post-indexed indirect

(ab,X) absolute pre-indexed indirect
The first table shows opcodes that are valid for the 65C12 used
in the BBC second processor and master series. The second
table shows additional 65C00 series instructions supported by
the assembler but not valid on the second processor or master
unless you upgrade your CPU. These are BBR,BBS,RMB and
SMB. The remaining opcodes are alternatives for opcodes in
the first table. CLR is an alternative to STZ. DEA is an
alternative to DEC A. INA is an alternative to INC A. These
are not valid when the reduced instruction set is used. BLT is an
alternative to BCC and BGE is an alternative to BCS.

imp acc Imd el abs zp (sbs) (zp) abx 2zpx (zpx) (p)Y (absx)

BBR 0

BBS 0

RMB 0

SMB 0

CLR ol o ox | ox

DEA 0

INA 0

BLT N

BGE v

Table of opcodes - part 2

4.25

Assembler reference

Additional Opcodes for the 65C00 Series

The standard chip now used in Acorn machines is the 65C12.
This chip supports additional opcodes listed in table one but does
not meet the full 65C00 series specification. The assembler
provides the following opcodes that may be used when writing
for a CPU that supports them. The assembler will not know
whether these instructions are valid or not for your processor so
you should use them with caution. When the reduced instruction
set option is in effect none of these codes are valid.

BBR Branch on bit reset

This instruction tests a bit of a zero page location and branches if
the bit is zero. The syntax for this instruction is:

BBR <bit>,<addr8>,<addr16>
<bit> is a number between 0 and 7 and specifies the bit to be
tested. <addr8> is an address in zero page and specifies the
location to be tested. <addr16> is the target of the branch and
must be in the normal range for branch instructions.
BBS Branch on bit set

This instruction tests a bit of a zero page location and branches if
the bit is set to one. The syntax is the same as that for BBR.

RM Reset memory bit

This instruction sets a selected bit of a zero page location to
zero. The syntax is:

RMB <bit>,<addr8>
SMB Set memory bit

This instruction sets a selected bit of a zero page location to one.
The syntax is the same as RMB.

4-43

Guide

MACROS

Macros are short sequences of assembly language statements that
are grouped together under a single word (the <label> in the
MACRO statement). Whenever the macro name is used as an
opcode the whole sequence of statements will be assembled. If
LST ON or LLST ON is selected only the source statement
invoking the macro will be listed, but if LST FULL or LLST
FULL is in effect then each statement in the macro will be listed
showing how any parameters passed to the macro have been
substituted. A macro does not have to generate code, it can
simply be a group of pseudo-ops. The amount of code generated
by a macro may vary in each invocation because the macro may
contain all the conditional statements allowed by the assembler.
A macro may invoke other macros by using the = pseudo-op a
macro may set a flag on its first invocation and vary its code
accordingly. For example, an error macro may define a
subroutine on its first invocation and simply call that routine on
subsequent invocations.

The use of macros in the source program makes the program
easier to read, but their true flexibility comes from the fact that
they may be supplied with arguments, or parameters, that vary
each time the macro is invoked. The arguments supplied to the
macro are known as @1 to @9. Whenever the symbols @1..@9
occur in the macro text the assembler substitutes the relevant
parameter. If a parameter is not supplied then the null string is
substituted. The assembler generates an additional parameter
@0 which is a five digit ASCII string that starts at 00000. The
string increments each time a macro is invoked and is used to
define symbols in the macro so that multiple definition errors
will not occur. The text for macros is held in memory, in the
symbol table, so that you should keep the text as brief as possible
to avoid running out of room. @N is a one byte ASCII digit
giving the number of arguments supplied. (@n may be used).
@A to @J return the length of the argument 0..9. @A will
always be five of course. The argument number in the macro
text can be a variable or expression provided the expression is
absolute, contains no forward references, and is in the range
0.9. The assembler must evaluate the expression whilst
expanding the line, before the argument is substituted. To tell
the assembler to do this the argument number is enclosed in
square brackets, for example @[4+2] or @[arg_cnt] where
arg_cnt is a pre-defined symbol. Round brackets may be used to
substitute a substring of the argument in place of the entire
argument. Two expressions are specified separated by a
comma. Both must be absolute and evaluate in pass 1. The first
is the start character and the second is the number of characters.

Assembler reference

If you 'go off the end' of an argument no extra characters are
substituted. If you start off the end of the argument a null string
will be substituted. @(4,3)9 means start at the fourth character
of argument nine and substitute three characters.
@(2,2)[arg+7] is a valid argument expression. @?[<expr>]
returns the length of an argument. Unlike @A to @], the
argument is variable, specified by <expr>. @?[0] will return 5
always.

The arguments are specified in the macro invocation as strings
separated by commas. Leading spaces in each string are
ignored. If a string must include a comma or a leading space
then it may be enclosed in square brackets. Examples: A,X,Y

[ALIXLIYLL 1 14,[(ptr),Y]. As arguments can be used
anywhere without restriction, labels and macro names may be

4.27 5
Macro Libraries

Macros may be defined in the program using the MACRO
statement or obtained from libraries. A library is a file that
contains macro texts put there by the MLIB command of the
ADE plus MMU. The library file contains a catalogue of the
macros in it and their position in the file so that the assembler
can find a macro quickly using random access filing rather than
a slow sequential search. The MACLIB statement specifies the
library to use. When you use MACLIB the assembler reads the
catalogue of macros from the head of the file into the symbol
table so that all the macros in the library are available to you.
The actual text for each macro is not read into memory until the
first time the macro name occurs in the opcode field of an
assembly source statement. To save a little time you may force
load the text for fnacros from the library using the GET
statement. This is also used if you then wish to open a second
library using a further MACLIB statement. You must close the
first library file with NOLIB before using a second library.
The full format of the library file is specified in the ADE plus

Technical Reference Guide.
-

y Examples:
MACLIB mlib4 ; open library file
GET incw,decw, stw ; get three macros
NOLIB ; close library file
MACLIB genlib ; open another library
push * ; this macro in genlib
incw scrn_ptr; this in mem from mlib4

4-45

lus User Guide

1.28

.29

The push macro might be defined as:-

push MACRO
IF ll@lll-“*"
pha
phx
phy
ELSE
arg = 1
WHILE @?[arg]>0
~ ph@[arg]

arg
WEND
FI
ENDM

arg+l

Error Reporting

The assembler understands three kinds of errors. Fatal errors,
non-fatal errors and warnings. A fatal error is one which causes
the assembler to abort the assembly. A non-fatal error is an
error in the source code which means the assembler could not
compile it properly but is able to continue. A warning is a
misuse of some assembler construct, usually the wrong use of a
pseudo-op. A warning means that the assembler is able to
continue compilation of the source correctly at the time the
warning is issued. An example of a waming is when the
GET statement includes a macro name not found in the library.
Use of that macro later on will produce a non-fatal error.

Fatal Errors

All errors reported by the operating system to the assembler are
fatal errors. Most fatal errors will be errors related to the filing
system and IO. Pressing the escape key also generates a fatal
error and running out of room for the symbol table generates a
fatal error.

4.30

Assembler reference

Assembler error messages
The assembler generates the following non-fatal error messages

Address out of range

Bad string

Conditional error

Divide by zero

Equate or Entry error
Format illegal (eg JMP &1000.Y)
Bad hex

Tllegal symbol

Linker rules violation
Multiple definition

Nesting error

Opcode illegal

Phase error (label with different value on pass 2)
REPEAT error

Syntax error

Term missing

Unknown symbol

Value > 255
WHILE/WEND error
Macro expansion error
Zero page address expected

NXg<CHORTOZZ = nimunw>

Extended syntax error messages, when option E is in effect

Line starts with illegal character
Y register expected

X register expected

Tllegal index register

Comma expected

Tlegal character in expression
Tllegal digit

Illegal operator

Missing)’

ON or OFF expected

No statement after DO

Tllegal option

Tllegal bit number

vwrhLrLruonrnnnrnnn

Extended linker rule violations, when option E is in effect

Branch to external address (not allowed)
Tllegal symbol in linker assembly
Relocatable and external symbols mixed
Absolute address expected

Nlegal use of external symbol

More than one external symbol in expression

(o~ =l ol ol = ol

&
£
<

8 User Guide

3

Fatal errors during an assembly

The assembler produces the following fatal errors. These
errors are trapped by the BRK mechanism and are in addition to
other fatal errors that may occur in the filing system software.
When a fatal error occurs all open files are closed and the
assembler returns to the ADE MMU prompt. The error is
reported with the line number of the current file and the pass
number, 1 or 2. The error numbers specified are the ones
reported if the BRK is intercepted.

40. Text In memory lost
An assembly of a RAM file (*) did a CHN or an
INCLUDE.

41. Can't nest Inclade
An attempt to INCLUDE a file in an INCLUDED
file was made.

42, Object buffer overflowed
OPT G has been specified with no output file and the
object code is too big for the output buffer.

43. Invalid assembler command line
The assembler was entered with an invalid comman
line.

44, Invalid QUERY statement
Unable to process a QUERY.

45. Stopped
Produced by the STOP command.

46. MODULE specified in absolute assembly

47. ENDM expected
The assembler got to the end of the current source
file in a macro definition.

48. MACLIB library not found

49, MACLIB read error
The required macro is not at the position indicated in
the MACLIB catalog.

50. Can't run linker module
OPT G and MODULE both specified.

4.32

Assembler reference

51 Can't run null/unbuffered object
OPT G - the assembler can't find any code to execute.

52. Unknown Inline string
The assembler encountered a $<label> in the opcode

field where <label> was not defined previously with
QSTR.

532 Bad WHILE
The expression after WHILE contains an error.

54. Object file Is a directory
An attempt has been made to open an ADFS
directory for output.

55. Object file has E attribute set
An attempt has been made to open a file for output
that has the E attribute set (ADFS).

56. Insufficlent workspace
There is not enough memory to begin an assembly
(<3k>).

Warnings given by the assembler

A warning is issued when the error encountered does not
immediately lead to invalid object code. However a warning
indicates something wrong with the source and should be

investigated. The following warning messages may be issued

1 Can'tuse OBJ in linker assembly

2. Wrong use of ORG (in RSECT)

3 EXEC ignored in linker module

4. In DSECT (produced by DSECT statement)

5. Not in DSECT (produced by DEND) L
6. In ASECT (produced by ASECT statement) ‘
7. Page length! (use 20 or more) .

8. MODULE name already specified

9. Illegal module name ignored

10. END in INCLUDE/REPEAT/WHILE (ignored)

11. Discontinuing embedded section

128 RESUME without EMBED

13. Can't use MACLIB in macro

14, Not a macro library (MACLIB handler)

15. Macro not in library (GET)

16. Name already known (GET - macro not fetched)

4-49

Jser Guide

Warnings are produced by pseudo-ops and most warnings cause
the pseudo-op to be ignored.

Linker reference

Chapter S | The Linker
5.1 Description of the Linker

The linker is designed to take separate output files from the
assembler, called linker modules, and produce from the
information they contain an object program that is ready to run.
The difference between this and the assembly process is that
most of the assembly in linker modules has been done. The files
only need to be relocated to some address in memory and have
missing symbol values filled in. Thus linking is much quicker
than assembling and linker files are smaller than source files. In
a large program it saves time to assemble a small module being
worked on and then link it with other code already tested.

The linker also allows the code to be split into sections, common
data areas to be used between modules and libraries of
assembled modules to be used. With a linker there should never
be any need to re-invent the wheel. Once a routine is debugged
it can be put in a library and used again and again without the
need to reassemble the source.

Linking is initiated from the ADE plus control prompt by the
LINK command, as described below. The linker is a two pass
linker. On pass one the linker reads a header from each file that
contains all the information the linker needs about the contents
of the file. The header gives the size of each segment of the file
and all the global symbols referenced and all the public symbols
declared in the file. This is done for each file in the linker
command line. Next, if any symbols have been referenced but
not declared and a library specified, then the linker looks in the
library for the relevant module and loads the header for that
module.

A second pass reads the remainder of each file, the object code.
This code has been assembled in linker format and is in a series
of code records. Using the information gained in pass 1 the
linker can take each code record and produce the required
machine code at an absolute address. This code is written to the
output file. When this has been done for each file in the linker
command line the linker reads any library modules that are
required and generates code from them in the output file. The

output file is then ready to run.

Aborting a linking operation

A linking operation may be aborted at any stage by pressing the
escape key. All files opened by the linker are closed.

5-1

)lus User Guide

2

The Linker Command Line

Linking is started from a LINK command after the ADE plus
prompt. The LINK command is always followed by at least one
space. The rest of the line specifies the files to be linked and
varicus options supplied to the linker. The general format for
invoking the linker is:

LINK {obj}{,sym}{/list}=mod[c]{,mod[c]..} {;opts} (=)
{/1lib(cl{,1lib[c]..}}

The meaning of each part of the command line is:

{obj} The cutput file. The curly brackets show that it
is optional. If not specified then linker output is
confined to the symbol tables and cross
reference listings etc.

{,sym} An optional symbol dump. The name of the
file is given preceded by a comma.

{nist} A listing file. All printed output is duplicated to
this optional file.

= The separator between the output and input
parts of the command line. This character is

mandatory.

mod A linker module output by the assembler. Any
number of modules are specified separated by
commas.

{[ch A conditional label. The label if specified must

immediately follow the linker file name and be
enclosed in square brackets. The label must be
an absolute symbol that has been defined
(globally, to the linker) before the current link
file. If the value of the conditional is zero then
the module is missed out of the linkage. Thus it
is possible to include a module of test routines
and run-time routines - the required module
being selected by a switch, a conditional label,
set in the main program.

{:opts}

{Aib}

{[c}}

{}

Linker reference

A linker option. Linker options follow the
linker file list and are separated from it by a
semicolon. Each linker option is a single letter
but may have a parameter following it in square
brackets. Options are processed before pass 1.

A library file. The first library file is preceded
by a slash. This file is searched at the end of
pass 1 for missing modules.

A conditional label. If this label is zero, then the
library file preceding it is not searched.

A hyphen may occur anywhere on the linker
command line and indicate that the line
continues with the next line, which is read from
the keyboard or the EXEC file.

5-3

A linking operation involves linking modules and libraries to
produce an executable program.

us User Guide

3

Linker Options

A number of options may be entered on the linker command
line. Each option is a letter A..Z (or a..z) and controls the value
of one of the linker variables. Several options require a
parameter immediately following the option enclosed in square
brackets.

Option A[adr] - address to link

The linker begins linking relocatable sections at this address. If
the address is not specified then the lowest available address will
be used as provided by OSHWM. Thus if the linker is being
used on the second processor or master turbo, the program will
normally begin at &800. Such a program will not run on the IO
processor alone. The address may be 8 hex digits, specifying a
full 32 bit load address and is given without a leading
ampersand.

Option B[adr] - begin execution at...

Set the execution address of the program. The address must be
given in square brackets. The address may be 8 digits long,
specifying a full 32 bit start address. This can be overridden by
the specification of SYSEXEC as a global symbol in the
program.

Option G - run program after linking

Run the program if linking completes with no errors.

Option L - library symbols not listed

Omit symbols obtained from libraries in the symbol table listing
Option M - map file

Produce a memory map during pass one showing where each
module will be located in memory.

Option P - echo output to printer

All linker output is sent to the printer.

Linker reference

Option Uffile] - use symbol file

Use the specified file name, which must be enclosed in square
brackets and be a symbol table file. The symbols from the file
are included so that they are known to the linker. Typically
these could be a table of entry points to the operating system of
some other computer for which the program was being
compiled.

Option W[width] - set printer width

Set the width of the printer page in characters. [width] is
specified in decimal. The default is W[132].

Option X - cross reference listing

Send the cross reference listing to the screen or printer if
selected.

Option Z[adr] - define zero page address space

This option sets the first address available for the linker to
allocate zero page relocatable addresses. The address is
specified in hex without a preceding ampersand and must be
between 00 and FF. The default, if no Z option is specified, is
00. The address given will be the first address assigned to
relocatable zero page labels produced with the RZP assembler
pseudo-op. Use the Z option if your program has need of some
absolute zero page, which should precede the address given.

lus User Guide

4

Example Linker Command Lines
PUZZEL=L.PUZZEL

Simplest linker command line. Produce an executable program,
PUZZEL, from the module L. PUZZEL.

=PROG1,PROG2,PROG3 ; M,X/LIB

Test link the files PROG1, PROG2 and PROG3, produce a map,
cross reference and symbol list on the screen using the library
LIB.

GROM,S.GROM=GR1,GR2,GR3 ; A{8000],Z[40)L.GLIB

A typical ROM linkage. Link files GR1, GR2 and GR3 to
produce GROM with a symbol file S.GROM. The code is to be
located at &8000 and zero page allocation to begin at &40. Use
L.GLIB as a library.

Linker Sections

This section describes the meaning of each type of linker
section. The linker considers the program to be divided into
three sections. These are called the dummy section (DSECT),
the absolute section (ASECT) and the relocatable section
(RSECT). Each section functions in the following way.

Dummy sections may be defined anywhere in the program with
a DSECT command and they generate no code output in the
linker file. However, the assembler assembles the statements in
the dummy section and throws the output away but remembers
the values of all the labels defined. Thus if global symbols are
defined in a dummy section then the linker knows about them.
The most common use of this would be to define the allocation
of zero page storage. The following macro allocates a global
name to a specified amount of zero page storage. The name
points to the first byte:

RESERVE MACRO
DSECT
Q1 ENT
DS @2
DEND
ENDM

The DEND statement reverts to the previous type of section at
the previous location counter value. The initial value of the
location counter in each section is zero. The value of the
location counter in DSECT may be changed using ORG.

§.6

—

Linker reference

ASECTs may contain ORGs that set the absolute value of the
location counter. Each ASECT or ORG (within an ASECT)
results in the opening of a new object file. This is because the
filing system format used by ACORN will not support 'scatter
loading'. Each file takes a name derived from the parent file
including a three digit number appended to up to four letters of
the original name. For instance, the first ASECT in a linking
operation to produce file GAME will be GAMEQQO, the next
GAMEO001 and so on. This convention is the one most often
used for overlay programming. You must keep track of the
ASECTs in your program. It is best to make each ASECT a
separate module so that the numerical order of the ASECT
object files will follow the order the modules are specified on
the linker command line.

The relocatable section normally forms the bulk of a linker file.
There is only one relocatable segment of memory and the linker
joins all the RSECTs end to end during the linking process. All
the addresses labelled in the RSECT are labelled as an offset
from zero and so the linker must add the actual start of the
RSECT on to each offset. The linker also has to be clever
enough to recognise the use of just the top or bottom byte of a
relocatable label. An RSECT is ended by the end of the source
or the occurrence of another section. ORG must not be used in
an RSECT. If ORG is used a warning message will be given,
and the ORG will be ignored. This will not affect the assembler
output.

6000

ASECT
ASECT 002 ASECT
001 003

3000

1900

Program with RSECT at 1900 and three ASECTs with ORG
&3000, showing a possible overlay structure.

557

s User Guide

The Linker Map

As the linker comes across each new section it makes an entry in
its section table and this table can be printed out. The table is
called a map because it is in effect a memory map of the
program. Each entry shows the section number and the start
address and the length. DSECTs do not appear in the map since
they only define labels. The linker prints the module name and
section type followed by the first and last address used in the
section. The last address is in fact the linker's location pointer
value at the end of the section, so this is in reality the first
'unused' address in the section and will, in the case of RSECTS,
be the first used address of the next RSECT.

The Cross Reference list

The cross reference table is output during pass 2. A heading is
printed for each module and then every external reference
encountered in the module is printed together with the module
name containing the external reference. For example:

Module: INIT
initgraf:SBRS
initsnd:SBRS
initbrk :MAIN
start :MAIN

This shows that the module INIT accesses global symbols
"initgraf” and "initsnd" in module SBRS then "initbrk" and start
in module MAIN.

The Symbol Table

The linker symbol table is intended for use with a symbolic
debugger. The table is stored on disc in non-ASCII format when
a symbol table file name is included in the linker command line.
Such a table can be recovered with the U option or used with a
symbolic debugger. The format is documented in the ADE plus
Technical Reference Guide. When the symbol table is listed the
user has a choice of omitting library routines using the L option.
The table is listed on the screen in alphabetical order, with the
absolute value of each symbol provided.

5.9

13.

14.
15.

16.

17.

18.
19.

20.

21.

22,

5-9

Linker reference

Linker Error Messages

The following fatal error messages may be issued by the linker:

Invalid linker command line
The command line passed to the linker by the
ADE plus MMU could not be processed correctly.

Not a linker module

Linking abandoned
The errors reported during pass one of a linking
operation mean that the linker is unable to continue.

Bad module
A module name is too long or contains illegal
characters.

Escape
Conditional missing

lllegal conditional

The linker expected a valid label between square
brackets following a linker or library module.
Note this error is not detected when the linker
command line is processed, but when the module
in question comes to be read in.

Zero page exceeded FF
The allocation of linker relocatable zero page (eg
with RZP) has exceeded the allowed limit.

lllegal linker record

A file has been specified as an input module that does
not conform to the ADE plus linker module file
format.

Not ADE symbol file
The U option attempted to load a symbol table file
that was not in the correct ADE plus format.

lus User Guide

Utilities
Chapter 6 | The Debugger
6.1 Description of the Debugger

A debugging monitor based on the SPY debugger of ADE
versions 1 and 2 is supplied on disc with this package. The
debugger is supplied in three versions. Version 1 called
DEBUGL runs below the mode 7 screen memory in main RAM.
Version 2, called DEBUGH, runs in the second processor
memory just below &F800. These versions are activated by
typing *DEBUGx. The third version is suitable for sideways
RAM and called DEBUG. Once loaded (eg with *SRLOAD)
and registered (by pressing ctrl-break) it can be accessed from
the ADE plus MMU with the DEBUG command. The utility
program LBUG loads the debugger and pages in a given RAM
slot. For example to debug RAM slot 15 type.

*LBUG 15

On entering the debugger the screen displays a 64 byte block of
memory, the processor registers and a command line. Most
commands are re-entered with a single key stroke. If the * key
is pressed, the debugger accepts a whole line of input and passes
the line to OSCLIL. Thus, to exit, you can type *ADE. The
;nemory display can be in hex or ASCII or in disassembly
ormat.

6.2 Debugging commands

Unless otherwise specified, all the commands are single key
entry.

L - Display dissasembly
The L key will toggle the memory display between hex and

disassembly. The memory pointer will then point to one of
eight instructions disassembled on the screen.

TAB - Display in ASCII

Display memory in ASCII text with a full stop printed for
characters that are unprintable.

6-1

User Guide

62

M - Set memory pointer
The highlighted location in the middle of the memory display is
called the memory pointer. This is the location that will be
updated if you enter commands to type data into memory. Type
M followed by the hex address. No ampersand is entered, all
data is in hex. An arrow (>) prompt will appear when you press
M. This prompt always appears when data is expected to be
entered. Press return when you have entered the address. The
debugger will now display memory centred on the address
entered.

M>2A05
Note that this can also be achieved by typing

2A05M
without pressing return.
RETURN - Increment memory pointer
Move the memory pointer to the next highest address.
+ - Increment memory pointer by 8

Move the memory pointer up by one column. Typing ; has the
same effect.

/ - Decrement memory pointer

This is the opposite of pressing the return key.

- - Decrement memory pointer by 8
Move the memory pointer back by 8 locations.

U - Update memory pointer from PC

The memory pointer is set to the address contained in the PC
register, as shown on the register display at the top of the
screen.

@ - Update PC from memory pointer.
The program counter is set to point at the same memory

location as the memory pointer. This may be done prior to
single stepping, for example.

6.3

6-3

Utilities

I - Set memory pointer indirectly

The memory pointer is updated from the contents of the current
memory pointer location and the location following it. The
current location is considered to be the low byte of the address.
This procedure is often called word indirection.

R - Set memory pointer relative

The memory pointer is set as if the contents of the current
location pointed to by the memory pointer were the
displacement in a branch instruction.

G - Get first occurrence of pattern

N - Get next occurrence of pattern

These two commands enable a search to be made for a specified
byte pattern or string. Press G followed by the pattern. This
may be entered in hex one byte at a time. Each byte is followed
by return. Strings are entered between quotes. Press return on
its own to begin the search. The search commences at the byte
following the current memory pointer. If the pattern is found
the search stops with the memory pointer at the first byte of the
pattern. Further occurrences of the pattern can be found by
pressing N. When the pattern is not found (memory pointer
goes past zero) the message ?err? is displayed. For example to
find the instruction JSR &21AF, enter:

G
>20
>AF
>21
>

Altering Memory

To alter the current memory location indicated by the memory
pointer, enter a hex number and press the space bar. If you
enter a number and press return, the number will be entered and
the memory pointer will advance by one. To enter a string into
memory, type a quote character and enter the string which will
be terminated with a second quote. Each character will be
stored and the display updated as each key is pressed. To see
text in ASCII on the display, press the TAB key.

ser Guide

P - Fill memory block with byte

This command allows a range of memory to be filled with the
same byte. To clear four pages from &1900 to &1CFF, for
example, type:

P

first: 1900
last: 1CFF
with: O

If the last address is less than the first the debugger displays
?err? . As the debugger enters the data it reads it back and
checks the value. If the data does not verify (eg if you write
over a ROM) then the message ?fault? will be displayed with the
memory pointer set at the offending location.

S - Shift memory contents

This command will intelligently move a block of memory of
any size to a new starting address. To move a page from &1900
to &1980, enter:

S

first: 1900
last: 19FF
o 1980

If the last address is less than the first then the debugger displays
2err?.

\% - Verify two memory blocks

This command compares the contents of two memory blocks
and if a difference is found prints ?fault? with the memory
pointer set to the offending address in the first block. If the two
blocks are the same ok is displayed. To verify that pages &19
and &29 are the same, for example, type:

v

first: 1900
last: 19FF
with: 2900

ok

6.4

6.5

6-5

Utilities

Altering the registers

The changeable register is highlighted and indicated by an
arrow on the left. Pressing the full stop key moves the pointer
to the next register, or back to the first. The value to put in the
register may be entered by typing the data in hex and pressing a
full stop. The PC rezister expects four digits. Two digits may
be entered for other registers. The status register shows the
individual flag names if the corresponding flag bit is set to one.

Miscellaneous commands

Z - Single step

Pressing the Z key executes the instruction at the current PC
location. This instruction will be displayed in disassembly form
between the register(s) and memory display(s). The register(s)
and memory display(s) will be updated to show the result of the
step.

K - Continue from PC

The program being debugged is allowed to run from the current
PC location with the registers set as shown.

J - Jump to address

Execute a program from the address entered after the J
command. Type in the address and press return. The debugger
does a JSR to the location entered, so subroutines may be tested.
If you press J but then decide not to jump, press the escape key.
To runa program £, ;i1 [(30, enter:

J>1900

3 - Clear break points

Clear all 8 break points.

s - Toggle break point

Set or clear a break point. Up to 8 break points may be used.

User Guide

> - Advance to break point
Advance the memory pointer to the next break point.
£ - Advance to next instruction
Advance the memory pointer to the next instruction.
X - Exit

Return to ADE MMU (from ROM debugger).

INDEX

index

The main section dealing with each subject is shown in bold type. Other references

are to page numbers.

A

Abbreviations

Absolute

Addressing modes

ADE plus

ADF

Advanced
Editor
Debugger

Arguments

Arnthmetic operators

ASC

ASCII

ASECT

ASM

Assembly
aborting
directives
from memory
listing
options

B
Batch commands
Bin
Bloca;y
copy
delete
move
Buffers
resetting

C
Cartridge
Cassette files
CHN
files
Clear
to end of line
markers
Clock
CMOS
Econet

CLOSSEyStem

COMMANDS
Editor
Comments
Compilers
Conditional
Linking
ion
Directives
Constants
Cross reference
Cursor keys

22,29

1-19
4.24,4-38...4-40
21

1-1

1-7,3-1
1-7

4-8,4-36,4-44
4.154-11
4.21,4-30
4.12,4-10
4.19,1-19,4-17,5-6
42,1-9,2-1,4-1,4-2

4-2
4-154.19
19

4-13
43,44

1-13
4.12,4-10
4.19,4-8,4-25
3-7

3-6

3-7

1-S

1-8,2-7

1.1,1-2
1-6

4.23
4-2,4-36
39

3-5

3-8

1-4

1-4

1-4

2.1,2-1
2.1,1-8,2-1
33

4.10,1-17,49
3

422
1-22

44

433

4.12,4-10
5.7,1-20,5-5,5-8
3833

D
Data
definition
Date
DC
Debug
DDB
Decimal
Delete
line
char
block
Demo disc
DEND
Disassembly
DFB,DB
DFS

from memory
command mode
leaving
status

Editing

ELSE

EMBED

END

ENDM

ENT

EPROM

EQU

Error
extended
summary
list file
fatal

assembler
wait after
reporting
linker

Escape

EXEC

Exec address

Expressions
EXT
Extemnal

index-1

4.21

4-30,4-32

1-4,2-8

4.214-31
2.1,6,2-2,6-1...6-5
4.21,4-32
4.12,4-10

3-5

3-6

3-6
1.1,1-1,1-2,1-10
4.194-17

6-1

4.21,-4-31

1-1

4.22,4-34
4.21,4-32
4.19,4-8,4-17,5-6
4.21,4-31

1-4
3.1,17,1-822
1-9

393237
32

33
3.8,1-103-2
422,434
4.19/4-18
4.19.4-20
4194-22
4.19,1-16,4-7,4-22
1-1

419,420

1-12

1-12,45
1-13,4-5

1-13
2-1,4-46,4-48
29

4-47

4-5

4-46

5.9,5-9
1-8...1-11,3-2...3-4,4-2
4.19,4-16

1-21,5-4
4.11,4-10...4-12
4.19,1-16,4-23
4.16,1-16,4-12

===

ADE plus User Guide

F

FI

Find next

File control

Filter

Form feeds

Function keys
User defined

G

GEQU

GET

GO

GOTO
labei
line
markers

H

HEX
Hexadecimal
High & low bytes

I
IF
Immediate
INCLUDE
Inline string
INPUT

edit buffer
INFO
Insert

line

char
10 processor

J

Join line

) &5
Labels
local
Libraries
linker
macro
symbols
Line feeds
LINK
Linker
aborting
command line
List options
LIST
Listing
disc
option
assembly
directives
LLIB
LLST
FULL
LOAD

422434
34

4.23,4-36
1-2,1-22,3-8

4-13
3.8,3-3...3-7,1-10
39

4.19,4-21
4.19,4-24
2.1,2-2
3.8
1-9,3-4
1-11

3-7

4.21,4-32
4.12,4-104-32
4-12

4.22,4-34
4.244-39
4.23,4-36,1-6,4-2
4.19,1-8,4-23
2.1,1-5,1-7,2-2
3-1
4.19,4-29
3.8,3-3,3-4
3-5

3
1-5

35
4.7,4-7
47

1-18,1-21
4-9,4-45
5-4

4-13
1-17,2-3,5-1
5,1-15,5-1
5-1

52,52

4-14
4.19,4-14,4-28
4.17
1-13,4-2,5-2
4-4

4-13
4.20,4-25
2.1,1-21,2-4
4.19,4-26
4-44
3.9,3-8

Load address
Local labels
LOPT
LST

FULL

M
MACLIB
MACRO

arguments
Markers

Master
Memory map
Memory pointer
MLIB
MMU
prompt
commands
variables
Mnemonics
MODE
MODULE
MSB
MSW

N
NEW
NOLIB

(o)

OBJ

Object file

OLD

Opcode

rand

OPT

i G
tions

assembler
linker

ORG

OS labels

OSCLI

OSFIND

OSGBPB

OSWRCH

Output

Overlays

Overtype

P

PAGE
PAUSE
PRINT
Printer
PROT
Pseudo-ops

Q
QSTR
QUERY
QuIT

index.?2

1-21,5-4
1-16
1-7,2-4,5-4
4.19,4-26
4-44

4.23,2-5,4-37
4.19,4.26,2-5,4-1,4-24
4-44.. 4-46

48

3-3,3-6,3-7
1-1,1-3,1-6
1.5,5.6,1-20,5-4,5-8
,6-2

2.1,2-5

2.1,1-3

1-4,4-

2-1

2-1

41

2.1,1-6

5,1-16,1-19,2-4,4-15,5-1...5-9

4.214-31
4.19,4-16

3.9,3-7
4.23,4-37

4.23,4-37
4-2,4-37,5-1

3.9,3-8
4.8,4-9,4-41...4-43
4.9,4-9
2.1,4.19,1-7,2-5,4-25
1-11,4-44-5
1-7,2-4,2-5

43

53,5-4
4.19,4-15,56...5-8
44

1-13,6-1

47

1-6,2-3,4-.
1-16
2.1,1-6,2-6
1-18
3.8,3-3,3-4

4.19,1-5,4-13,4-27
420430
2.1,1-7,2-6
1-6,4-4.5-4
2.1.2-7
4.18,4-1,4-9,4-15

R

RAM
sideways
available
protected
disc

Reduced instruction set
Registers
Relocatable
Zero page
REPEAT
Replace?
Report
Reserved words
RESET
RESUME
ROM
RSECT
RUN
RZP

S

SAVE

Screen

SEARCH
Second processor
Sections

Single step

SKE

Split line

SPY

Source

STAT

STOP

STR

Strings

Symbol file

Symbol table
linker
dump to disc
assembler

Syntax check

SYSCLI

SYSVDU

T
Tab key
Text window
Time

editor

U
UNPROT
UNTIL
Upper case

View

1-3,2-6

1-5
1-5,2-6,2-7
4-6

44

6.4,6-5
4.16,1-17,1-18,4-12
1-19,4-33

4.22,4-35

3-8

1-10,4-13

4.14,4-11
2.1,1-8,2-7

4.19,1- 19 4-19,5- 6
3.9,1 8,3-9
4.21,4-33

1-21,5 3] 5 5
1-17,5.8,5-7
0

4.19, 4-29

1-16
4.19,4-28
4.194-28

2.1,1-4,
4.19,4-13,4-26

4
-2
8
3

e

2.12-6,2-8
422,435
2-4,4.547

1-8,3-1,4-1

Z

780 assembler
ZASM

Zero page

E&_ﬁ; &%AV%?*@" s
l"><U
= m

*INFO
*LOAD
*RUN
*SAVE
*TYPE

index-*

indea

4.32,4-39
4.22,4-35
4.22,4-35
4.19,4-13,4-27,5-5

plus User Guide

This function key strip can be cut out
and used with the ADE+ mini text
editor.

s b wd way qiviz ol nolam ZidT

drsl inkm $AOA o diie boee box

wh

Your Key to
Expanding the
Power of ...

Technical
Reference
Guide

SYSTEM SOFTWARE SOUTH YORKSHIRE SYSTEMS FOR TRAINING, EDUCATION AND
i QANAGEMENT LIMITED, 12 COLLEGIATE CRESCENT, SHEFFIELD S102BA. TEL: (0742) 682321 /

I ————————————

ADE plus Technical Reference Guide

Published in the United Kingdom by:

South Yorkshire Systems for Training Education
and Management Limited,

12 Collegiate Crescent,

Sheffield, S10 2BA,

England.

Copyright © 1986 South Yorkshire Systems for Training Education
and Management Limited.

First Published 1986

All rights reserved. This book is copyright. No part of this book may be copied or
stored by any means whatsoever whether mechanical, photographic or electronic.
While every precaution has been taken in the preparation of this book and
accompanying software, the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of
this book and accompanying software.

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

ADE plus Technical Reference Guide

CONTENTS

Introduction

System Overview

MMU Variables

Operations Performed During *ADE
ADE OSWORD

File Formats

Assembler Objects and Variables

Example Programs

Acknowledgements

The authors wish to thank all those who have helped in the development of ADE
plus. Thanks are due to all the original developers of ADE and customers over the
years who have made valuable suggestions. We have tried to include all of the best
ideas that you have come up with. Thanks are due (again) to Ray for trials work
and to Nigel for trials and suggestions for this user guide. Programming was by
Steve with helpful assistance from Dave, who also wrote the BASIC program
conversion utility. Dr Oliver Blatchford made useful additions to the CONVERT

program.

us Technical Reference Guide

1.1

TG-1

ADE pius Technical Reference Guide

Introduction

The ADE plus Technical Reference Guide is a supplement to the
ADE plus user manual and can be clipped in the back of your
ring binder. None of the information contained in this manual is
necessary to operate the ADE plus software; that information is
already contained in the user guide. What this supplement will
do is enable you to understand how the ADE plus system works
and expand the system to meet your own requirements. You will
need to read all of the information in the subsequent chapters in
order to be able to write sideways ROM modules that extend the
ADE plus system and take full advantage of the memory
management unit (MMU) facilities.

This guide does not explain how to write sideways ROM
software. A full explanation of the Acorn MOS calls to sideways
ROMs, and the format that a ROM must take, is provided in the
Advanced User Guide for the BBC Microcomputer published by
the Cambridge Microcomputer Centre and the Reference Manual
Part One to the BBC Master series, published by Acorn. Either
of these books provide all of the information required to write
generic software. Applications taking specific advantage of the
Master's capabilities will need the Acorn manual.

Generic Software

The philosophy of the ADE plus system, if it has one at all, is that
of generic applications. This means that all of the programs
supplied with the ADE plus system will work on the BBC B,
BBC B+, Master, Master Turbo and Master Compact. The
software will operate with the DFS, ADFS, NFS and ANFS filing
systems. It will operate with most third party add-ons provided
they stick within the rules and meet the full specifications of the
Acorn MOS. Sadly many third party filing systems that we have
tested fail to do this. Users are strongly encouraged to make their
applications generic when extending the ADE plus system. This
will allow users to share new modules among themselves without
due regard to the system each user has.

Writing generic software does not mean that the system cannot
take advantage of the extended capabilities of the Master series.
What it does mean is that the programs must be aware of which
system they are running on and take appropriate action. For
example, when you type *ADE the MMU will obtain the time
and date from the CMOS RAM if running on a master or, failing
that, from the network (if that is the current filing system) or, as
a last resort, will ask you for the information. The main
restriction of generic software is that the extended instruction set
of the 65C12 or 65C02 microprocessor cannot be used. The

18 Technical Reference Guide

TG 2

main consequence of this is that programs are slightly larger and
very slightly slower than they would otherwise be, but in reality
there is no problem, everyone agrees that ADE plus is a fast and
extensive system. Of course the potential market for generic
software is much bigger than for software tied to a specific
machine or filing system.

You will only be able to use the routines listed in the Technical
Reference Guide on systems where ADE plus is already present
since they all use the MMU facilities.

System Overview

The ADE plus system consists of a memory management unit,
which is also an overall system manager, and a number of
modules. These modules are either supplied with the system or
supplied as additional software or are your own creation. A
module is either resident in which case it is in sideways ROM or
RAM, or transient in which case it is held on disc (or RAM disc)
and called into memory by the filing system when required.
Examples of resident modules are the 65C00 series assembler,
the Linker, the Debugger (DEBUG) and the macro librarian.
Examples of transient modules are the RAM based Debugger
(DEBUGL/H) and the file filter program. Transient modules
fall into two categories. The filter program is an example of
software that makes no use of the ADE MMU variables and
routines. This program will run without ADE plus being
present. Other transient modules will make use of the MMU
information and can only run alongside ADE plus. In this guide
any program that makes use of the MMU, or is useful to the
MMU is referred to as a module. The golden rule for any
module is that it returns control to the MMU variables intact.

The MMU can be in ROM or loaded from disc into sideways
RAM (the software is the same). It will be referred to as the
MMU ROM. The Linker and Librarian modules are part of the
MMU ROM and called directly from the MMU command level.
These modules cannot, therefore, be replaced. The assembler
and any additional modules are all external to the MMU and can
be replaced by your own code if necessary. The MMU follows
specific rules for calling modules in sideways RAM. Transient
modules are always *RUN by the current filing system.

An exception to the rules described above is the editor module.
‘The MMU will send editing instructions to a ROM based editor
module if present. If no such module is found then the MMU
will use it's own internal text editor. The MMU will not

ADE plus Technical Reference Guidk

immediately recognise VIEW or WORDWISE as an editor
module, but if you have facilities to patch these ROMs they can
casily be made to appear as the advanced editor that the MMU
craves.

MMU Variables

This section describes the location and purpose of each of the
ADE MMU variables.

The MMU functions as a language. This means that it will run on
the second processor if present. It is allocated 1K of workspace
by the MOS, from &400 to &7FF. The MMU variables that
must be preserved are all held on page 4 between &400 and
&490. Modules must not interfere with these variables under
any circumstances. It is not good enough to rely on restoring the
variables unless you intercept the BREAK key. If your module
also functions as a language it will be re-entered on BREAK. It
must note that this is a re-entry and not simply save the variables
again. If your module is not a language then you should note that
the MMU variables will be held on the language processor.
Thus if a second processor is connected, modules running on the
IO processor will not be able to access the MMU variables. To
curcumvent this problem, all modules should run on the
language processor. This is achieved by setting the top bits of
their load and execution address to zero

As well as passing the variable on page 4 to a module, the MMU
also passes the command line or command line tail to the module
in page 7 of the language processor. Modules that only run from
the ADE MMU command level can always find the command
line here and do not need to go through MOS calls to access it.
Once the command line has been processed by a module it can be
thrown away.

A full description of each variable is given though not all
variables are useful. Many variables are referred to in the
following chapters and their use will become more apparent.

&400 SYSTEM_STATUS

SYSTEM _STATUS is normally zero. Modules can set this
variable to &FF to indicate that they have been entered once.
The MMU will not reset it, so modules should set it back to zero
before exiting to the MMU. Rom based modules can use the
ROM workspace byte allocated to them by the MOS to store their
status, but the MOS byte is on the IO processor and dependent on

‘Technical Reference Guide

TG4

the ROM page that the module sits in, so SYSTEM_STATUS
may be used more conveniently.

&401 LINK_ROM_SLOT

This variable contains the ROM id of the ADE MMU, Linker and
Librarians. To exit to the MMU load the X register with this
variable and perform OSBYTE 142.

&402 ASM_ROM_SLOT

This variable contains the ROM id of the ADE 65C00 series
macro assembler. To perform an assembly from another
module set up the assembler command line tail (everything after
the ASM command) at &700 and load the X register with this
variable then do OSBYTE 142. Editor modules that contain a
RUN command should follow this procedure. When no 65C00
assembler is present this variable contains &FF,

&403 EDIT_ROM _SLOT

This variable contains the ROM id of the advanced editor module
or &FF. If it contains &FF then EDIT commands are passed to
the MMU's internal text editor. If the variable contains a
positive value then the MMU calls this ROM with the EDIT
command line (in its entirety) at &700.

&404 DEBUT_ROM_SLOT

This variable contains the ROM id of a ROM based debugger
module of &FF. DEBUG commands will be passed to this
module, if present, in the same way as EDIT commands are

passed.
&405 ZASM_ROM_SLOT

This variable contains the ROM id of a Z80 assembler or &FF.
The command line tail of a ZASM command will be passed to
this ROM at &700. The ZASM command could be used with any
utility module as a way of extending the system, for example a C
compiler. The MMU will not process ZASM commands unless a
command line tail of at least one non-blank character is present.
You will note that the EDIT and DEBUG commands do not
require parameters and thus the whole command line is passed
for analysis. The ASM and ZASM commands always require
parameters and the MMU moves these to &700 for your
convenience.

ADE plus Technical Reference Guide

&406 OPT A

This is the first assembler global option, as set with the OPT
command. The asembler must copy 26 bytes from OPT_A into
its local options since these may be modified by the command
line or by OPT statements in the source file. OPT_A must not
be modified. The Z80 and 65C00 assemblers are deemed to
share the same list of options and you should stick to the
interpretation of them if you write a Z80 assembler, though
unused options will be available to you for any purpose .

&420 LOPT A

This is the first linker global option. Since the linker is internal
to the MMU, these options are of no interest to external
modules.

&43B HIGH_ WATER_MARK

This is a word variable, low byte first. It specifies the value of
OSHWM on the language processor. Its main use is internal to
MMU.

&43D RAM-TOP

This work variable specifies the top of the workspace RAM on
the language processor. The assembler, for example, sets up a
stack at RAM TOP for macros and libraries at this location.
Transient modules running on the second processor will be
passed their start address as a value of HIMEM from the
operating system, which is of little use. RAM_TOP will give
the true value which will never be greater then &8000.

&43F TUBE_STAT

This variable is set to &FF and is the language processor a
second processor or Co-processor.

&440 RAM _STAT

RAM _STAT is a list of 15 variables, one for each page of
sideways ROM or RAM starting at page 0. For each page n, the
variable at RAM-STAT+n is defined as follows: Bit 7 is set if
the page was found to be RAM, otherwise it is reset. Bit 6 is set
if the page is protected. Protection is achieved by the PROT
command or by default because the RAM page contains an ADE
module.

18 Technical Reference Guide

TG 6

&450 INPUT_BUFFER_ALLOCATED

This variable is set ot &80 when an input buffer is in use. Itis set
to 0 if no input buffer exists or if the size is set to zero. Changing
MODE and issuing several other commands forces the MMU to
recalculate its buffer sizes and set this flag. If the flag is reset (0)
then the information describing the buffer is undefined. The
assembler uses this information to set up a local buffer in the
workspace if the MMU does not provide one, so do not rely on
the buffer description unless INPUT_BUFFER_ALLOCATED
is true (&80).

&451 INPUT_BUFFER _PAGE

This variable indicates the location of the input buffer. The only
meaningful values are &10 which indicates the buffer is in the
second processor, &11 which indicates that the buffer is on the
10 processor but the language processor is the second processor,
and &13 which indicates that the buffer is in the 10 processor
which is also the language processor. Values 0 to &OF would
indicate a buffer in sideways RAM, but this facility is not
available on Version 1 of the MMU. When the value is &11 then
the buffer is said to be far. Far buffers are accessed using MMU
OSWORD routines to transfer blocks of data across the tube.

&452 INPUT_BUFFER_START

This is the first page of the input buffer. Buffers always start on
a page boundary so the Isb of the buffer start address will always
be zero. When the INPUT BUFFER_START will be &CO,
indicating that the buffer starts at &C000 on the second
processor. If INPUT BUFFER_PAGE was &11 or &13 and
INPUT BUFFER_START was &19 then the buffer would begin
at &1900 on the IO processor.

&453 INPUT_SIZE

This variable gives the size of the input buffer in pages. If the
buffer has been set ot SK with the INPUT command then this
variable will be &14. When the second processor is connected
the value of this variable is defined by the system memory
available and cannot be altered. If INPUT BUFFER_START is
&CO, then the variable will always be &38 indicating a size of
14K, or a buffer extending from &C000 to &F800.

&454 OUPUT_BUFFER_ALLOCATED

This variable is a flag indicating that an output buffer exists. See
INPUT BUFFER_ALLOCATED.

ADE plus Technical Reference Guic

&455 OUTPUT_BUFFER_PAGE

This variable gives the location of the output buffer. See
INPUT BUFFER_PAGE. When a second processor is in use the
largest buffer is given to the input and the second largest to the
output. Thus one buffer will be on the IO processor, (far: &11)
and one on the second processor (&10). If a shadow screen is
used then the IO processor usually contains the most free space
and will be allocated to the input buffer but otherwise the
allocation depends on screen mode.

&456 OUTPUT_BUFFER_START

This variable gives the msb of the start address of the output
buffer. See INPUT _BUFFER_START.

&457 OUTPUT _SIZE

This variable specifies the size of the output buffer in pages. See
INPUT _SIZE.

&458 PRINT_BUFFER_ALLOCATED

This variable is set ot &80 if the print buffer is allocated. When
the print buffer is allocated the print spooling system is kicked
into life. The print buffer will be allocated whenever the buffers
are checked (eg at *ADE or a mode change) and there is
unprotected sideways RAM available. The buffer is de-allocated
with the PRINT O command or if all the sideways RAM is
protected. When this happens, the print spooling system is
informed and relinquishes control to the MOS printer driver.
However if the buffer is not empty, then the printer spooler
informs the MMU that it cannot change the size of the print
buffer or de-allocate it.

&459 PRINT BUFFER_PAGE

The variable gives the first page of sideways RAM available for
the print spooling system. The print spooler keeps its own
variables in the IO processor so if this information is lost (eg by
*BASIC) the print spooler will keep on working.

&45A PRINT_BUFFER_START

This will be set to &80 if the print spooler is active because the
sideways RAM pages start at &8000.

TG-7

Technical Reference Guide

TG 8

&45B PRINT _SIZE

This is the size of the print buffer in K, not in pages. If the size
were in pages, then a 64K buffer would have a size of 0! The size
will be a multiple of 16.

&45C TUBE_ALLOCATED

This variable is used internally by the MMU. It is set to true
(&80) when the tube spare memory from &C000 to &F800 has
been allocated to a buffer.

&45D IOP_ALLOCATED

This variable is used internally by the MMU. It is set to true
(&80) when spare memory in the IO processor has been
allocated to a buffer.

&45E TUBE_FREE_MEMORY

This variable contains the amount of free memory available on
the second processor for buffers. Its normal value is O (none) or
&38 (14K).

&45F 1I0P_FREE_MEMORY

This variable contains the amount of free memory available on
the 10 processor for buffers. Its value depends on screen
memory usage and the 1O processor setting of OSHWMN.

&460 I0P_PAGE

This variable contains the value of OSHWM (msb) on the 10
processor. When a second processor is in use, this value is
different from OSHWM for the language processor.

&461 WATER_MARK

This is a very important variable. It is the page boundary on
which the workspace available to modules (on the language
processor) begins. This may be the same as OSHWM but is not
necessarily so. If buffers are allocated by the user in the
language processor, then they will be allocated between OSHWM
and WATER_MARK. You must not use memory below this
address if you want to use the MMU buffers for file operations.

ADE plus Technical Reference Guide

&462 SCREEN_MODE

This variable contains the screen mode upon which all the
memory calculations are based. Modules may change mode but
must set this mode again before returning to the MMU. The
screen mode will normally be 128 or greater because the MMU
likes to select a shadow screen, if available, in order to maximise
the amount of free memory.

&463 - &46F Reserved for future expansion.
&470 DATE

This variable contains the system date as determined from CMOS
RAM or Econet or entered by the user. It is in the form of an
ASCII string terminated with a CR (ASCII &OD). The
maximum length of the string is 16 characters including the CR.
If the date was not specified, then the string would be just a CR.
When the TIME command is issued with a second parameter,
then the parameter is stored here. The date can be in any format
since no calculations are done with it.

&480 TIME

This variable holds the MMU time as printed on the prompt line.
The time is updated each time an MMU command is entered, so it
represents the time that a module was invoked. The time is
actually kept in the MOS system timer because this is common to
all BBCs. During initialisation the system timer is loaded from
the CMOS clock, Econet clock, or from the user's watch.
Unfortunately the system clock tends to run a little slow because
of missed interrupts, especially in cases of much disc access.
However the good news is that when you enter a TIME command
only the system timer is changed, not the CMOS of Econet clock
so you cannot upset these important time pieces accidentally.
The time string is HH:MM <cr> (6 bytes).

&490 - &4FF Reserved for future expansion but may
be used by modules until further notice.

The memory between &463 and &46F may be used in Version 1
of the ADE MMU. Modules must not use these memory
locations. Memory after TIME will not be used in Version 1.

TG-9

plus Technical Reference Guide

4

Operations performed during
*ADE

This chapter explains what happens when you type *ADE . It is
not sufficient to enter the ADE MMU with OSBYTE 142 unless
this initialisation has been performed (by ADE or by your
software). *ADE is a service routine that is always run on the 10
processor. When it has completed, it enters the ADE MMU
language ROM with OSBYTE 142. Modules also restart the
MMU with OSBYTE 142. The first thing the MMU (language)
does is to examine its workspace byte allocated by the MOS to
determine the state of the MMU variables. This workspace byte
which may be at any location between & DFO and &DFF on the
IO processor according to which page the MMU ROM lies in, is
set to one of the following value:

COLD_START - set by hard break.
WARM_START, data in page 4 is ok. This is set if
the BREAK key is pressed.

ADE _START - set by *ADE.

ADE_CONT - set to this value by the MMU before
calling a module.

H W [S

The ADE MMU ROM responds to the following service calls:

&27 Issued during BREAK key processing on the master.
&03 Issued during BREAK key processing and initialisation.
Print ROM title. Set workspace byte to
COLD_START for a hard break and
WARM_START for a warm break.

&09 If no parameter, give ADE ROM title (*HELP).

&08 Check processing of ADE OSWORD and perform
appropriate action.

&04 Check unknown command for *ADE. If *ADE is the
command, then perform a cold start on the MMU,

The cold start sequence is:

Initialise scan of sideways ROMs for ADE resident modules.
Scan ROMs for 65C00 Assembler. Result to ASM_ROM_SLOT
(&FF= not found).

Scan ROMs for Advanced editor. Result to EDIT_ ROM_SLOT.
Scan ROMs for Debugger. Resultto DEBUG_ROM _SLOT.
Scan ROMs for Z80 Assembler. Result to ZASM_ROM_SLOT.

16 10

ADE plus Technical Reference Guide

The results are only copied into the ROM_SLOTs when the
language is started. They are saved in temporary locations
during the rest of the initialisation. It is important to remember
that the memory between &400 and &7FF could contain the
Tube operating software at this stage.

Search system and determine the amount of available memory.

Set ROM workspace byte to ADE_START and issue OSBYTE
142 to start MMU language processing.

ADE next gains control as a language on the language processor.
It first reads the ROM workspace byte. If this is set to
COLD_START then a hard break has occurred so the MMU
issues the *ADE command to initialise properly. If a warm start
is issued, then a soft break has occured to the MMU checks the
validity of the data on page 4. If it is not valid, then *ADE is
issued, otherwise it carries on as if returning from a module.
Finally, if none of these reasons apply, then the reason is a start
up after the *ADE command so...

Read the ROM slots and RAM status information from the IO
processor temporary locations and expand into RAM_STAT and
the SLOTs in the variables. Check RAM_STAT against the
SLOTs and protect any modules in sideways RAM. Read the tube
presence and set TUBE_STAT. Reset all options to zero. Set
initial screen mode. Set the initial time. Calculate the buffer
sizes and locations (this involves reading OSHWM, possibly on
both processors) and call the STAT command; then prompt for a
command. Start the print spooler if possible.

At this stage all the ADE MMU variables are set up. When a
command is issued the first work on the line is checked. If this is
a valid ADE command, then the remainder of the line is analysed
for syntax automatically, using the same information as
COMMANDS uses to print out the help screen. Then the routine
to handle the command, or the external module (such as the
assembler) is called. If the command is not recognised, then the
MMU asks the filing system if a file exists with the given name.
If it does, then the file is *EXECed. Otherwise the command is
passed to the MOS. Thus TYPE, for example, will be passed to
the filing system after the MMU has already accessed the disc to
check for a file of the name TYPE.

When a BRK error occurs the MMU closes all open files,
inlcuding the EXEC file. On ADFS systems this can cause
another BRK error if there is no catalogue in memory, so the
MMU is ready and gives up if another error occurs. Press
ESCAPE with no ADFS disc mounted to see this happen.

TG-11

ADE plus Technical Reference Guide

TG12

Calling resident modules

The MMU recognises a module is resident because its SLOT
number is positive. The slot numbers were set initially from the
10 processor by the *ADE routine. They scan the ROM titles for
recognisable sequences of characters. These are the ROMs
currently recognised:

ADE 6500

This is the title of the 65C00 series Macro Assembler. The
Macro Assembler supplied with ADE plus has no service call to
initialise itself. It relies on being called by the MMU. It does
support other services, however, in order to recognise that the
BREAK key has been pressed, but there is no need in theory to
have a service entry point into a ROM module. However to avoid
the MOS confusing the ROM with BASIC, it is best to have a
service entry even if this is just an RTS.

ADEED

This is the title of advanced editor ROM. Chapter 9 shows how
to modify a well-known word processing ROM to function as an
advanced editor.

ADEBUG

This is the title of the ADE Debugger when present a a ROM.
The program DEBUG that comes with ADE plus has this ROM
title. Once it is installed ADE may be retarted with *ADE and
the DEBUG command will be operational because ADEBUG
will have been spotted.

ADEZ80

This is the title of an ADE Z80 assembler module, or any user
module that you write to be accessed with the ZASM command.
The list of commands in the MMU can be found by scanning the
ROM with DEBUGL. If you are running in sideways RAM you
could change the ZASM command to your own. The command
will have to be 4 letters and bit 7 of the last letter must be set.
The command is followed by a syntax byte (&20) and the address
of the routine to call the ZASM module. Do not alter the address.
Replacing the syntax byte by zero will mean tht the MMU will
not insist on parameters to the command. In this case the whole
command line including ZASM will be passed to your module in
page 7. As it stands only the command line tail will be passed
starting at the first non-blank character.

ADE plus Technical Reference Guide

ADE OSWORD

The MMU and modules that communicate with it need some way
to pass information, often across the tube. This is done using the
OSWROD call mechanism. In order to reduce the possibilities of
conflict with other ROMs, a single OSWORD call is used, and the
first byte of the parameter block specifies a function number,
This chapter describes each function currently implemented.
For each function a parameter block of less than 16 bytes is
required, pointed to by the YX registers. The first byte of the
parameter block is always the function number. Results are
returned in the paramter block, but some calls copy memory
across the tube as well.

The ADE OSWORD number is 103 (decimal).
(The 65CO00 series assembler also uses OSWORD 104)

Function &00 - Read IO processor RAM limits

On entry:
YX 00 Function call

On exit:

YX 00

YX+1 OSHWM for IO processor
YX+2 HIMEM for IO processor

Function &01 - Read MMU ROM page

On entry:
YX 01

On exit:
YX ROM slot of MMU

This call enables the MMU to determine its ROM slot from
across the tube and set LINK_ROM_SLOT correctly.

Function &02 - Activate print spooler

On Entry:

YX 02

YX+1 first page of sideways RAM

YX+2 second page of sideways RAM or &FF
YX+3 third page of sideways RAM or &FF
YX+4 fourth page of sideways RAM or &FF

TG-13

ADE plus Technical Reference Guide

16G-14

On exit:

No results are returned. If the parameter block is invalid the
message "Print spooler failed to initialise" is printed. If the print
spooler is active, then it attempts to change the RAM it uses to the
new values given in the parameter block but, if the buffer is not
empty, then the message "Printing in progress" will be given.

Function &03 - Kill print spooler

On entry:
YX 03

On exit:

No results are returned. If the print spooler was not active, then
no action results. If it was active, then the buffer is flushed (as
with FX21,3) and control returned to the old MOS routines.

Function &04 - Blow text to editor

Copy all the text from a file in the input buffer on the IO
processor into the workspace on the second processor. This
routine is used by the editor when EDIT* is entered as an MMU
command. It is assumed that the file handler that loaded text into
the input buffer put a zero byte at the end of the text.

On entry:

YX 04

YX+1 input buffer start page (on IO processor)

YX+2 editor workspace start page (on second processor)
YX+3 size of editor workspace in pages

On exit:
YX completion flag

The completion flag is positive if the text was transferred
successfully. It is set to &FF if the second processor workspace
was filled up before all the text was transferred. A good
completion does not guarantee that text was copied. It means
bytes were copied and a zero byte was found before the editor
buffer was filled. The editor must do its own evaluation of the
contents.

ADE plus Technical Reference Guide

FUNCTION &05 - SUCK TEXT FROM EDITOR

Copy text from the editor workspace into the input buffer on the
IO processor. This routine is used by the MMU editor when
QUIT or RUN is typed. The editor must put a zero byte at the
end of the text as an end of text marker.

Onentry:

YX 05

YX+1 input buffer start page (on IO processor)

YX+2 editor workspace start page (on second processor)
YX+3 size of input buffer in pages

On exit:
YX completion flag

If the completion flag is negative (&FF), then the transfer failed
because the text was larger than the input buffer.

Function 128 - Copy block to second processor

This function copies a 1K block of memory, regardless of
contents, across the tube into the second processor. The Linker
and Assembler use this function when a source file is in the 10
processor memory in order to read it. 1K blocks are large
enough to keep the system running at optimum speed and small
enough to leave plenty of workspace for labels and macros etc.

Onentry:

YX &80

YX+1 destination RAM page in second processor
YX+2 source start page in IO processor

On exit:
The parameter block is unchanged.

Function 129 - Copy block to IO processor

This function is used to copy a 1K block from the second
processor to the IO processor memory. The Assembler and
Linker use it when the output buffer is in the IO processor and
they are running in the second processor.

On entry:

YX &81

YX+1 destination page on IO processor
YX+2 source start page on second processor

The parameter block is unchanged.

TG-15

1s Technical Reference Guide

1 Print spooler variables

The print spooler variables are held on page 3 of the 10
processor in the cassette file workspace. Thus the print spooler
cannot be used at the same time as the cassette filing system or
any other utility which wants to pinch this memory. All the
print spooler routines are in sideways ROM in the MMU chip so
only this chip needs to be resident to operate the spooler (this
may assist sidleways RAM users). The routines are called using
extended vectors.

&380 PRINT P1
The first page of sideways RAM the spooler may use

&381 PRINT P2

The next page to use or &FF
&382 PRINT_P3

The third page to use or &FF
&383 PRINT P4

The last page to use or &FF

&384 PRINT_INSERT_PTR
This is a three byte pointer showing where the next
byte should be inserted in the print buffer. The buffer
is a circular buffer, so this value wraps round as it is
continually incremented. The first byte is an index to
the RAM page. It takes the values 0,1,2 or 3. A value
of 0 means that PRINT P1 is the RAM page pointed to,
avalue of 2 means PRINT P3 is referred to. The next
two bytes specify the address in the RAM page between
&8000 and &CO000. This pointer is incremented after a
character is inserted. Ifit is 1 less than
PRINT_REMOVE _P1R then the buffer is full and the
character is not inserted. The MOS will call this routine
repeatedly until it inserts the character.

&387 PRINT_REMOVE_PTR
This is a three byte pointer in the same format as
PRINT INSERT PTR showmg where the next byte to
be removed is stored. If it is the same as
PRINT_INSERT P1R then the buffer is empty. It is
incremented after a character is removed. When it is
incremented to the same value as
PRINT_INSERT_PTR the output buffer empty
event is generated. The MOS calls this routine during
the centi-second interrupt.

T(3.16

&38B

&38D

&38F

&391

&393

TG-17

ADE plus Technical Reference Guide

OLD_INSV
The old contents of INSV are kept here and restored
when the buffer is killed by ADE OSWORD.

OLD_REMYV
The old contents of REMYV are kept here and restored
when the buffer is killed.

OLD_CNPV
The old contents of CNPV are kept here and restored
when the buffer is killed.

P_COUNT

This is the count of characters currently in the buffer.
It is incremented when a character is inserted and
decremented when a character is removed because
subtracting the pointers is a lengthy process. When a
64K buffer is full this value will (incorrectly) be zero.
It is only used by the CNPV routine.

PRINT_WRITER
This is a 16 byte routine to write a byte into sideways
RAM and is the counter part of OSRDRM.

5.1

ADE plus Technical Reference Guide

TGI8

File Formats

This chapter explains the data format of each file type used by the
ADE plus MMU, Linker and Librarians and the 65C00 series
Macro Assembler.

There are six types of file used by the system:

Text files

Object files
Linker modules
Linker libraries
Macro libraries
Symbol table files

Text files

Text files are used by the editor, the assembler and the MMU.
Text is represented in ASCII format. The editor always
*LOAD:s text files and thus cannot strip line feeds from them.
Files created by the editor will not contain line feeds, but other
editors may include them. Line feeds must be removed using the
FILTER utility provided on the ADE plus disc before a text file
containing line feeds can be loaded into the editor. The editor
takes CR (ASCII &OD) to be the end of line character. Zero
bytes are used consistently as end of text markers but these are
always placed by the file loading or reading routine and are not
saved as part of the file itself. This makes the text files
compatible with all other text based applications on the BBC
micro series. When a text file is saved by the editor, the length
field in the catalog is correct but the execution address is, of
course, meaningless (as is the load address).

The assembler filters out line feeds as it reads the file byte by
byte even if it was *LOADed by the assembler's memory
management interface routines (see Chapter 7). This means you
should have no difficulty assembling files from other editors,
including the previous ADE editor.

Object files

Object files are executable programs output by the assembler or
linker. These are in standard Acorn filing system format. The
disadvantage of this format is that a file cannot be scatter loaded
in different parts of a machine, so data often has to be placed in a
separate file from code. The linker use symbol table option can
help with this and facilitate good overlay programming
techniques, but the limitations of the filing system tend to prevail
when, perhaps, compared with an Apple Macintosh.

ADE plus Technical Reference Guide

The load and execution addresses are specified as a full 32 bit
address. The assembler uses the MSW pseudo op and the linker
uses the A and B options to set these. The assembler accepts
tokens for the 65C00 opcodes that would allow an advanced
editor to compress the source program somewhat. The tokens
are ASCII characters >= 128. They are:

128 BRK 165 BVC

129 CLC 166 BVS

130 CLD 167 BLT

131 CLI 168 BGE

132 CLV 169 BRA

133 DEX 170 AND

134 DEY 171 EOR

135 INX 172 ORA

136 INY 173 ADC

137 NOP 174 CMP

138 PHA 175 LDA

139 PHP 176 SBC

140 PLA 177 ASL

141 PLP 178 LSR

142 RTI 179 ROL

143 RTS 180 ROR

144 SEC 181 DEC

145 SED 182 INC

146 SEI 183 CLR

147 TAX 184 STZ

148 TAY 185 CPX

149 TSX 186 CPY

150 TXA 187 TSB

151 TXS 188 TRB

152 TYA 189 BIT

153 DEA 190 JMP

154 INA 191 JSR

155 PHY 192 LDX

156 PHX 193 LDY

157 PLY 194 STA

158 PLX 195 STX

159 BCC 196 STY

160 BCS 197 BBR

161 BEQ 198 BBS

162 BMI 199 RMB

163 BNE 200 SMB

164 BPL

TG-19

ADE plus Technical Reference Guide

TG20

Linker Modules

Linker modules are the most complicated file format in the ADE
plus system. Understanding these files will unlock a whole new
world in which you will be able to write your own compilers that
will interface with the assembly language output from ADE and
with libraries of functions. The library file format is essentially
the same as the linker module format.

A linker file is considered to be a byte stream, just like a source
file. This byte stream is broken down into three sections, a
header, symbol declarations and the object output of the
assembler. The object output is in a series of records. The linker
must process the file at least twice. On the first pass it collects the
symbol definitions and measures the length of each object
module. It also notes all external symbols. Missing external
symbols (not specified in any declaration part) are searched for
in any libraries listed on the linker command line. A module
containing a wanted symbol is included as if it were a separate
linker module file. On the second pass RSECT files are
combined and the main program is output as all symbol values
are now known. The declaration part in each file is skipped
during this process. A third pass is necessary if any ASECTs are
included as these have to be separately output due to the
limitations of the FS file structure mentioned above. This
process is quick because the files are much smaller than source
files and there is little calculation to do.

The file header

Each linker file begins with a six byte header specifying
'ADELNK" in ASCII. This is used by the linker to verify that it
has got a valid module. After the K of ADELNK the module
name, specified in the MODULE statement of the source file, is
found. This is in ADCII and terminated by CR (&OD). Thus the
header is of variable length and always ends in &OD. Each
module name in a linking operation must be different. The
module name is associated by the linker with a module number
(the order in which modules are introduced) and a table kept in
memory with details of each module.

The declaration part
The declaration part of the module consists of a number of
declaration records. Each record has the following format:

Byte O The length of the symbol name being declared or O
indicating the end of the declarations

Byte 1 Flags for symbol being declared

Bytes 2,3 Value of symbol being declared (depends on flags)

Byte4 XTRA byte, available for expansion by compilers

ADE plus Technical Reference Guide

Bytes 5 Symbol name, length as defined in byte 0

Bits 0 and 3 of the flags byte are used by the linker. Other bits
may be set by the assembler/compiler but are ignored. If bit 0 is
set the symbol is relocatable, otherwise it is absolute. The value
of an absolute symbol is specified in the value field of the
declaration record. If bit 3 is set the symbol is a zero page
declaration from the RXP pseudo-op. If the symbol is a zero
page declaration, then the value field represents the number of
bytes of storage that the label refers to. The address of the label
is found by simply adding up the sizes of each RXP symbol
starting from O (default) or an address specified with the Z
option. If the symbol is a program label, then the start address of
the RSECT for the current module is added to the symbol's value
to make it absolute. The first RSECT starts from OSHWM
(default) or the address specified by the A option. Each new
RSECT finds its start address by adding up the lengths of
preceding RSECTs. A module may contain a number of
RSECTS but the total number of section in the progam may not
exceed 256.

The object records

Object records define actual bytes of code and data that will be
put into the output file. They are well structured in sections.
The data format for ASECTs is the same as that for RSECTs. An
object record may refer to one external symbol, and this symbol
name is included as part of the object record. Each section in the
source file produces a corresponding section in the object
records. The section starts with a section type record followed
by any number of data records (here data refers to code and
program data) followed by a section end record.

The section header record is:

&00 End of linker file

&80yyxx Absolute section with ORG at xxyy

&81yyxx Relocatable section offset xxyy from start of first
RSECT infile

A section may be an empty section. For example an ORG
statement begins a new ASECT on the 65C00 macro assembler,
so an ASECT statement followed by an ORG produces two
sections in the linker file one of which will be empty (and have a
meaningless address field).

The two bytes following an ASECT or RSECT section header
are called the address field. In an ASECT this is the origin of the
code. For an RSECT this value is actually the offset

TG-21

lus Technical Reference Guide

from the start of the file but is ignored by the linker since it has
arrived at the same value by adding up the lengths preceding
RSECTs anyway. It could be used by checking routines.

A section data record is:

&00 End of sectionrecord. Every section has at least
one of these, even an empty section.

&01..&0F Absolute datarecords. This type of record is
followed by 1..15 bytes of absolute data that is
inserted unaltered into the output. This type
of record would be produced by a STR statement
for example, but also by instructions to specify the
opcode byte.

&10 The byte prefix. A word record follows (3 bytes
plus possible external symbe"). Extract the lower
8 bits from it and output only one byte. On pass
two give an error message if the value is outside
the range -127 to +2585.

&20 The double byte prefix. A word record follows.
Swap the upper and lower bytes and then output
two bytes.

&30 Define storage record. Three bytes follow.

Bytes 0 and 1 define the amount of storage in
lo-hi format (may be zero). Byte 2 defines the
'fill' value to place in the output at this point.

&4n External word record. This record outputs two
bytes unless it is preceded by a byte or double
byte prefix. The record consists of an absolute
part which is usually zero and a symbol reference.
The lower four bits of the record type
are modifiers that tell the linker what to do
with the record. Bytes 0 and 1 following
the record type are the absolute part of the
value (the starting point) and byte 2 following the
value is the length of the external name.

The external name follows immediately in ASCII.

&40 Add the external symbol's value to the absolute
part giving a 16 bit value.
&42 Subtract the external symbol's value from the

absolute part giving a 16 bit value.

1G22

&44

&46

&48

&4A

&8n

&80
&81
&84

&85

&88

&89

TG-23

ADE plus Technical Reference Guide

Add the external symbol's value then make
the high byte zero, but still output 16 bits.
(Eg from a LDX#>EXTERNAL_REF statement)

Subtract the external symbol's value and make the
high byte zero, output 16 bits.
(Eg from LDX#>0-EXTERNAL _REF)

Add the external symbol's value and shift right 8
bits to give the value DIV 256.
(Eg from LDX#<EXTERNAL_REF)

Subtract the external symbol's value and shift
right 8 bits.
(Eg from LDX#<O-EXTERNAL REF)

A relocatable word record. This record outputs
two bytes unless preceded by a byte or double byte
modifier. Two bytes follow this record giving an
absolute value to which the relocation constant (the
linker's location counter at the start of the section)
is added or subtracted. The lower four bits specify
modifiers as in type &4n records.

Add relocation constant to absolute part.
Subtract relocation constant from absolute part.

Add relocation constant and make top 8 bits zero.
(Eg from LDX#>REL_SYMBOL)

Subtract relocation constant and make top 8 bits
zero.
(Eg from LDX#>0-REL_SYMBOL)

Add relocation constant and value right 8 bits.
(Eg from LDX<REL_SYMBOL)

Subtract relocation constant and shift value right 8 |
bits. |
(Eg from LDX#<0-REL_SYMBOL)

Note that the bit assignments for external symbols and
relocatable symbols and the add or subtract bit in each case, are
completely separate. This allows compilers, in theory, to mix
external and relocatable records with a type &Cn record. The
ADE plus assemblers provided by SYSTEM do not allow this
mixing but the linker does. The linker processes the external
reference before processing the relocation constant and any
overflow outside of 16 bits is ignored.

R R R R R R R RIS

Technical Reference Guide

Summary of bit assignments in linker data records:

bit 0 Subtract relocation constant if bit 7 set

bit 1 Subtract external reference if bit 6 set

bit 2 Set top 8 bits to zero after processing external and
relocation

bit 3 Shift right 8 bits after processing external and
relocation parts

bit 4 Set by DB and #operators in assembler

bit § Set by DDB statement in assembler

bit 6 Set if an external reference follows

bit 7 Set if word is relocatable

Bit 6 or 7 is always set except in absolute data records in which
case the above assignments do not apply.

Linker Library files

The LLIB command in the MMU makes a linker library out of
the specified input files by concatenating them. The hard work
of identifying which module to include is done by the linker. Ina
library file each module name must be different. The header for
a library is still ADELNK so a single linker module file can be
used as a library.

Macro Library files

Macro libraries are fairly sophisticated in ADE plus, in that they
work by random access to speed up operation. Each macro
library has a 2K catalog at the start of the file, built up by the
macro librarian, MLIB. The librarian contains no options for
deleting or inserting into an existing catalog but there is no
reason why users should not write a utility to do this since the
structure of the random access file is fairly simple. In order to
have a good number of macros in a reasonably sized catalog, the
file pointers in the catalog are 16 bits and extended to 32 bits by
the assembler using them with the addition of leading zeros. This
means that a macro library cannot be bigger than 64K.

When a library is specified in an MACLIB statement the 2K
catalog is read in on the software stack below RAM_TOP. The
assembler searches for unknown or 'GET' opcodes from the
beginning of the catalog. When a name is found the file pointer
for the maco library is positioned and the text for the macro is
read in as if it had been defined in the source code. Macro text is
held in the workspace RAM along with labels and every other
kind of obiact the accembler vees (eee2 Chapter 7).

TG 24

6.6

ADE plus Technical Reference Guide

The file begins with the six bytes "MACLIB" followed by an
entry for each macro.

Macro library catalog
"MACLIB" {not repeated}

Byte0 Length of macro name or O for end of catalog names
Byte1 LSB file pointer for macro text

Byte2 MSB file pointer for macro text

Byte3 LSB length of macro definition

Byte4 MSB length of macro definition

Bytes 3.. Macro name length as specified by byte 0

This format is repeated. The number of macros that will fit in
the catalog depends on the name length. The end of file is
specified by a record with zero in the name length byte.

The text stored at 'file pointer' for each macro starts with the
line following the MACRO statement and ends with an ENDM
line.

Symbol File format

The linker allows you to dump the linker symbol table to a file
which can be used from a symbolic debugger, included in a
future linking operation or used in any user application. The
example program DS, on the ADE plus disc, shows how such a
file is used. The first six bytes of the file contain the characters
'ADESYM' from which the file is identified. The full format of
a symbol file is:

"ADESYM" {not repeated}

Byte0 length of symbol name

Byte1l LSB symbol's absolute value

Byte2 MSB symbol's absolute value

Bytes 3.. Symbol name, length as specified in byte 0

The end of file is specified by a record with a zero in the name
length byte.

TG-25

Technical Reference Guide

Assembler objects and
variables

This chapter lists the types of objects manipulated by the 65C00
assembler.

The assembler stores all its objects in linked lists. Each list
begins with a pointer in zero page or the language workspace
and ends with a zero, or null, pointer. The following types of
objects are stored.

Symbols

Local symbols
Macro texts

Block markers

In line strings

The software stack

There is a list for local symbols originating in zero page, but this
is complicated by block markers. The start of the local symbol
list changes as the program proceeds. There is a separate list for
each initial character of the other symbol names. This is rather
like BASIC stores its variables but is further speeded up by the
inclusion of the length as part of the name so that searching is
restricted to symbols with names of the required length.

The list of pointers is held on page 5, starting at &500. The first
letter of each symbol is implicit, so the actual symbol stored in
memory is minus this character. The symbols are stored as:

Bytes 0,1 Link to next symbol in this list or zero
Byte 2 Length of symbol name (less 1)

Byte 3 Symbol flags

Bytes 4,5 Symbol value or pointer

Byte 6 XTRA byte for linker expansion
Bytes7.. Remainder of name

The flag bits are:

bit0 Relocatable symbol
bit 2 Macro definition

bit 3 EQUated symbol

bit 4 ENTry symbol

bit § EXTernal symbol
bit 6 inline string

bit 7 forward reference bit

TG 26

ADE plus Technical Reference Guide

Bit 7 is set on pass one when the symbol is defined and reset on
pass two when the symbol is 're-defined’. At the same time the
value of program labels is checked in pass 2 and phase errors are
reported. If the symbol is a macro name or an inline string then
the value field points to the text of the macro or string. In the
case of an external symbol the value is set to zero, to give
correct expression results for the linker.

The assembler uses all of zero page from O to 8F and all of the
language ROM workspace except for the MMU variables. The
temporary copy of the assembler options is at &6EO. Source
lines are assembled on page 7 at &700. If the input and output
buffers are not in main memory then the assembler allocates a
1K temporary buffer at WATER_MARK for each far buffer.
Thus if you break into the assembly process you will find the
source text in up to three places. Needless to say the speed
performance of the assembler has been optimised for large files
that can be buffered in far memory.

TG-27

Technical Reference Guide

Example programs

Example intelligent file read routines

The first example is perhaps the most important. It gives part of
a set of routines which will be part of each application that uses
the MMU. These routines are always inlcuded with the
application because of the requirements for maximum speed of
operation. The code shown does not form a complete program
but illustrates the code needed to allocate the MMU buffers to
your application and open and read an input file. A set of output
routines is also needed, the structure of which completely
mirrors the input routines. This particular code is taken from
the linker.

The program behaves very intelligently. Allocate_buffers is
called as part of the application's start-up procedure. This sets
OLD_WATER_MARK to the first page of free memory after it
has allocated some workspace for itself. Then to read a file, a
call is simply made to OPEN_SOURCE with YX pointing to the
name. Calls to CHAR_GET return each character in the file byte
by byte and set carry when EOF is encountered. Apart from the
fact that this routine does not preserve registers it is the same as
OSBGET, so once you have the code in your application you can
forget about where the source file is and get on with the
important job of processing it.

*** Allocate buffer space based on MMU map ***
; set up six variables to describe IO files

DSECT
ORG &500 ; or wheréver
source_stat DS 1
source_start DS 1
source_size DA 1
object_stat DS 1
object start DS 1
object size DS 1
old water_mark DS 1
DEND

; This routine initialises both the input and the
; output buffer descriptors

Allocate buffers ENT

LDX #0
; polint input buffer
LDY #0
LDA WATER_MARK

; save MMU water mark

TG28

STA
:loop LDA

ADE plus Technical Reference Guide

old water mark
#far

; assume buffer is far

STA
LDA
BPL

source stat,Y
INPUT BUFFER ALLOCATED, X
tilocal

; buffer allocated, so ..

LDA INPUT BUFFER PAGE, X
CMP #s11 ; is input far?
BEQ 11
LDA #near
; input is on same side of tube
STA source stat,Y
LDA INPUT BUFFER START, X
STA source start,Y
LDA INPUT SIZE,X
STA source size,Y
BNE :cont

; unless buffer is 0 pages...
:ilocal LDA #near
; buffer is near and local

STA source stat,Y

LDA old water mark ; bump up by 1 K
STA source start,Y

LDA #4

STA source size,Y

STA INPUT SIZE,X
; for MMU reader routines
CLC
ADC old water mark
STA old water mark ; next free RAM
:cont INY
INY
INY
INX
INX
INX
INX
CPX #8
BCC :loop
; do output buffer then exit
RTS

*** OPEN FILE FOR INPUT ***

on entry YX point to the name of the file

set source stat as follows

bit 0 set if file *LOADED or read in fully
bit 6 set if file *LOADed, else need to close
bit 7 set if input is far

Se Se Se we S

DSECT
source handle DSEENI3 ; OSGBPB block
osfile fcb DS 18 ; OSFILE block
DEND

TG-29

lus Technical Reference Guide

:4 LDA
STA
LDA
STA
LDA
STA
LDX

STA
STA
BIT
BPL
DEX

5o STX
STX
LDX
LDA
JSR
LDA
ORA

STA
JSR

RTS

read file LDX
LDY
LDA

TG 30

BLOCK
Open_source ENT
LDA #0
STA source_handle
STX osfile fcb
STY osfile fcb+l
LDX #>osfile fcb
LDY #<osfile fcb
LDA #5 ; read dir info
JSR OSFILE
CMP #1
BEQ :openl
ERR 1,"File not found"
:openl LDA osfile fcb+12
ORA osfile fcb+13 ; len >64K?
BNE read_file
LDX osfile fcb+ll ; size in pages
LDA osfile fcb+10 ; plus a bit?
BEQ 53]
INX ; yes!
8 CPX input_size
; will fit in RAM?
BEQ o]
BCS read file ; no, use OSGBPB

; load whole file

osfile fcb+10 ; save length
source_count

osfile fcb+11

source_count+1l

INPUT BUFFER_START

osfile fcb+3

#0

; load on page boundry

osfile fcb+2

osfile fcb+6

source_stat ; far load?
:5

; load at FFFFpage on far IOP

osfile fcb+4

osfile fcb+5

#>osfile fcb

#255

OSFILE ; load file
source_stat

#e41

; set load and eof bits

source_stat
Set_source_pointer

; init reader pointer

; Read file in blocks with OSGBPB

osfile fcb
osfile fcb+l
#&40

JSR
STA

; gozzinta...

ADE plus Technical Reference Guide

; open file for input

OSFIND
source_handle

; must be ok cos dir info was

*** Read next block of source into input buffer

READ SOURCE ENT
LDA INPUT_BUFFER START
STA source handle+2

LDX #0

STX source_handle+1

STX source_handle+5

STX source_handle+7

STX source handle+8

STX buffer count

LDA INPUT SIZE ; pages to read

STA buffer count+l
STA source_handle+6

BIT source_stat ; far read?
BPL 3
DEX
01 STX source_handle+3
STX source_handle+4
LDX #>source handle
LDY #<source handle
LDA #4 ; read sequential
JSR OSGBPB
JSR Set_source pointer

LDA source_handle+5
; see if whole file copied in
ORA source_handle+6
BEQ 12
INC source stat ; set eof bit
LDA buffer count
; and adjust count
SEC
SBC source_handle+5
STA buffer count
LDA buffer count+l
SBC source handle+6
STA buffer count+l
RTS

**% set text pointer to start and
*** §f necessary read a 1K block

Set_source_pointer ENT
LDA INPUT_BUFFER_START

STA source_pointer

LDA #0

STA source_blocks_read
STA text_blocks_read
BIT source_stat

BPL Set_text_pointer
; source is near.. else

TG-31

Technical Reference Guide

; Read far block accross tube

Read far block ENT

LDA #128

STA temp_cb

LDA source_start ; near page
STA temp_cb+1l

LDA source_pointer

STA temp_cb+2

CLC

LDA #4

; next page address
STA text blocks_read
ADC source_pointer
STA source_pointer
JSR Set_text_pointer

; gozzinta ..
Do_ADE_OSWORD

LDX #>temp_cb
LDY #<temp cb

LDA #120
JSR OSWORD
RTS

*** set text pointer and offset to
*%*x start of local buffer

Set_text pointer ENT

LDA #0

STA text_pointer
LDA source_start
STA text_pointer+l
RTS

x*x Read character from source *

; This routine behaves like a fast OSBGET
BLOCK

Char_get ENT

LDA buffer count
ORA buffer_ count+l

BNE :cgl

SEC

RTS : EOF
:cgl LDY #0

LDA (text_pointer),Y

INC text_pointer

BNE Bl

PHA

INC text pointer+l

INC source_blocks_read

LDA source_blocks_read

CcMP input_size
; read all buffer?
BCC 32
LDA source_stat ; done all?

TG-32

ADE plus Technical Reference Guide

AND #1

BNE seof

JSR Read_source
4 else read next block

PLA
CLC
RTS
;eof LDA 40
; clear buffer count

STA buffer count
STA buffer count+l

PLA
; return last valid char
CLC
RTS
22 BIT source_stat
BPL :3 ; near
DEC text block_ read
BNE
JSR Read_far_block ; get next 1K
5% PLA
:1 DEC buffer count
INC buffer count
BNE :4
DEC Dbuffer_ count+l
24 DEC buffer count
CLC
RTS

Example advanced editor "patch"

This routine is a patch for View Version A1.4. You should be
able to follow it through and examine your favourite word
processor to patch it in the same way. The routine relies on
View bieng loaded either into sideways RAM or into a ROM and
then run on the second processor because it stores the MMU
variables in the ROM address space. A QUIT command is added
to View which returns control to the MMU with an
'ADE_CONT type restart (see Section 2). The QUIT command
is added by using the ADE debugger to find out where View calls
OSWORD 0 to get a command line and replacing this call by
another routine which gets the line and checks for QUIT before
returning to VIEW. This program does not suck and blow the
text from the workspace into the input buffer, but you could
amend it to do so though this is not trivial. (A look at a
disassembly of the MMU editor might help here, all the
OSWORD 120 routines and variables used have been
documented to this guide).

TG-33

Technical Reference Guide

View Al.4 has at least 4K of free memory between &B00O and
&C000, so this is a good place to put the patch. The patch was
implemented as follows (addresses may be different on your
version of View):

Determine which ROM slot the view ROM is in, say slot 13,
*LBUG 13 to load the ADE plus debuffer with the View ROM

in the address space.
8000M <tab> ...should see 'View' at &8009
S8000<cr>
C000<cr>

2000<cr> move a copy of the ROM to RAM at &2000
2009M should see 'View' again

"ADEED"

00<cr> (quotes needed) ... alter ROM title to ADEED

2001IM adjust language entry point to go to patch, note
current address
and call this VIEW_START (&8107 in version
Al4)

00<cr> set address to &B000

BO<cr>

*LOAD patch 5000<cr> ... load the patch routine at the correct
address: This routine will actually run at &B000
*SAVE ADEED 2000+4000 8000 8000<cr>
save a ROM image on disc.

The ROM image can be loaded into sideways RAM and will be
found by ADE plus. It will correctly respond to EDIT <file
name> commands.

The code for "patch" is shown below. To use the debugger to
find the address PATCH_ADR, set the memory pointer to
&8000 and enter:

G

&20
&F1
&FF

<Cr>

On View Al.4 this sets the memory pointer to &827B where we
see JSR OSWORD after a parameter block has been set up to read
a source line to page 5. Thus PATCH_ADR is &827C. This
patch also resets the fill and justify flags each time you go to
command level because these are not wanted when editing a
progam. On Version Al.4 they were found by experimentation
at &4F and &50.

TG4

ADE plus Technical Reference Guide

TTL Patch to View Al.4
Absolute assembly:
to generate patch file, save as T.PATCH then
ASM PATCH=T.PATCH

e o S v

PATCH_ADR EQU &827C
; could change for other versions
CODE_ADR EQU &B00O
; BOOO - CO000 not used by View 1.4
VIEW_START EQU &8107

SCREEN _MODE EQU &462
LINK ROM SLOT EQU &401

ORG CODE_ADR

control transfered here when the ROM is entered
as a language after being patched at &8001.

It is assumed we are in sideways RAM or

have been copied across the tube.

Ne e No wo

PHA
TXA
PHA ; save entry regs
CLI
; (IRQ disabled on entry)
JSR SAV_VAR ; save MMU vars
LDX #0
; put command in kbd buffer
<10 LDA LOAD, X
BEQ Shlt ; insert "“LOAD "
JSR INSERT
INX
BNE :0
:1 LDX #0
; get file name from MMU com line
540 LDA &700,X
; first look for end of EDIT cmd
CMP #13
; no file name supplied
BEQ :cancel
CcMP #32 ; delimiters
BEQ tgap
CMP VA
BEQ :gap
INX
; carry on over EDIT, ED. etc
BNE :10
:gap INX ; skip delimiters

LDA &700,X
; to avoid strain on kbd buffer

CMP #32
BEQ tgap
CMP #13 ; any file name?
BEQ :cancel ; no
2 JSR INSERT
;s insert file name in kbd buf
INX

LDA &700,X

TG-35

‘echnical Reference Guide

.
.

:done

:cancel

LOAD

FXC

SAV_VAR
ol

TG-36

; now insert FX command

CMP #13 ; at end of name?
BNE :2

LDX #0

LDA FXC, X

BEQ :done

JSR INSERT

INX

BNE 23

PLA

TAX

PLA

JMP VIEW_START ; go start view

LDA
LDX
JSR
JMP

ASC
BRK

DATA
; terminate file name,

; if no file name given,
; clear kbd buffer and start

#21

#0
OSBYTE
:done

; data to put in kbd buffer

"LOAD "

; must have space at end

13,"*FX125",13,0
cause escape

*** Insert character in Kdb buffer **x

INSERT TAY
: char to insert (Y reg lost)
TXA
PHA
LDX #0 ; buffer number
LDA #138
JSR OSBYTE ; FX138,0,char
PLA
TAX
; preserve X over INSERT
RTS
*** Save MMU variables in ROM address space *kk

*** And intercept View command line entry call **x

LDX #0

LDA &400,X

STA &BF00, X

INX

BNE :sl ; save a page

LDA #>GET_LINE
; patch View OSWORD 0 call

STA PATCH_ADR

LDA #<GET_LINE

STA PATCH_ADR+1

RTS

ADE plus Technical Reference Guide

*** Routine to intercept command line entry
*** Check for QUIT command

BLOCK
GET_LINE PHA ; save A
LDA #1
; reset Fill and Justify
STA &4F
LDA #&FF
STA &50
PLA

JSR OSWORD
; get line at &500
BCS SRS ; escape pressed
PHP ; save all regs
PHA
TXA
PHA
TYA
PHA
JSR TEST_QUIT
; was it a QUIT command
PLA
; returned, so it wasnt
TAY
PLA
TAX
PLA
PLP
:RTS RTS
; processes command

TEST_QUIT LDX #&FF

LDY #0
01 INX
LDA &500, X
CMP #32
; skip leading blanks
BEQ £al!
12 AND #&5F ; upper case
CMP 20C; Y
BNE :RTS
INX
LDA &500,X ; next char
INY
CPY #4
BCC 12

; perform QUIT command

LDX #0
:3 LDA &BF00, X
; restore MMU variables
STA £400,X

INX
BNE 3E)
LDA $22

; restore ADE screen mode
JSR OSWRCH
LDA SCREEN MODE

TG-37

s Technical Reference Guide

JSR OSWRCH
LDX LINK ROM SLOT

LDA #142
JMP OSBYTE ; warm start ADE
:QC ASC "QUIT"
3 A linker module disassembler

This BASIC program disassembles a linker module file, output
from a module assembly, into the different types of linker data
records. It will help explain the structure of linker files and will
be a useful debugging aid if you go on to write any language
compilers for the ADE plus system. The program could be
extended to include a machine code disassembler as well.

10 REM LINKER MODULE FILE DISASSEMBLY V1.0
20 GOSUB 160

30 PROCload

40 PROCverify

50 insect=TRUE

60 REPEAT

70 PROCdeclare

80 UNIT NOT insect
90 1insect=TRUE

100 REPEAT

110 PROCsection
120 UNTIL NOT insect
130 PROCclose

140 HIMEM=T%

150 END

160 REM initialise

170 T%=HIMEM

180 HIMEM=TOP+&400

190 P%=HIMEM

200 CLS

210 PRINT "Linker file disassembly"’

215 out$=STRINGS (80," ™) :in$=STRINGS (40," ")
:wssll L

220 RETURN

230 DEFPROCload
240 INPUT "Enter filename",F$
250 in=OPENIN (FS$)
260 IF in=0THEN PROCerr("File not found")
270 RAM=TRUE
280 IF EXT#in>T$-HIMEM THEN RAM=FALSE
290 IF RAM THEN CLOSE#in

:OSCLI ("LOAD "+FS$+" "+STRS$~P%)
300 END+rOC

TG 38

320
330
340
350
360

370
380
390
400
410
420
430
440

460
470

490
500
510
520
530

550
560
570
580
590
600
610
620
630
640
650
660
670
680
690

710
720
730
740
750
760
770
780
790
800
810

830
840
850
860
870
880
890
900
910

ADE plus Technical Reference Guide

DEFPROCverify
LOCAL ok
ok=TRUE
FOR 1%=1 TO 6
IF FNget<>ASC (MID$ ("ADELNK", I%))
THEN ok=FALSE
NEXT
IF NOT ok THEN PROCerr ("Not a linker file")
PRINT "File: "F$" Module: "“;
REPEAT
I%$=FNget:VDU I%
UNTIL I%=13
PRINT
ENDPROC

DEFFNget
IF RAM THEN P%=P%+1:=? (P%-1) ELSE =BGET#in

DEFPROCerr (E$)
PRINT 'ES'
CLOSE#0
END

ENDPROC

DEFPROCdeclare
L$=FNget
IF L%=0 THEN insect=FALSE:ENDPROC
F$=FNget AND 9
V&=FNget+256*FNget
X$=FNget
out $=ll "
FOR I%=1 TO L%
out$=out $+CHRSFNget
NEXT
IF F%=8 THEN PRINT "Zero page symbol:";
IF F%=1 THEN PRINT "Relative symbol :";
IF F%=0 THEN PRINT "Absolute symbol :“;
PRINT out$;TAB(32);~V$%
ENDPROC

DEFPROCsection

S$=FNget

IF S%=0 THEN insect=FALSE:ENDPROC

0%=FNget +256*FNget

IF S%$=128 THEN PRINT ‘'"ASECT at 3" ~0%
IF S%=129 THEN PRINT '"RSECT offset :";~0%
inrec=TRUE

REPEAT
PROCrecord

UNTIL NOT inrec

ENDPROC

DEFPROCrecord

in$="":outS=""

R%$=FNgetin

IF R%=0 THEN inrec=FALSE:ENDPROC
IF R%<16 THEN PROCdata

IF R%=&10 THEN PROCbyte

IF R%=&20 THEN PROCddb

IF R%=&30 THEN PROCds

IF R% AND &40 THEN PROCext

nical Reference Guide

920 IF R% AND &80 THEN PROCrel

930 REPEAT

940 IF LEN in$ <8 THEN in$=inS$+" "
950 UNTIL LEN inS$=8

960 PRINT in$;": ";out$

970 ENDPROC

990 DEFFNgetin

1000 LOCAL c%,h$

1010 c%=FNget

1020 h$=STRS$~c%

1030 IF LEN h$=1 THEN h$="0"+h$

1040 in$=in$+h$

1050 IF LEN in$=8 THEN PRINT in$;":":in$=""
1060 =c%

1080 DEFPROCdata
1090 out$="DATA "
1100 FOR I%=1 TO R%
1110 PROCbval

1120 out $=out$+W$
1130 NEXT

1140 ENDPROC

1160 DEBPROCbyte

1170 PROCword

1180 out$="DB "+WS
1190 ENDPROC

1210 DEFPROCddb

1220 PROCword

1230 out$="DDB "+W$
1240 ENDPROC

1260 DEFPROCds

1270 PROCwval

1280 out$="DS "+WS
1290 PROCbval

1300 out$=outs$+","+W$S
1310 ENDPROC

1330 DEFPROCword

1340 LOCAL R%

1350 R%=FNgetin

1360 IF R% AND &40 THEN PROCextl
1370 IF R% AND &80 THEN PROCrell
1380 ENDPROC

1400 DEFPROCextl

1410 PROCwval

1420 L$=FNgetin

1430 IF R% AND 2 THEN W$=W$+"-" ELSE WS$=WS+"+"
1440 FOR I%=1 TO L%

1450 W$=W$+CHRSFNgetin

1460 NEXT

1470 PROCmodify

1480 ENDPROC

1500 DEFPROCrell
1510 PROCwval
1520 WS=WS+"'"

T 10

ADE plus Technical Reference Guide

1530 IF R% AND 1 THEN W$S=WS+" (-)"
1540 PROCmodify
1550 ENDPROC

1570 DEFPROCwval

1580 WS$S=STRS$~ (FNgetin+256*FNgetin)
1590 REPEAT

1600 IF LEN W$<4 THEN WS$=WS$+" "
1610 UNTIL LEN WS$=4

1620 ENDPROC

1640 DEFPROCbval

1650 WS$=STR$~FNgetin

1660 IF LEN W$=1 THEN W$=" "4+W$
1670 ENDPROC

1690 DEFPROCext

1700 PROCextl

1710 out$="DW "+WS
1720 ENDPROC

1740 DEFPROCrel

1750 PROCrell

1760 out$="DW "+WS
1770 ENDPROC

1790 DEFPROCclose

1800 PRINT '"End of file™'
1810 IF RAM THEN ENDPROC
1820 CLOSE#in

1830 ENDPROC

1850 DEFPROCmodify

1860 IF R% AND 4 THEN WS=">"+W$
1870 IF R% AND 8 THEN W$="<"+W$
1880 ENDPROC

