
The
Ultimate
Assembly
Language
Development
Toolrrr

Reference
and

i

Tutorial Guide

SYSTEI.I SOPTTARE SOUTH YORI(SHIRE SYSTEMS FOR TRAINING AIt[) MAMGEIENT
LMffED. 1 2 Co{-LEGIATE CRESCENT SHEFFIELD S102BA. Tol. (0742) 682321

ADE plus User Guide

Published in the United Kingdom by:
South Yorkshire Systems for Training Education
and Management Limited,
112 Collegiate Crescent,
Sheffield, Sl0 2BA,
England.

Copyright O 1986 South Yorkshire Systems for Training Education
and Management Limited.

First Published 19E6

All rights reserved. This book and accompanying software is copyright. No part , i
of this book or accompanying software may be copied or stored by any means v
whatsoever whether mechanical, photogr4phic or electronic. While every
precaution has been taken in the preparation of this book and accompanying
software, the publisher assumes no responsibility for errors or omissions. Neittrer
is any liability assumed for damages resulting from the use of this book and
accompanying software.

A companion volume to this user guide,The ADE plus Teclnical Reference Guidc,
is sold separately and obtainable from the above address. The Technical Reference
C9!.d9 explairy_in detail how the user can extend the ADE plus toolkit by writing
additional ROM modules with the basic kit.

Release Note

For thc latcst information plcase consult the file callcd README on thc ADE plus
disc.

Thc files stripped with this version are:

$.A4080
This file copies the 40 track DFS disc on tro an 80 rack blank formatted disc. It is

t pnly strippcd with the 40 track disc.

CONVERT
A BASIC program to convert BASIC assembler sourcc into ADE format. Type CH
"CONVERT' (from BASIC) and follow thc instructions on the screen. You may
still necd to cdit thc resultant file.
Many thanks o Dr Oliver Blarchford who improvcd this program.

BOOT
An E)GC file to load the ROM images MMU and ASM into sidcways RAM. Not
shipped on thc 40 track disc.

MMU
ASM
The ADE plus ROM images. Not shipped on the 40 track version.

DEBUG
Thc dcbugger in ROM image form. Oncc this is loaded prcss crtl-brcak and enter
ADE plus. The ROM is now accessiblc through thc DEBUG comrnand.

DEBUGL
- RAM version of DEBUO. Memory used is 6C00-7C00 and 88-8F. To start this

i -:.
debuggcr chcck you are in MODE 7 or a stowdo*'n modc and typc TDEBUGL (or
uscLBUG).

DEBUGH \
RAM version of DEBUG for second prooessor. Mcmory limits 880GF800, 88-
8F. To run this debugger (with second proccssor) type *DEBUGH.

LBUG
loadcr for DEBUCL. This allows a sideways RAM pagc to be sclected. A decimal
parameter is specified, eg
*LBUG 6.
to debug page 6. DEBUGL must be prescnt.

PRSRAM
Utility to protect all ROM images in sideways RAM from the ADE print buffer.

..t.ltld. - 2nd Merdr t987

DS
A rymbollc dlunomblor. Thc rourco for thlr prcgram is in T.DS. To usc tho
FoSrunonbrtDS <codo fllo> (<rymbol fllo)
whorc <rymbol filo> lr r fllo of rymbolr output by ttrc ADE linkcr.

NLTER
Tho fllo filrcr program as dctailcd in frc uscr guida Thc sourcc for his is T.Filtcr.

MKDS t
A brtch filc o asscmblc ard link thc symbolic disasscmblea

MKF
A bcrch filc to asscmble and link thc FILTER program *_,'

Dlrcctory T

T.FIL'IER
Sourc forL. filtcr.

T.DS
Sourco for L.DS.

T.[\,IACI"TB
Sourc for M.MACI-IB.

T.TEST
Sourc of all 65C00 scrics op codcs
urcd by ADE plus.

T.ADV
Exrmplc asscmbly program.

T.DEMO
Dcrno program as mentioncd in thc
urct 3,iidcl -l
T.LBUO
Source for LBUG.

T.PRSRAM
Sourcc for PRSMM.

Refease Nde -Znd March 1987

Dlrectory H

HADELIB
Hcadcr file for the librarY
L-ADELIB.

Dlrectory M

MMACLIB
Example macrro library
Sec TMACLIB to find out
what is in it.

(\ Dhectory L

L-ADELIB
Examplc linkcr library
uscd by DS ard FIUIER.

L.DS
Unkcr module for DS.

L-FILTER
Unkcr module for FILTER.

LIBUG
Unker module for LBUC.

(\

ADE plus User Guide

CONTENTS

Chaprcr I

Qrapter2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

lndex

Inroduction

The ADE plus Memory Management Unit

The ADE plus Editor

The Macro Assembler

The Linker

Utilities

Acknowledgements

The authors wistr !o thank all those who have helped in the development of ADE
plus. Thanks are due to all the original developers of ADE and cuslomers over the
years who bavp made valuable suggestions. We have tried to include all of the best
idcas that you have oomc up with. Thanks are due (again) to Ray for Eials work
and to Nigel for rials and suggestions for this user guide. Programming was by
Srcvc with helpful assistarrce from Dave, who also wrote the BASIC program
conversion utility.

UE pluo Uger Gulde

Chapter I

1.1

Introduction

Introduction

On receiving ADE plus...

The first thing you need to do is install the software in your
machine. You should have received the software on disc,
EPROM or cartridge. Follow the notes below for the package
you have.

ADFS and DFS discs
The minimum system consists of two 16K ROM images, the
ADE plus MMU and the 65C00 series macro assembler. The
disc also contains ROM images for the SPY debugger and
example software. These latter two programs can be loaded as
required. To load the main system you will need two pages of
sideways RAM. The disc is designed for use with the MASTER
series microcomputers and you should check that your
MASTER is configured for at least this amount of RAM by
correctly setting the ROI\,I/RAM links inside the machine. This
is explained in the user guide. If you have just received your
MASTER it will be correctly configured. If you are working
with a BBC B with no sideways RAM, or only 16K on a ROM
board, you cannot use this version of the software and you will
need to exchange it for the EPROM version.

Insert the disc in the drive and SHIFT-BREAK it. The disc
should then load into sideways RAM using the SRLOAD
command on the MASTER MOS. Press CTRL-BREAK at the
end of this procedure so that the software registers with the
MOS. You will need to follow this procedure every time you
power up. You can now proceed to Section 1.2.

EPROMS
You will have received two 16K EPROMs and a disc in DFS
format (or ADFS by request). The disc contairu the SPY
debugger and the demonstration software. The debugger is
supplied in two versions, one running in main memory and one
in sideways RAM. Plug the two EPROMs into any two slots in
your machine. Make sure that the ADE plus MMU is in a higher
priority socket than the 65C00 series assembler. Ideally both
EPROMs should be in a lower priority socket than BASIC
because the ADE plus MMU needs to be initialised with a *ADE

plus command rather than simply being the first ROM seen and
entered on a hard break or power up. When the ROMs are
installed the title ADE plus should appear on the screen at
power up or after a BREAK.

l - I

ur User Gude

.2

Cartridge
Plug the cartridge into either of the sockels on the MASTER.
The software occupies 32K in two conseclltive l6K pages.

The Disc Softrryare

Having loaded your main system as outlined above you may also
need to use some of the additional software on the disc. There
are two directories for this software. Directory H contains
versions of the additional software running at &8000. This
software will only nrn in sideways RAIVI because it uses RAM
workspace in the range &8000-&,C000. The other directory is
L. Programs in this directory will nrn in main RAIvI between
&2W0 and &7Cm. The programs include:

DEBUG: a debugger
FILTER: A file character filter program.
DEMO: A rivial program used in the next section as an
innoduction to ADE plus.

These programs are in the main directory. Directory T
contains the source. Directory M contairu the macro library.
Directory L contains linker libraries and modules.

A BASIC program CONV is supplied. This will do much of the
work in converting BASIC assembly language programs to
ADE plus format. Simply CH."CONV" and follow the
instructions. The input file that this utility converts is expected
to be a BASIC program in internal format stored on disc.

The disc also contains a file called README', which can be
loaded into the ADE plus editor for viewing. This file contains
further information on using ADE plus and the disc utilities, as
well as any alterations to this User Guide.

It should be noted that exteruive use is made of Macros in the
examples in this guide. It is , therefore, necessary to ensure that
a disc containing the appropriate Macro library is present
before trying to assemble the examples.

1.3

Introduction

Introducing ADE plus

ADE plus is a modular program development toolkit for
developing programs in machine code to run on the BBC
microcomputer series. The word modular implies that the
system comes in discreet parts and can be expanded. I-ater you
should be able to add a 280 assembler module, ?r advanced
editor and an advanced debugger. You may also obtain the
ADE plus technical guide which explains how the system
operates and how you can write your own modules to 'plug in'.
Toolkit implies that ADE plus is more than just another macro
assembler. All the modules in the ADE plus system interlink to
give you complete flexibility about the way in which you
develop your programs. ADE plus contains full linking and
library facilities which mean that once you have written and
debugged a routine you need never write it again. Your
programs can be built in pieces and linked together with library
functions supplied by you or other users. Throughout the
tutorial, dialogue with the computer is shown in courier type
and user input is in italics. Unless otherwise specified, enter
RETURN after each line of input. This introductory tutorial
assumes you have used the BASIC assembler, or some other
assembler, and are familiar with concepts such as "two pass" and
"code origin" etc. If you are an absolute beginner you should
read an introductory text or the notes in the BBC micro user
guide before proceeding to use ADE plus.

System overview
The two l6K programs you have loaded into your computer in
ROM or RAM pages coruist of the following:

The ADE plus memory management unit (MMU) central to the
operation of the system. The MMU is the first thing you will
encounter on entering ADE plus.

A 65C00 series macro assembler which will produce programs
ready to run or linker modules to be linked.

A text editor to create new programs and edit old ones.

A macro librarian to create macro libraries.

A linker librarian to create linker libraries.

Getting started
To enter the ADE plus system, type *ADE. This command can
also bc used to re-initialise the system if you get into trouble. If
you have a clock in your machine (eg MASTER) or the time of
day is available from the network then you can skip the next

pluo User Gulde

section. If noq you will see the message:

ADE plus

Time, date:_

Enter the time and date, just the time, or neither. To enter
neither (the time will be set to midnighr, 00:00) press return.
To enter only the time, enter the hours tZq hour ciobt; followed
by a colon followed by the minut€s:- \

Time, date: 70:75 Ei lN

To enter the time and date, entcr the time as above, type a
comma and the date, which may be in any format up io 16
characters. (The date is just a string stored in memory io ADE
plus.)

Time, date: 70:75, Fr i jTth Oct g6

If ADE plus gets the time from your system you will not see the
above message. Everyone wirr then see the ADE plus MMU
prompt:

10 : 15 :)_

(Or whatcver time you entered.) ADE plus has set the system
timer clock frop y-our input so that all BBC microcomputers
will function in the same way. This clock may not be as
accurate as a built-in CMOS clock or Econet clock but is good
elough to telf yog that you have been working too long and
should take a break! The assembler timings are atso takerifrom
this clock and may not be as a@uratc ara quartz stop watch,
depending on how much time your filing system steals irom the
system clock due to missed intemrpts.

Above the prompt you will see a screen of status information.
This shows the state of the MMU and you can recall this screen
at any time the MMU prompt is displayed by typing STAT. Try
it now; the screen is repeated, and the latesrtiml displayed witir
!!c next prompt. STAT is an ADE plus MMU- command.
ljnderstanding the status screen is the key to making bestuse of
your computing resources with the ADE plus system. A tlpical
display is:

Irttroducirol r

SYSTEM ADE plus 1.0
L0th Oct 86

Avai lable memory 8 3I(: L 6K protected

Input 23K
Output 1 4K
P r inter unbuffe red

Workspace 30K

Assembler opt ions : NONE
Linker opt ions : NONE

ADE/Linker in s lot 15
65C00 assembler in s lot 2
Advanced edi tor not instal led
Debugger not instal led

10 : 16 :)

Lets look at each line in turn. The date is as entered or does not
appear. The amount of available memory is the total RAM
found in the system less the amount used for the screen display.
If you :ue using a shadow screen, this is zero. In the above
example the total was made up from 23K of free memory in the
BBC B used, l6K of sideways RAM (on a rom card) and 44K of
free memory on the second processor attached to the system.
The status screen tells you how the memory management unit
has divided up that memory. 16K is marked protected'. This is
because on this system the ADE plus MMU program was in the
16K of sideways RAM. ADE plus is smart enough to avoid
writing over itself with printout or assembler code ! The three
lines 'Input', 'Output' and kinter' refer to the three principle
buffers used by the ADE plus system. Please read the next
section carefully as a good understanding of how ADE plus
buffers things will help you get the best out of your software.

A buffer is an area of memory that the MMU has reserved for a
specific task. The input buffer is a continuous block of memory
reserved for source programs and linker modules being linked.
In other words, data travelling into the ADE plus system goes
through the input buffer. The larger this buffer is, the faster the
system will perform because disc accesses will be fewer in
number. If you do not have a second processor the input buffer
will be zero initially and show as 'unbuffered'. You can alter
this with the INPUT command. ADE plus MMU picks the
largest available block of memory that is not in sideways RAM
(other than the workspace, see below) to be the input buffer.
When using a second processor the input buffer will be on the
IO processor between PAGE and the bottom of screen memory
unless this is less than l4K, in which case l4K of second
processor memory will be used. Changing screen mode changes

l -5

l r t r IJscr (i r t i r l t l

your own advanced edrtor or patch VIEW to work with ADE
plus. Details about how to do this are provided in the ADE plus
7' e c hnic al R efe re nce Guidc .

Geffing down to work
We have so far covered a few of the basic MMU commands.
You should be able to view the status screen and alter the buffer
sizes if you do not have a second processor. A full list of MMU
commands can be obtained by typing the word COMMANDS
(or C.). This replaces the conventiorlal *IIELP page, since the
MMU commands are not available outside the ADE system.
You will notice the RESET command. This sets the buffers to
the initial values if you get in a mess with them.

Make sure you have an input buffer of at least 2K. Put the
demonstration disc in the drive and enter:

10:30 >

In a second the screen will go into mode 3 and the file T.DEMO
will be displayed. You are now in the ADE plus editor. We
will not edit the program yet, just read it and get the idea about
what is going to happen. The program has an ORG of &2000 so
this is where it will nrn when we assemble it. The QSTR
statement is one of the many assembler pseudo opS, as is ORG.
When you assemble the program it will prompt you to enter
your name, stored under 'name'. Later in the program the use
of an inline string variable, $name, inserts this string into the
program, printing it out with the rest of the message. It is
important to realise it is the assembler that will ask you for your
name, not the program when it runs. To run the program press
escape. You are now in the command mode of the editor. The
name of the file is given at the top of the screen together with
frce memory. The file is currently in the workspace, and the
free memory is the amount of workspace left. Enter the editor
command:

The editor now copies the tile to the input buffer and calls the
asscmbler. Enter your name:

nr)F:6500

What- Is your name? UrbLunk

Pass 2. .

Introductior

Greetings Urblunk, welcome to ADE plus !

10:35 :)_

The assembly has completed and the program run. I-et's
assemble the program again without going back into the editor.
Tpe the command:

L0:36 :) ASI4 :*rG

Again you may enter your rume or a different name and the
program runs at the end of the assembly. You have just entered
an assembly (ASIO command. If it didn't work check you
tlped a space before =. The * is the name given by ADE plus to
the file currently in the input buffer, so we are saying "assemble
the file in the input buffer and run it". The running bit comes
from the G which must be preceded by a comma. This is a
temporary optiorr, the G or GO optiorl telling the assembler to
run the program at the end of pass 2. You can also enter your
name on the assembler command line irutead of during
assembly. Type:

L0 : 3T :) ASI,I :* , G/Fred

The assembler now gets on with the job of assembling without
pausing to query you. The name printed will be Fred. Fred is
preceded by a slash on the assembler command. The slash tells
the assembler that the options (if any) have finished and that the
following text is a list of answers to assembler QLJERY and
QS1R statements.

To edit the program in the input buffer, type:

l ,0:39 =) EDIT * E@M

(8.* will suffice). The program is displayed. kess escape.
Now tlpe:

The lext is redisplayed with the cursor at the start of the word
'message' in the comment on the line beginning "start". If it
came up "Not found" then check that you typed the word
"message" in lower case. Now, you could press function key I
to go to the next occurence (next line) but the ADE plus editor
has a special key called the GOTO label kty, function key 2.
Press this and the cursor goes to the label 'message' in the
program. This key will become indispensable as you get to use
this editor. Move the cursor along to the word Greetings with

t-9

Jr Usor Gulde

the available memory and causes ADE plus to reassign its
buffers. Enter the command:

10:15 :) IqODE 3 EI@

If you get an eror, check that there is a space between MODE
and 3. Now type STAT and the screen should be redisplayed.
The input buffer may now be l4K and the output buffer 8K. If
not, you are uing a stradow screen and gaining more memory.

The output buffer is used for the output of the assembler, linker
and librarians. Again the bigger this memory size the faster the
system will perform. The output buffer is in this case taken
initially from 14K of memory in the second processor. After
typing MODE 3, 8K of free memory is left on the IO processor
so this is used as the output buffer and 14K is used as the input
buffer.

The printer buffer is made up of all the available sideways RAIvI
that is not marked 'protccted'. The print spool system
intemrpts the normal OS calls to buffer printout and stores it in
the sideways RAM. Once initidised this print spooling system
will work in BASIC or from any place since it works in line
with the operating system. The print spooling system uses the
cassette file workspaen in page 3 and so cannot be used with
casscttc syst€nui.

ADE plus will *[,OAn and *SA\|E files to the buffers
wherever possible. Failing that, it will fill or empty the buffers
using OSGBPB. If your buffers are always bigger than the
source and object files the system will perform at peak
efficiency. It is often faster to split assembler souce programs
into irclude files than to try to assemble one long source. Also
notc that the ADE plus editor will work with the input buffer,
allowing programs to be edited, assembled, run and re-edited
without recourse to disc at all.

If your system shows 'unbuffered' for the input and output
buffers you do not have a secord proccssor (or an actiye co-
proccssor on the lvlaster Turbo). You may then set the amount
of memory you wish to allocate using the INPUT and OUTPUT
commands. This memory will be taken away from the
workspace. If you do not allocate any, the ADE plus modules
will allocate lK per buffer from the workspace on a temporry
busis each time they are called (to do an assembly for example).
l)o rct try to change the buffer sizcs if you are using a second
pr(,cessor since they are already optimised. Many ADE plus
MMU commands cause the buffers to be re-calculated because
the umount of total available memory has changed. To set the

Introduction

input buffer to 5K, for example, t)?e the command:

10:20 :) INPUT 5

You c:ln alter the size of the print spool buffer by protecting or
unprotecting pages of sideways RAM. If you unprotect pages
with ADE plus software on them the system will eventudly
crash as the software is eaten by the printout. The command
PRINT0 turns offprint spooling and PRINT I turns it on.

The next line on the ADE plus status screen, below the buffer
allocations, shows the amount of workspace. This is memory on
the main processor which is initially between OSHWM and
HIMEM, though some may be allocated to the buffers as
outlined above.

Two lines then detail the 'Assembler options' and the T-inker
options'. There ue 52 flags maintained by the ADE plus MMU
that can be set to tnre or false. 26 of these are allocated to the
assembler and 26 to the linker. Spccific assemblers may not use
all the available flags, and details of which arc relevant are
given in the referen@ guide for the assembler you are using.
The assembler flags are set with the OPT command; the linker
flags with the L,OPT command. Thesc flags are global, that is,
they apply to evely asscmbly or linking operation. I-ocal
options may be set in the assembler command line or source
program or linker command line that only apply to one
operation. These flags are never alrcred by the assembler or
linker, only by the MMU. For example, to set option L on the
asscmbler tlpe:

L0:22 :) OPT L fry

Now type STAT again. The assembler option list shows L. This
means that every assembly will produce a listing unless
cancelled by an option -L on the assembly command line. To
reset an option (set the flag to false) precede it by a minus sign.

L0 :23 :) OPT -L EtrItrf

The status display now reads NONE again (when you next type
STAT).

Finally, oo the status screen, a list of ROM modules (or RAM
images) is given. ADE plus MMU lools for the advanced
editor, a 65C00 series assembler, a 7A0 assembler and a
debugger. If these are found they are listed. In the event of the
advanced editor not being available, ADE plus will direct
EDIT commands to its own basic text editor. You can write

lo l Oulr l l r

the arrow key and t)?e 'Warnlest'. Note the rest of the line
movcs along to accornmodate the new text. This is because you
are in 'insert' mode in the editor. kess function key 0 and you
will be able to overtype the word 'Greetings'. kess f0 followed
by ' wishes'. We now have an unwanted 'gs' on the end of the
line. Press function key 9 twice to delete two characters in front
of the cursor. Now press function key 6 to insert a line. The
current line moves down to accommodate a new line. Press
shift and the left arrow key to move the cursor to the start of the
line and t)?e "; my message". This linC, starting with acolon, is
an assembler comment line. kess escape. Note that the editor
status now says "Insert OFF" because you pressed f0. kessing
f0 again in editing mode will turn the insert feature back on.
Tpe RUN to run this amended progr:un. The editor is fully
explained in chapter 3.

Using the disc
Next, we will assemble a file from and to disc. The
demonstration disc contains a program called ADV in the T
directory. Assemble this program to AD (in the root directory,
$).

11:00 >

If all goes well you should end up with the assembler report, at
the end of pass two of the assembly, and a prog,ram called AD
ready to *RUN. Run the program to satisfy your curiosity then
assemble it again and examine the assembler report:

End of absolute assembly
0 error (s)
0 warning (s)

Assembly t ime : 5.46
CPU t ime (ADE) : 0 .4 ' l
FS t j -me (MOS) : 4.99

[' r ee space 2867 9 bytes

AI) l i p Iu s

1 I :00 -)

' l 'he tirnings may differ on your system. -l}e actual t inre
dclrcnds on the speed of the DFS and the position of the t'ile on
the disc. If i t is near the middle of the disc, thc prog,ri lnl wil l
l :rkc longer to a.ssemble due to the time s;rcnt sirrt lt ly rtxlvirrg tlrc
rl isc lrc:rd.

l - l l

lntroduction

Firstly the report rclls us this was an absolute assembly. This
means that the program output can be *RUN. The alternative
t)?e of assembly is a linker assembly, in which case the output
must be processed by the linker before it can be *RUN. No
errors or warnings were given. The timings show that most of
the time was spent accessing the disc even though the program
was tLOADed and SAVED. That is because ADE plus is a fast
assembler! There is still 28K of free memory for symbols and
macros.

It is also possible with the 65C00 assembler to assemble from
disc but produce no output or output to memory. To output to
memory and nrn the program, enter:

11,:02 :) ASI4 :T.ADVTG EEMM

Remember the G option? There is no output filename in front
of the equals sign so no file is produced. All the ADE file
processing programs take commands in the form
<output>=<input>. If you omit the G option then no output at
all is generated and the program is simply scanned for errors.

Next, edit the program T.ADV and introduce some errors.
Check the screen is in mode 3 (tpe MODE 3) then type:

l ,L:05 :) EDIT T.ADV EEM[!

When the file is displayed, press escape (edit command mode)
and type:

This is a command to tell the editor to go to line 16. This GOTO
editor command is useful to debug programs because the
assembler gives you the line number in its error reports as we
shall see. The screen displays the text with the cursor on the line:

.
BEQ DONE

Change this to

BEQ DOI4E

Move the cursor to the next line and change CMP to CPM.
Change the label WHITE to +WHITE in line 4 and change the X
register to a Z register in line 14. Now press escape and t)?e:

]u lde

The MMU prompt reappears. Enter the command:

11:10 :) ASI{ : r t EE@

This performs a syntax check on the program in memory.
During pass 2 the listing will display:

>S OOOO: 4 +WHITE EQU RED+?
>S 200A: 14 LDA TEXT, Z
>U 200F:F0EE 16 BEQ . DOME
>O 2011: L7 CPM #'*
>U 2035: 38 CPX #WHITE+I

These are lines containing errors. The errors are U for
unknown symbol and O for illegal opcode and S for syntuuK
error. The two syntax errors :ue from very different causes
and the reports arc all brief. This kind of report is often
satisfactory to more experienced programmers who do not want
reams of output. However, get the assembler to give you a more
detailed report:

1L:11 :) ASI ' I :*rE E@

You should end the line by pressing ctrl-N before return to
paginate the VDU output, otherwise the flood of information
will disappear off the top of the screen. The two synt:u(erors,
for example, now show as:

>s 0000: 4 +WHITE EQU RED+7

****t ERROR 8BD7 : l ine starts wi th i l legal char
>S 2 00A: B1F5 L4 LDA TEXT, Z

- - -

A

t**** ERROR 8D44 : Y register expected

This information should be sufficient for the beginner to sort
out text problems in the source code. Of course X can be used
instead of Y, Y here means 'index register'. The error code, in
hcx, is of use if you think the assembler is mistaken and should
not have produced the error. It is the location in the software
from which the error was generated. Please send in this number
with any queries to SYSTEM Ltd. about bugs you think may
exist in the assembler. More experienced programmers,
especially enthusiasts, can use the reference to look at the
soliware and fix the bug. Please write to us with your fixes !

'l'r) obtain an error summary (only) enter the command line in
thc fornt:

l l :15=)ASM:*rSEEMII

Option E stands for extended error reporting. Option S for
error summary. The summary is printed at the end of pass 2.
The error codes are stored in the workspace, so the room
available for symbols will be slightly reduced. In this case the
errors list as:

Fi l -e: * r ine 4 l ine starts wi th i l legar character
Fi Ie: * l ine 38 unknown symbol

Many programmers like to list the errors to a file while they go
away and make tea. This is possible. A listing file will capture
all output on pass 2. If the program is assembled with no 'list
on'commands then this file will be an error file:

11:20 :) ASI4 /nnnS:T.ADVTS 5g15q1

The eror file is called ERRS. It is placed on the left-hand side
of the equals sign in the command line because it is an output
file. It is preceded by a slash to distinguish it from the object
output file. Both files may be included, eg: ASM
AD/ERRS=T.ADV,S

Enter the command:

LL:25 >

to list the error file. TY"E is a disc based filing system
command. ADE plus MMU refers unknown commands to the
current filing system in two ways. Firstly, if a file of the
command name exists the file is executed as a batch file of ADE
plus commands. Secondly, if no file is found the command is
passed to the filing system directly through OSCLI. This may
execute a filing system command, such as *TYPE. Being able to
store ADE plus MMU commands in files and execute them by
typing the name of the file will come to be second nature as you
progress with the system. The assembler command line is
complex because of the flexibility of options and files allowed.
Thus complex and often used command lines can be saved in a
file and executed. For example, to make the last assembly a
single command, enter the editor by typing EDIT with no file
name.' If an old file appears, or rubbish, or the editor goes into
command mode, typc NEW from command mode and press
escape. You now have a blank sheet!

Enter one line: ASM /nnnS:T . ADV, S 54ry

kess escape and type the command:

>SAVE ASr"r7 EEIEuI

lua User Guide

N_ql lype the command QLIIT to take you back to the ADE plus
MMU prompt. Enter the line:

11:50 :) ASIIL EEilEU

The command stored in the file ASMI is executed. In the course
of program development the same assembly needs io be
Iepe-atqd often, so this facility will prove to be very useful. A
batch file, as this is called, Can co_1qin many linei containing
iJt!,ut to your assembligs (to QUERY and QSIR) as *rff as
linker commands. The file nami is simply *g*Ecjd if it exists.
You cannot use one of the inbuilt ADE p[us cormand names as
a file name for a batch file, but you can use FS command names
such as TYPE and LIST. However these make the FS
commands inaccessible. To overcome these two restrictio1S,
any command preceded by a slash will be *EXECed (ie treated
as a batch file) and any command preceded by an asterisk will,
of course' be passed snaight to the operating system command
line interpreter.

You should now have a good grasp of the way the system
functions. If you are noi going to use the linker facitities
straight away, read the assemblei reference section

-O
begin

writing lour own programs. Chapter 3 explains all the editor
function keys if you are using the inbuilt editor.

The next section in Oris tutorial guide explains how the linker
operates.

1.4

Introduction

Introducing the Linker

You should be familiar with the normal operation of the
assembler before you proceed with this section.

A simple assembler such as the inbuilt BASIC assembler or
other assemblers running on the BBC micro translates source
statements into machine code a line atatime. This is done in two
passes. The first simply ascertains the length of each irutnrction
and assigns a value to each symbol declared in the program. In
the second pass the assembler takes the symbolic values and
substitutes them in the source program producing the final
machine code. Everything must be known in pass two or errors
will result. This means that if one program wishes to refer to
another, all the entry points in the second program must be
precisely defined with EQUatcs in the first program. In a
program development environment the values of symbols will
change continually as the program grows or shrinks. The only
way of writing large programs was as a single gigantic source
which could take many minutes to assemble. The purpose of the
linker is to allow you to wrirc programs in pieces, where the
value of the symbols may change but where one piece, or
module, can find out the correct values of symbols in another
module. By this method sour@s can be kept reasonably short
and assembled quickly. The assembler produces a "semi
machine code" output file for each module. The linker
combines all of these modules to produce an executable
program. The linker modules output by the assembler are only
slightly larger than pure machine code files, so they take up
much less space on the disc than the source programs.
Consequently linking, which is mostly disc access and only a
little calculatiorU is much faster than assembly.

In order to explain how the linker operates a short program will
be developed.- You can use any edit6r for this. It is issimed that
you have understood the first section of this introduction, so the
source program will be presented as text without detailed
instructioru about activating the editor, pressing escape and so
on. 'i

I plus Ussr Guide

Enter the following text as the frst part of the program:

MODULE parr 1

text EXT

SYSEXEC ENT
LDX #_1

: loop INX
LDA text , X
BEQ : done
JSR OSWRCH \

JMP : loop
: done RTS

Save this file as T.PARTI. Irt's examine this trivial program r
line at a time. The MODULE statement declarei th"at the
program is a linker module, not an executable program. The
module is called q.art- l. You can choose any name up to 32
charactels. Next, "t€xt" is defined as an exte:--*t symbdl using
EXT. This means that when the program referencei "tcxt" it iI
referring to something in anothei ptogram that is not defined
here- The actual value of "text" is supptieA by the linker, not the
assembler. SYSEXEC is then declariA as a giobal symbol. This
is done using the EI.IT pseudo-op. You can"have as many ENT
symbols as you wish, but normAty they are the labels ior the
Atry points to routines that may Ui cattld from other modules.
The symbol name SYSEXEC has special significance because
the linker will put the final value of ttris sy;bol (if defined) in
the catalog-exec address for the program. SYSp;1gC is thttaUet
that the filing system will call wtren it has loaded the program.
iloop and :done are local labels because they start with a colon.
local labels can be re-used even in the sa-e assembly using the
block statement. (See assembler reference section.) OSWRiH it
called !o print the characters of "text". Notice that OSWRCFI is
not defined in .thg program, even as an external symbol. The
assembler predefines all the operating system labefs at the start
of each assembly unless yon- t€ll ii not to on the assembll
command line. This module will take characters from "texti'
and print_them until it finds a zero. Now let's define a second
module of text.

MODULE parr 2

, ' taxt for l_ inker example

ENT
STR "Now is the t ime"
STR "For aI I good men"
STR t 'To come to the"
S' I 'R "ADE of theirr t
Sl ' l l "Count ry ! t t
I I I I K

Introduction

Save this file as T.PART2. We now have the text for two
modules on disc. The second module contains "text" as an
ENTry point. Symbols may be declared as ENT only once, but
many modules may each declare them as EXT. The line starting
with a semicolon is a comment line. In the BASIC assembler a
comment line begins with a back slash. ADE plus will accept a
back slash or a semicolon as a comment marker. SlR is a
pseudo-op to generate a string of text bytes with a RETURN
character on the end of each (ASCII l3).

Now each module is separately assembled. From the ADE plus
MMU prompt enter:

ASI4 partT:T . part 7
ASI4 part2:T . part2

In both cases the programs should assemble without error.
Notice that the assembler report now reads "End of linker
module assembly". If any errors have occured, conect the
programs and reassemble them. To link the two modules, enter:

Link prog:part7, part2

The display should look somthing like this:

ADE plus Linker V L.0
program error summary. .

p rog

No I inker errors

Linker symbol table
SYSEXEC <P> 0800 text <P> 080F

The actual values for the symbols may vary. The source
programs contained no ORG statements to tell the assembler
where to put the program. The output to the linker from the
assembler is relocatable, that means it can be put anywhere in
memory by the linker. We did not tell the linker where to put
the program so it placed it in the lowest available free memory.
In this case a second processor was used so the program went at
0800 hex. The lir*ei has placed the text at the end of the little
routine and assigned the value 80F to "text". This value will be
substituted in the main program l*p, in the statement LDA
text,X. Try to run the program:

*RLW PROG
country ! DE of theire

us Usor Gulde

The output is not what we expected. This is because, although
there were no linker errors, there was a programming error.
The routine OSWRCH treats ttre ASCII RETURN character as
"return to start of line". A line feed is also needed. The correct
routine to call was OSASCI. Only T.PARTI needs to be
changed and assembled then the program can be re-linked.
When you are dealing with big programs the virtues of all this
will become apparent. Amend TPARTI to call OSASCI, then
re-link as shown above. Remember to reassemble the program
or you will link the old unchanged module! The program
should run correctly. If you got an error message "Not linker
file" check you are linking partl and not T.partl !

To demonstrate the relocation function of the linker, enter:

LINK prog:part2, partT

The symbol table shows the text at the start of the program and
the label SYSEXEC as 0847 hex. Check the catalog information
with *INFO. The exec address in the catalog is correctly set to
0847 so the program will still run with *PROG.

Clearly this is a trivial example, but using the linker with
various command line options allows a lot of new and exciting
programming techniques to be developed. Firstly, libraries of
preassembled modules can be used This allows preassembled
modules written by others to be used in your program - floating
point libraries, filing system libraries and so on. The routines
will be automatically relocated and woven into your program.
By specifying a different library, debugging routines may be
called. Once debugging is complete, switch to the "nln time"
library and the final program is produced. The linker also
allows large programs to be split into "overlays". A main
program is written and then the subroutines split into groups
*triitr are largely independent. Each group oi subroutines ls
held in a sepuate file on disc and loaded when required,
allowing cornmon memory to be used.

To understand how to program with overlays and libraries, it is
necessary to understand how the linker functions and what is
meant by sections in a progr:rm. The linker recognises four
kinds of data:

l. Rclocatable program data. This is machine code and binary
d:rta (such as the above two examples). The linker strings all the
relocatable program data end to end to make one continuous
bkrck of code that is saved with the file name given on the left of
tlre equals sign in the linker command line.

l -19

2. Relocatable zero Frge. The linker will allocate zero page
variables on a "first come first serve" basis. Using this method
libraries may use zero page without conflicting with user
routines because the linker sorts out the actual zero page
addresses used. These variables are defined with the RZP
pseudo-op in the assembly source program.

3. Absolute program data. This is machine code and data
written with an ORG in what is termed an absolute section..
Each absolute section produces an additional output file from
the linker. These files are meant to be used as overlays, so each
absolute section may start from the same address.

4. Absolute zero page. Variables may be defined (with EQU) to
have absolute zero page addresses. These should be variables
used by the MOS and so on whose location is fixed by another
program you cannot change. Make all your variables
relocatable zero page using RZP to avoid accidental conflicts.

Linker sections are defined in the source program with the
RSECT and ASECT statements. RSECT stands for "relocatable
(or relative) section" and ASECT for "absolute section". All
RSECTs ,ue strung end to end. The MODULE statement is an
implicit RSECT so there is no necessity to use RSECT and
ASEgt statements unless you wish to program with ASECTs
for overlays or some other use of absolute data. An ASECT
statement must be followed by an ORG siatement showing
where the section is to be assembled. Here is an example of an
overlay scheme:

An adventure game is to be produced. There is a main program
loop which will operate on a large data base. To facilitate
special graphics effects, part of the data base may be small
machine code routines that :ue called from the main program.
The game has five levels, so there are five overlay files for the
data and one file for the main program. The main program will
be the RSECT so that it can span several linker modules. Each
overlay will be an ASECT in one linker module. The ASECTs
all begin at &3000, sal, so a check needs to be made that the
main program does not go beyond this. Relative symbols (labels
defined in the RSECT or implicit RSECT after a MODULE) are
offset from zero, so if we assemble our main program at
&1900, we must put a check in the last module that the last
statement is less than & 1700 bytes from the first.

The assembler does not know the absolute address, but all
relative symbols are given an offset value from the start of the
module. Offsets are shown in the assembly listing followed by a
' character, so that JSR LOOPZ for example might produce the

plus User Guide

1.5

output 20 06 09' showing that a symbol &906 bytes from the
start of the program has been referenced.

The ASECT files will be given names by the linker based on the
maln program name followed by a three digit number (up to
255). The first four letters from the main program name are
used. If the name is less than four characters it is padded with
zeros.

Advanced Linker Techniques

Producing a memory map
To pryduce a memory allocation map from the linker, specify
the M option with LOPT at ADE command level or with M on
the linker command line. For example:

LINK :part 1 , pd rt2 ; ttl

A semicolon separates the linker module list from the options.
The output may be:

Program memory map and error summary

Module: part I
RSECT: 0800 080F

Module: part 2
RSECT: 080F-- 0856

Producing a cross reference listing
Specify the X option on the linker @mmand line:

LINK :part l , pdrt2; X, M

Several options may be listed after the semicolon, separated by
commas.

Cross reference l is t ing

Module : pa r t L
text :part 2

Each reference coruists of <symbol name>:<module name>.
The module names are the ones specified in the MODULE
statement, not the file names.

Dumping the linker symbols to disc
A symbol table dump of all global symbols defined with ENT
may be made. The symbol table file name is on the left of the
cquals sign in the linker command line and is preceded by a
conlma. This file could be used by a program to generate
lln.Sl(l st:rtcments, for example, defining all the call addresses in

tl

lntroduction

a piece of code to BASIC.

Using a symbol file
The linker U option is followed by a file name enclosed in
square brackets. This file is a symbol file (produced as outlined
above). It is loaded at the start of linker pass I and allows
modules to reference external labels not actually in the code, for
example the operating system labels on a different type of micro
computer. To assemble such a table, the symbols are declared in
a source program with GEQU:

MODULE tab
WRITE GEQU CAOOO
READ GEQU &A00 6
KEYSC GEQU &AO 1 O

These are then assembled to a linker module:

ASI4 tab:t . tab

Linked to produce a symbol table file S.tab, which remains for
all time to be used with programs requiring these symbols:

LINK , S. tab:tab

LINK prog:mod7, mod2;U [s. tabJ

Specifying the load and execution address
This is done using the A (address) option and the B (begin at..)
option. Both allow 32bit hex addresses following them,
enclosed in square brackets.

LINK prog:part7, part2 ; A IFFFF 0 0 0]

Note that options requiring parameters (always in squ:ue
brackets) cannot be set with I-OPT since this only turns a flag on
or off.

Using libraries
Any number of libraries may be used in a linking operation. A
linker library is a collection of modules strung end to end in a
file. Libraries are made with the LLIB command. At the end of
the first pass the linker searches each library in turn and looks
for modules in it with symbols still required by the modules
being linked. If such a module is found, that module is also
linked in. Care must be taken that library modules only forward
reference modules coming later in the same library.

r-21

lus Ljser Guide

As an example, the program FILTER on the demonstration disc
uses a library containing three modules. The source for the
program is T.FILTER. The aim is to produce a program that
can be *RUN and take parameters from the command line as
follows:

*FILTER <infile> <outfile> <ASCII code>

Such as *FILTER T.FII tr N.Ftt F l0
to remove all line feeds from a file before using it with the ADE
plus editor. The file is assembled to a linker module L.FILTER.
This is linked with the library L.ADELE by the command:

LINK FI LTER:L . FTLTER/L, ADELIB

The slash precedes a list of libraries (there may be several
separated by commas). The library consists of two moduleS, I
filing system module and a maths module. These have been
prepared from the sources T.FSLIB and T.MATHLIB. The
assembler output the linker modules L.FSLIB and L.MATI{LIB
from these files then the linker librarian command LLIB was
used to make the library:

LLIB L. ADELIB:L. FSLIB, L. I4ATHLIB

It is important to note that when a library module is identified as
containing a missing symbol, the whole module is included in
the linker output but not necessarily the whole library. Also
note that a single linker module file will pass as a one module
library. The LLIB command simply verifies the files are linker
modules and concatenates them. The best user libraries will be
lists of many short modules containing one or two routines each.
This allows the inclusion of only the required code, making the
output file as small as possible.

Conditional linking
The linker allows each module or library to be tagged with a
conditional label. This label is the name of a symbol, which
mu.st exist. If the value of the symbol is zero then the module or
librery is not included. For example:

LINK
pRoG:L. MODA, L. MODB/L. ADELIB, L. DEBUG IBUGFIXJ

'lJre last library, L.DEBUG, is only included if the label
lltJ(;l;lx is non zero. This label canbe easily altered to include
dcbugging, routines or not.

Chapter 2
2.1

MMU Command level

ADE plus memory management unit

Command level

ADE plus is initialised by the MOS command *ADE. Entering
the ROM in any other way will not initialise the memory
managernent unit correctly. During the initialisation stage the
memory management variables kept on page 4 are set up. None
of the units in the ADE plus system interfere with these
variables, ttrey are 'read only'. If you run a program that
cotrupts page 4 you will need to enter *ADE to reset the system.
ADE plus then prompts for a command with the time and an
alrow (see Chapter 1). This level is ADE plus command level.
The following pages give full details of each command that you
may use.

ASM
ASM <parameters>

The ASM command invokes the 65C00 series macro assembler.
The remainder of the command line, which must be separated
from ASM by at least one space, is passed to the assembler for
interpretation. See Chapter 4. Alternative assemblers may be
acceised from this command. Full details are given in the ADE
plus Technical Reference Guide available from SYSTEM.

CLOSE
CLOSE
The CT OSE command closes any open files. It is the same as
CL,OSE #0 in BASIC. If a program under test has opened files
and crashed, issue this command or the assembler or linker may
not be able to open enough files. The ADE plus modules always
close all files if a fatd eror occurs. This has the side effect of
halting an exec file, which in the event of a fatal error is
probably a god thing.

CoMItIANDS
COMMANDS

Typing COMMANDS (or C.) displays a help page giving the
full list of ADE plus commands with a guide to the expected
syntax of the remainder of the command line in each case. This
replaces the *HELP facility found on many ROMs since the
ADE plus MMU commands do not function as * MOS
commands and cannot be accessed outside the ADE plus
command level.

2-l

rr User Gulde

DEBUG

DEBUG <parameters>

This command calls an advanced debugger that is written to
work within the ADE plus system. The remainder of the
command line, which must be separated from DEBUG by at
least one sp?ce, is passed to the debugger for interpretation.
Full details are given in the ADE plw Technical Reference
Guidc. \

EDIT

EDIT (<parameters>)

The EDIT command first looks for an advanced editor in the
ADE plus system. If one is found then the remainder of the
command line, which must be separated from EDIT by at least
one space, is passed to the advanced editor for interpretation.
Full details of the interface to the advanced editor are given in
the ADE plus Technical Reference Guidc. If an advanced editor
is not present ttren EDIT commands are passed to a small screen
editor within the ADE plus MMU chip. This editor is fully
explained in Chapter 3. All editors will accept * as a p:uameter
meaning the file in the input buffer and all editors will leave the
edited file in the input buffer so that it can be assembled
directly, unless the file is too large to fit in the buffer.

GO

GO <hex addr>

The GO command calls a machine code routine at <hex addr>.
The registers are undefined on entry to the routine and need not
be preserved, though the routine should exit with intemrpts
enabled and the decimal flag clear, as normal. The address is
not preceded by an ampersand. On the second processor, for
example, GO F800 will call the MOS command line inteqpreter
from which ADE plus can be restarted by typing *AnE (not
*GO 80oo).

INPUT

INPUT <size in K>

This command sets the input buffer size. INPUT 0 will leave
the input buffer unallocated. Normally, when a second
processor is used, this command need not be issued since the

2-3

MMU Command level

largest free memory area outside the main work space is given
to the input buffer. Whenever input files are smaller than the
input buffer they will be *LOADed otherwise they will be read
a buffer-full at a time with OSGBPB. If your filing system's
implementation of OSGBPB is efficient the system will run
faster with a larger input buffer because the number of disc
accesses will be reduced.

FFFF

c000

8000

0800

This diagram shows the full range of memory managed by the
ADE plus MMU. With a second processor attached the input
buffer will be at least l4K (buffer A). If buffer B is larger than
14K then the input buffer will be buffer B. Without a second
processor buffer B is split between the input and the output and
its size is variable, sct by the INPUT and OUTPUT commands.

LINK

LINK <parameters>

The LINK command calls the ADE plus linker. The remainder
of the command line, which must be separated from LINK by at
least one space, is passed to the linker for interpretation (see
Chapter 5). The linker is built into the ADE plus MMU chip
and it is not possible to substitute a different linker. The linker
may link the output from compilers and other assemblers. Full
details of the linker data formats are supplied in the ADE plw
Teclmical Reference Guide .

lO proc. 2nd proc.

User Gulde

LLIB

LLIB dib>=<mod>(,.modr...) (-)

The LLIB command invokes the linker librarian which will
make a linker library from the specified list of modules. <lib>
is the name of the library file. There must be at least one
module. More modules may follow, each preceded by a
comma. A hlphen may appear anywhere in the line and will
make the librarian pause for more input. The hyphen does not
take the place of a comma separator. Any characters following
the hlphen on the same line will be ignored. For example:

1 1 : 2 0 =) LLIB L .I,IATH:ADD, SUB, DIV, ptUL, LOGIC-
? , ASC, STR, FLOAT, FIX

This command instnrcts the librarian to make a linker library
from the files ADD, SUB, DIV, MUL, LOGIC, ASC, STR,
FLOAT and FD(. It is usual to give the modules the same name
as the file name when preparing modules for the linker
librarian, but not mandatory. The library feature will work
best if each file in the library contains only one or two routines.
This is because the linker will include the whole of a module in
its output if it finds a required symbol in the module's entry list.
Libraries should contain groups of related modules. If modules
A, B and C say all use common subroutines, put these in a
module D and include D in the library after A, B and C. Also,
make sure all the labels in the modules' entry lists do not get
duplicated in programs using the library. For example, filing
system routines could all start with "FS_". Also rerrember
when using libraries that the linker distingu-ishes between lower
and upper case. Stick to one convention for your labels. The
suggested convention is that library routines are labelled in
UPPER CASE, whilst program labels ue normally in lower
case but ENTry poins begin with an Upper case letter. This
will avoid any duplication of symbol names.

LOPT

LOPT (-).opb{,.opt>.. .}

The LOPT command sets and resets the linker option flags. A
global set of these flags is held by the MMU in its work space.
The linker copies these into its local variables when a LINK
command is interpreted. Preceding an option by resets the
option (to false or off). Otherwise the option is set (to tnre or
on). The options remain in force until changed by another
LOPT command or reset when *ADE is t1ped. The current
options are displayed with the STAT command. Some linker

2-5

MMU Command leve

options take p:uameters enclosed in square brackets. These
options cannot be set with the L,OPT command.

MLIB

MLIB dib>=<source>

The MLIB command invokes the macro librarian to make up a
macro library from a single source file. The source file should
contain just MACRO definitions in standard ADE plus format.
This file (and hence, indirectly, the library) is edited in the
normal way. The library file is constnrcted with a catalogue
giving details of the whereabouts of each macro in the file. This
catalogue is loaded with the IVIACLIB command by the
assembler. Any macro can then be found quickly by random
access. Full details of the macro library format are found in the
ADE plus Technical Reference Guide.

MODE

MODE <screen mode>

Change the current screen mode and re-calculate the buffer
sizes. Do not change mode by any other means. The ADE plus
editor selects mode 3 or mode 7 on entry, depending on whether
you were using a 40 or 80 column screen and returns to the
original mode on exit. The assembler and linker base their
workspace calculations on details given by the MMU, which
takes the top of free memory in the IO processor each time
MODE is changed.

OPT

OPT (-).optt{,.opt>...}

Set the assembler optiorn globally with the OPT command.
Unlike the linker, all the assembler options consist of flags and
can all be set permanently with OPT. The options consist of the
letters A to Z. Preceding an option with a minus sign resets that
option. (See LOPT). A full list of assembler options is given in
Chapter 4.

ler Gulde

OUTPUT

OUTPUT <size in K>

This command sets the output buffer size. OUTpUT 0 willleave the output buffer unaliocated. Normally, when a second
processor is used, this command need not b; issued since thesecond largest free memory area outside the main *otltpa.r isgiven to the o}Fgt buffei. Whenever, ourput files are smaller
than the output buffer they will be *SAVEed othrr*isi trrri will
be written a buffer-full ai atime wirh osGBpB. If your filing
system's implementation of OSGBPB is efficient thr ryril will
run faster with.--1 larger output buffer because the number ofdisc accesses will be reduced.

FFFF

c000

lErdiagram shows the full range of memory managed by theADE plus MMU. with 3 secgn!_processor atrached-the oiltputbuffer will be l4K (bu{er A) if buffer B is larg., U* l4K.otherwise the output buffer wiit be buffer B.
-
without a secondprocessor buffer B is-split between thr_ rlpgl and the ouiil andits sizc is variable, sct bj, the INpLJT and Oi.lfpUT commands.

PRINT

PRfNT <size>

lgt .4. p-nnt buffer siz€. The only valid sizes are 0, whichdisables the ryint buffering, or a non- zaro value which enablcsit. hint buffering will dllv be enabled if there
-ir

riiri.y,RAM in the system that has not been prorccted (see pRor,
TJNPROT). All the unprotected sidewayr nnr"f is used as a

lO proc. 2nd proc.

2-7

MMU Command level

print buffer. The buffer is switched on and off through normal
MOS routines once the buffer system is initialised. ADE plus
initialises the system, so if you go into BASIC at a later stage the
print buffer will still be active and BASIC will be able to spool
its print out in the same way that ADE plus does. Full details of
how the print buffer operates are supplied in the ADE plw
Teclnical Reference Guidc. The print spooling system uses the
cassette file workspace on page 3 to hold its variables so it
cannot bc used at the same time as the cassette filing system.

PROT

PROT <rom idtt,<rom idr...)

The PROT command protects pages of sideways RAM from use
by the print spooling system. <rom id> is a number in decimal
between 0 and 15 referring to the respective page of sideways
RAM. If any ADE plus module is in sideways RAM then that
page is automatically protected at start up, but you could
unprotect it with UNPROT, with dire consequences. Protected
RAM is used for user programs and other ROM images.

RESET

RESET

Reset all the ADE plus MMU buffers to their initial values. This
will depend on whether a second processor is connected and
what screen memory is being used. All sideways RAM will be
available to the print spooler except for RAM used to hold ADE
plus modules. ADE plus does an implicit RESET command
when the screen memory is changed with MODE. This
command is useful if the buffers or ADE plus variables on
page 4 have been comrpted.

STAT

STAT \

The STAT command displays the values of the ADE plus MMU
variables in a comprehensible form. It is fully described in
Chapter l.

rs lJssr Gulde

TIME

TIM E (.hh:mm>)(,<date>)

Alter the time and/or the date. The time must be entered as
hh:mm (eg 10:36). The date may be entered in free format as a
string of up to 16 characters. If only the date is required then it
is entered preceded by a comma, such as TIME ,22nd July 87.
There must in that case be a space between TIME and the
comma. '

UNPROT

UNPROT <rom idt{,<rom id...t}

Reverse the action of PROT and enable a page of sideways RAM
for use by the print spooling system. The synftx is identical to
PROT. It is possible to unprotect RAM used to hold ADE plus
modules. The effect of this will become apparent during a
printout when the code of the ADE plus module is eaten up by
the spooling system. You could lose a valuable edit, so take
special care using UNPROT. The STAT command tells you
which slots (rom ids) are used by ADE plus modules. The ADE
plus MMU is in the same slot as the linker.

ZASM

ZASM <parameters>

The ZASM command calls a Z,80 assembler if one is found in
the ADE plus system and passes to it the remainder of the
command for interpretation. In fact any cross assembler, such
as 68000 or 6803, could be used here as long as it was
recognised by ADE plus. Details of how ADE plus recognises
the two different assemblers are provided in the ADE plu
Teclnical Reference Guidc. The cross assembler must preserve
the ADE plus variables on page 4 and should make use of the
ADE plus memory nunagement irrformation and procedures.

2.2

2.3

MMU Command level

Minimum abbreviations for ADE plus
commands

AS.
c.
E.
l.
LL.
M.
o.
P.
R.
T.
z.

ASM
COMMANDS
EDIT
INPUT
LLIB
MLIB
OPT
PRINT
RESET
TIME
ZASM

CL. CLOSE
D. DEBUG
G. GO
L. LINK
LO. LOPT
MO. MODE
OU. OUTPUT
PR. PROT
S. STAT
U. UNPROT

1.

2.

3.

Errors reported by the ADE plus MMU

I nsufflcle nt buffer sryce
Too little memory to allocate buffer

Out of nnge
Bad parameter in ADE plus command

Bad parameterc
Bad or missing parameters in command

tlodule not present
Required ROM or image in RAM not found

Bufter allocatd
Too blg

Out of memory
Enors allocating buffer space

Flle not tound
Unable to open library source file

CanT wrlte to output flle
Unable to open library output file

Bad tlle specs
Librarian unable to interpret command line

Mlsslng ENDM
Too many macftrs
MLIB errors

Chapter 3

3.1

Editor reference

ADE plus Editor

The ADE plus memory management unit recognises two t)?cs
of editor. Firstly, atr editor module that has been loaded into
sideways RAM or is in a ROM socket or qrtridge. This editor
is probably a sophisticated mouse-based text and programming
editor that you have added to your ADE plus system. This
editor is called the Advanced Editor on the ADE plus status
screen. Secondly, if no such editor exists, a basic text editor is
built into the ADE plus MMU ROM itself. Although this editor
only performs basic functions it has one or two specid features
for editing assembly langu age text which make it very usable.
These include block move, copy and delete and a spccial GOTO
LABEL key that will find the point in the text where a symbol
has been defined. This chapter explains how to use the editor.
You ffi?y, of course, prefer to use VIEW or another third party
editor in which case this chaprcr may be removed from the
manual.

Getting started

The ADE plus basic editor is called using the EDIT command
from ADE plus command level. The command may take one of
three forms:

EDIT <filename>
EDTT *

EDIT

EDIT <filename>
The named file is loaded into the memory work area. The file
must fit in this space or an error occurs. The editor validates the
text (see OLD below) and goes into editing mode so that the first
page of text will be shown on the screen.

EDIT *
The editor attempts to load text into the work area from the
INPUT BUFFER. Before using this command you should
understard how the ADE plus MMU functions and what is
meant by the input buffer. The tcxt is transferred into the work
area. The editor validates the text and all being well goes into
editing mode with the first page of text displayed. An elror
occurs if the text is too big for the work area.

3-t

r Urcr Gulde

6

EDIT
The editor does not try to load any text. It tries to validate an
existing text file in the work arca (in case you left editing by
mistake) and, if it can, will go into editing mode displaying the
first page of the 'old' tcxt that it found. You can issue a NEW
command if this was not what you intcnded. Often the memory
will look like a blank text file to the editor so after typing EDIT
a blank screen appears with the cursor in the top corner. You
can begin to enter text or you can press escape to go into editor
command mode. \

Editing mode
The normal mode for the editor is editing mode. The whole
screen is used to display text. The cursor shows where the next
rext will be inserted. All the editing commands describcd below
may be used. When you want to issue a conunand to the editor
such as LOAD or SAVE, press the cscape key to go into editor
command mode.

Command mode
If the editor fails to find valid text when you issue an EDIT
command it will go into command mode with the message No
text. You can always get from editing mode into command
mode by pressing the escape key. You can only leave the editor
from command mode. When in command mode you can go
back into editing mode by pressing the escape key.

Leaving the editor
You can exit from the editor back to ADE plus command level
by typing the QUIT command or by typing the RLJN command,
in which case ADE plus will attempt to assemble and run the
program in memory. Both of these commands attempt to copy
the text from the work area to the input buffer so that it may be
assembled directly. If there is no input buffer or the tcxt is too
big then it will not be possible to assemble the current program
directly from memory. Remember ADE plus allows you to
specify the size of the input buffer.

The text window
When the editor is entered the screen mode will be 3 or 7
depending on the mode in ADE MMU command level. In mode
3 the window shows 25 lines of 79 chuacters. In mode 7 only
39 characters are shown. The curent line sideways scrolls if
you rype beyond the last column. The tab stops are pre-defined
every 8 columns.

3.7

3.8

Editor reference

The command screen
Whcn in command mode the cditor prints status information at
the top of the screen. This information includes somc or all of
the following:

Bytes free
Free space in the text buffer in characters (or No text)

File
The current file being edited or * if the input buffer has been
loaded or No file

Insert ON or OFF
The editor is initially in inscrt ON mode (see below)

n markers
The number of tcxt markers set (I or 2) not displayed if no
markers set

hh:mm
The time (when the editor status w:ls last printed)

The editor prompts for a command with ")". A MOS (*)
command may bc issued or any of the editor commands
described below.

Editing text
The text is edited by moving the cursor round with the cursor
arrow, shift and control keys and by using the furrction keys to
perform special tasks. Normally the editor is in INSERT mode
which means that text entered will bc inserted before any
remaining text on the line. The maximum line length is 128
characters. By pressing function key zero the editor toggles
between insert and overt)?c mode. In overtype mode text
entered will replace existing text on a line. You cannot overtype
the end of a line. The cursor arrow keys are used as follows:

Guldo

Whcn moving up and down the editor keeps track of the current
column. However, remember that a tab character counts :rs a
single character so that when editing with tabs the cursor may
move a little as you go from line to line. When moving to a new
line the editor adds spaccs to get to the correct column. When
leaving the line the editor always removes trailing sp:rces.

The delete key deletes backwards, but cannot delete beyond the
start of a line. Function key 9 deletes forwards on a line.
Function key 8 inserts a space character in front of the cursor.
The remaining function keys perform actions on whole lines.

Toggle insert and overtype mode. The status screen (press
ESCAPE) shows which mode is currently active.

Find next occurence of search string. The search resumes
from the last occurrence, not from the current crusor position.
A beep means not found, else the cursor is moved to the new
string. See SEARCFI command.

Go to a program label. The editor extracts a label from the
cursor position looking for delimiting characters that are not
valid as ADE plus assembler labels. It then searches from the
s[art of the text for a lirrc starting with these characters. If not
found a beep will be heard, else the cursor will be moved to the
start of the line.

,:,i'i';'i'i':,lh,i,:;:,:':
:;:;:;:;:;:i6;il:::!:::

:ID. ,:,:':,i,:'i,:lti'i,i,::i':'i'i'
:::ili:flt$iI::::i::::i:i

golo hbol

Editor reference

Clear to end of line. All the characters from the cursor to the
end of the current line are deleted.

Split line at cursor position. The line is split. The cursor
remains on the end of the line and the remaining characters will
appear on the line below. If the cursor was at the end of the line
then a blank line will be inserted.

Join the current line with the one below. The line below is
appended to the end of the curent line.

Insert blank line. The current line becomes a blank line. Lines
below move down.

Delete line. The current line is deleted. Lines below move up.

3-5

; IJsor (iuide

Insert character at the cursor position. The characters to the end
of the line will be moved along even in overtype mode. This key
is normally used when editing in overtype mode and desiring to
make a small iruertion.

Delete a character forwards from the cursor position. You
cannot delete the end of line character.

kessing shift and function key 0 inserts a marker in the text
which will be shown as an inverse up arrow. The editor allows
up to two markers in the text and always refers to the first
marker (ie one nearest the start of the text) as marker I and the
second marker (nearest the end) as marker 2, regardless of the
order that the markers were inserted.

Clear both markers. A marker is a character that can be deleted
by typing over it or using the delete key. Delete markers with
shift fl wherever they are in the text. This is done automatically
before the text is saved to disc or the input buffer.

l)clctc thc marked block of text. All text between the markers
irrrrl thc markers themselves are deleted. The cursor must be
orrtsi<tc tlre marked block. The editor wil l warn with a beep if
l l r t . , ' f f r : :nr i : : i r l i l tn hlncL rr- l l tnre are les" r t '16 2 markers set .

to
mrrl

tt,::l[,:,:,ii:i:

i'nrrk:,i'i,
t2

d.l bfock

; : : : i:::::::::::i f3,: :: i:: ::::: i
:;i;ifi!si.ptQ€f(::

,ii:i:::::::::/i:::!::::::i::::::
::::::::UqlT,il:i::::ii;i:

hilon

3.9

3-7

Editor referenc

Move the marked block. The block is moved to the current
cursor position, same conditions as above. The block may be
copied by pressing the COPY key. Pressing shift-f3 is identical
to pressing COPY then shift-f2. Block move will only work if
there was enough memory to perform the copy first. If move or
copy cannot function because of lack of memory the editor will
berp.

Go to marker l. The cursor is moved to the marker nearest the
start. If no markers set then the editor beeps.

Go to marker 2. The cursor is moved to the second marker. If
less than two markers set then the editor beeps.

Bditor commands
The following commands may be issued from cornmand level in
the editor. To get from editing mode to command mode press
the escape key. kessing the escap€ key whilst in command
mode causes the editor to go back into editing mode. When the
EDIT command is giverl if the editor fails to find text in the
work area after performing whatever load actions were
specified, it will go to command mode, with the message "No
text" in place of the "Bytes free" status. In such a case type
NEW.

NEW
This command clears the text buffer. It may bc reversed
immediately afterwards by tlping OLD.

rer Gulde

OLD
This command attempts to determine the extent of text in the
buffer. If the text is not valid then the editor will be in a No text
state and you will need to type NEW. Note that this editor
considers text containing line feeds to be invalid. A line feed
filter program is included on the demonstration disc. To run
this program, have it in the disc drive and type

*FILTER <file> (<new file>) (<char code>) (<new cha>)

The new file will default to the same name as the old file
overwriting it. The char code defaults to l0 (filter line feeds)
and if no new char is specified then the line feeds will simply be
deleted.

LOAD <file>
L <file>

Lnad the specified file from disc into memory. The file must be
small enough to fit or a Too big error will occur. The editor
validates the file and puts the cursor at the start. Press escape to
go into editing mode and change the file.

SAVE <file>

Save the file under the name specified on disc. If the file exists
then the message "Replace? (YAI):" will appear. kess Y or N.

CLEAR

Clear markers from the text

SEARCH <text>
S <text>

Search the text from the start for a line containing <text>. The
text need not be delimited, in which case it starts with the first
non blank. A tab character may be included by using the double
bar symbol, which the editor will translate into a tab. To
include leading spaces delimit the string with "quotes". A
double quote character will cause a quote to be placed in the
quote string, for example:

.s "LDA #',frArf 'r t

'lJre cunent string is printed on the status. If no string is
slrccified the editor searches for the next occurrence of the
string. If the string is found, the editor goes into editing mode
with thc cursor at the string. If not" the message "Not found" is
pr intcd.

3.10

Editor reference

QUIT

Attempt to save the text in the input buffer and return to ADE
plus command level. If there is no input buffer or the text is too
big, the message "Quit? (YN):" is displayed and you can press Y
or N as you please.

RUN

Save the text in the input buffer. If this can't be done the
command aborts with the error "Can't run". Then call the
assembler with the command line ASM =*,G. This will
attempt to assemble the text and run it. Make sure your text is at
a suitable address to avoid corrupting the ADE or MOS
variables.

MODE

This command toggles the editor screen between Mode 3 and
Mode 7. Only use Mode 7 it you have a poor quality monitor.

User defined keys

The function keys f0 to f9 are set to deliver the text defined with
*KEY n when they are pressed together with SHIFT and CTRL.

3-9

s User Gulde

Chapter 4

4.1

Assembler referen

The Macro Assembler

DBSCRIPTION OF THE ASSEMBLBR

The assembler is designed to facilitate assembly language
programming on the BBC series of microcomputers. The
assembler contains an exteruive set of pseudo-ops that cater for
every conceivable programming requirement. Standard 65C00
series mnemonics and address mode syntax are used. The
source program may reside on disc but will be loaded into
memory if sufficient RAM is available. The size of the source
program is not limited. The assembler uses main RAM for is
workspace. This workspacn holds the symbol table, the file
buffers, the macro text and the assembler's own variables. The
assembler is not used to create the source program. A text
editor must be used to do this. Any text editor may be used that
produces a standard ASCI text file. Word processors that
embed control and text formatting commands in the text will not
work. VIEW will work if format and jrrttrfy are turned off.
The assembler WILL recognise VIEW rulers and use them to
format the source code listing on pass 2. Otherwise only text is
accepted.

Assembly is initiated from the ADE plus MMU prompr by the
ASM command, or by the editor run command, as described
below. The assembler trarulates the source program into either
a machine code file ttrat can be directly run using the *RUN
command or a linker file of relocatable hexadecimal code that
can be linked with other files to produce the machine code object
file. During pass I the assembler generates a symbol table
containing the numerical values of all symbols defined by the
user. The lergth of each instnrction is determined and any
forward refererrces noted. These are always assumed to be non-
zero pagc addresses so that the assembler will generate three
bytc instructions where it might have generated a two byte
instnrction if no forward reference was encountered. Thus all
zero page labels should be defined before they are used. Macros
are read into main memory during pass l. A macro must be
defined before it is used so that the asse?nbler can work out the
corect number of bytes that each use of the macro will entail.
Macros are stored in memory in text form so they should be
defined as briefly as possible.

A second pass re-reads the source program and generates the
output file substituting the actual numerical values of all
symbols fully defined. If the output is a linker file then a list of
addresses to be relocated and a list of external (undefined)
symbols and the places where they occur is also output. A listing
will also bc generated in pass 2 and the assembler will flag any

+l

Ucer Gulde

errors that it finds in the sour@ program. The assembler does
NOT detect logical errors in the progurm so a successful
assembly does not mean the prograrn will nrn correctly.

The source file may be split up into include files and clnin files.
lnclude files are inserted between two lines of another source
file, one that contains an INCLLJDE statement. This 'parent'file
may not itself bc an ircludc file. Aafuin file follows on from
the last statement of a preceding source file that CHaiNed it.
This feature is irrcluded for compatibility with ADE versions I
and 2. Newcomers to this systcm should use include files as they
offer the flexibility of a bontrol file', that is a parent file or
main source file which is simply a list of INCLUDE statements
together with all the corditional flags to be set for the assembly.

Aborting an assembly ..

An assembly may be terminatcd at any stage by pressing
ESCAPE. When this is detcctcd all files opened by the
assembler are closed.

The assembler works with any filing system that supports
random access through OSGBPB, catalogue entries through
OSFII{D and multiple file access. tlsually the filing system used
will be disc (DFS, ADFS) or econet.

The Assembly Command Line

The assembler is started from an ASM command after the ADE
plus prompt. The ASM command is always followed by at least
one space. The rest of the line specifies the file to be assembled
and various options supplied to the assembler. This part is
called the assembler command line. Thus the general format for
starting an assembly is:

hh : m m => A SM [o bj e cfJ (ni sti ng J = s ou rceff , op\] (/an s[, an s] J

or

hh:mm => A (object](/listingJ=surceff ,opl]J(ns[, ansJJ

User input ftalicised

The meaning of each item on the assembly command line is as
follows. Items in curly brackets are optional. Items in square
brackets may be repeatcd. Object is the object file, or output
file, which may be in relocatable or absolute form according to
tlre contents of the sour@ file. Listing is a file to contain the
listing or eror messages output on pass 2. The inclusion of this
filc does not generate a listing. That is controlled by the I,ST
pseudo-op. If no listing file is specified then the listing goes to

4,3

Assembler reference

the screen or printcr according to which options are used. A'l'
must precede the listing file name and is not part of the niune.
The object file name may be omitted and in such a case the
source code is only scanned for errors. A listing file may be
generated when no object file is being generated. An equals sign
always follows any object or listing files (even if neither are
prcscnt). The equals sign separates the output parameters from
lhe input parametcrs. Source is the name of the fust source file
to bc asscmbled. This must be prescnt. The source file may
contain INCLLJDE files ard a CHN file. Opt is an asscmbler
optioru If options are specified they follow thc source file rume
and each option is preceded by a comma, including the first
option. Ans is an answer to a QLJERY statement in the sour@
program. Any number of answers may be specified and each
answer is separated by a comma. An answer is an expression
which may contain symbols but not contain forward refererrces
or extcrnals. The fint answer is preceded by a 'l'. The first
answer is supplied to the first QUERY and so on. When the
assembler runs out of answers it asks for them from the
keyboard. (See QUERY). If an invalid answer is dercctcd the
message Re-enler: is displayed and you must t)?e in the ans$€r
on the lceyboard.

If a conrmand line is not correctly interpreted the message:

Invalid command fine

is displayed and a prompt for a new line issued. This will
usually occur if no sour@ file is specified or the equals sign is
absent. If the sour@ file docs not exist the error file not found
will bc reported.

The symbol I may'Ut used for the sourcc file when thc sourcc
filc is the tcxt currently in the input buffer. This may be a
rcpeat of the last assembly or a file left there by an ADE plus
edi!or.

Assembler Options
\

A number of opions may bc entcred on the command line.
Thesc options can dso be enrcred in the source codc using the
OPT pseudo-op. Each option is a letter A.Z (or a..z) and
controls the value of one of 26 flags in the assemblcr variables.
Each time the option is specified the flag is toggled on or off.
Only some of the flags affect the behaviour of thc asscmbler.
The unused lette$ are reserved for futurc cxpansion.

+3

Urer Gulde

Option C - conditionals
Conditional listing. Statements that are conditioned out of the
assembly will not be listed if the C option is in effect. These
statements normally have an S (skipped) in column 18.
Sutements containing erron will always be listed regardless of
the options.

Option E - extended error messages
The assembler will producc full text eror messages and a
pointer to the part of the souroe statement giving the elror.
Additional messages are generated for syntax errors and linker
rule violations.

Option F - Fix ASCII size
The assembler will fix ASCII constants as 16 bit values after
OPT F. This means that XY'could be specified as a word value
for example. Note however that after OPT F some macro
substitutions rnay not work as expected,

IF '@1'='
would have to be replaced by

IF'@lr-" '

Also, using l6 bit ASCII the secorrd quote must ALWAYS be
specified whereas it is optional with the default 8 bit.

Option G - go
The assembler will attempt to run the object program provided
the assembly was an absolute assembly and that there were no
errors. The assembler will obtain the object code from the
output buffer if possible, otherwisc the object file will be *RUN.

Option H - halt exec file
The assembler will close the exec file if an error (rccurs so that
bad output is not linked or run.

Option L - listing
Force a listing. A listing is generated regardless of any IJT
OFF statements in the sourcc code. The assembler still
distinguishes between IJT ON and I-ST FTJLL statcnrnts.

OptionN-nol ist ing
No listing is generated regardless of IJT ON statements in the
source code.

Assembler reference

Option O - omit operating system labels
The assembler uses a list of default symbols as defined in the
opcrating system as well as TRLJE and FAI-SE. These are
"assembled" beforc pass I unless OPT O is specified in the
assembler command line or globally in ADE plus OPT
command. It is impossible to specify OPT O in ttre source
program.

Option P - printer
Direct output to the printer on pass 2. Output stops after the
symbol table or a fatal error. Any listing file is unaffected.

Optiona-syntaxcheck
The assembler does not generate any output file on pass 2. This
option is the same as omitting the object file name from the
command line and will probably be most useful in an OPT
statement in a source that you are not going to compile
immediately.

Option R - reduced instruction set
The assembler will use only the standard 65V2 instructions.
65C00 series instructions will be flagged as illegal op codes
unless you providc a macro for them. Thus for 65V2.work PID(
Tay still be used if you spccify a macro (typically TxA, PHA).
The output file is identical to the 65C00 format so you may link
different modules together, some of which contain only 6502
instnrctions.

OptionSrerrorsummary
The assembler willgenerate a summary of error messages at the
erd of pass 2. Each error message will give the file name, the
line number within the file and the text of the extended error
message.

Option U - upper case translation
The assembler will translate dl symbols inqo uppcr catie. This
gives compatability with ADE

"ersions
I andi.

Option W - wait after error
The assembler will pause after an error, listing the extended
elTor message and the texl Press any kqt.

4-5

1.4

lur User Gulde

4.5

Bxample Command Lines

:T. I ' IYTEXT

Pcrform a syntax check on the file T.MYTEXT and possibly
generate a listing if L,ST ON is specified. The listing gocs to the
screen.

:T. MYTEXT, N

Perform a syntax check but produce no listing except for lines
containing erTors.

/ERRORS=T .I,IYTEXT, N

Perform a syntax check and send erors to the file ERRORS' as
well as to the screen.

I'{YCODE:T . MYTEXT

Assemble T.MYTEXT and produce an object file MYCODE.

I4YCODE:T . I,IYTEXT , L, P

koduce an object file and force a listing of all the source to the
printer.

T ' {YCODE:T.I ' IYTEXT, L, P / ET9OO ,256+FRED, &65

Assemble, list to printer and use the rpsponse &1900 for the
first QIJERY,256+FRED for the second QUERY and &65 for
the last query.

I ' {yCODE / LTSTFI LE: *, L, C /& 1 90 0, YES

Assemble from memory and send a listing to the file LISTFII F-.
Do not list sections of code that are conditioned out. Answer the
fust two QLJERYs with &1900 ald YES.

General Considerations

Use a listing file with a harrd disc or RAM disc based filing
system. On floppy based systems it will slow down the
assembly. Double density systems may have enough room
on disc but large programs will soon till a single density
floppy disc. A listing file with the N option is useful to
capture all the errors. The P option sends all the listing to
the printer but you can be more selective using the LIJT

4.6

4.7

Argenbler referenc

pscudo{p. Commards for asscmbly and linking may bc prt in
an EXEC file. If ADE plu docs not rccqgnisc a command it
trics to cxacutc thc filc of thc givcn narnc.

Format of the Source Program

dabcb <opcodo <opcrend> <comment>

Thc sourcc program coruists of orc or morc filcs of ASCII
characters. Each file consists of a numbcr of lincs. A linc is a
sequcrcc of characters crding in ASCII carriage rcturn (&0D),
ASCU CRLF (&0A,0D) or thc physical cnd of file. The
asscmblcr corrtains dircctivcs to gcncratc tcxt data in the object
filc with or without bit 7 sct. Fach lirp is dividcd inlo four
ficlds: thc labcl, thc opcodc, thc opcrand and thc comment.
Evcry ficld is optional though ccnain opcodcs and pseudo-ops
rcquirc ccrtain opcrands and possibly require a labcl. The
simplcst lirp is a blank linc. A commcnt linc is allowed, and a
linc bcginning with an astcrisk is a comnrcnt linc. Ficlds are
scparatcd by 'whitc qncc' which mcans orp or morc spacc
charactcrs or tab clraractrers. Tbc ab charactcr is cxparded to
spaocs in thc listing ard initially tab stops arc sct cvery 8
columns but this may bc ovcrridcn by including a View format
rulcr in thc tcxt. Rulcn will mt bc listcd. Only thc tab stops on
thc rulcr applyr osuntcd from thc lcft hand margin. A statemcnt
may bc simply a labcl. An opcrand with no opcode is not
allowcd. Thc labcl mrst bc thc first ircm on thc line and must
not bc prcccdcd by any whitc spacc. Statemcnts must not contain
linc numbcn (cxccp as @mmcnts).

The Label

Thc labcl is usually-an optional ficld. A labcl mrrst not bcgin
with a nrmbcr but may coruain arry of thc following charactcrs:

A.Z ?..\0..9, full sbp, unscrscorc, qucry (?)

Labcls may not contrain cmbcddcd blanks. A labcl that bcgins
with a colon is a local labcl. A global labcl qpy also bc dcfined
with thc ENT pscudo-op. Thc asscmbler diffcrcntiatcs betwcen
lowcr ard uppcr casc in labcls unlcss thc U (uppcrcasc) option is
spccificd. Thc undcrscorc charactcr is a valid charactcr and is
always irrcludcd as part of thc labcl. A labcl rnay not start with a
numcric charactcr. Thc labcl may bc any lcngth. Notc that ttre
colon in front of a local labcl is part of the labcl name and must
bc used whcncvcr thc labcl is rcfercnccd in the opcrand field.
I,abels may bc rcdcfined urdcr thc following conditions: a labcl
dsfirrcd with thc = pscudo-op may bc rcdefined at any point with
arnther = slatcrrEnt. Thcsc labcls are rnrmally uscd for
countcrs in macros and so on. A local labcl may be

+7

ur User Gulde

redefined provided it is in a different BITCK. No other labels
may be redefined.The length of the label is only limitcd by the
length of the statement. ln order to avoid redefining labels in
macros a special parameter is provided within the scope of the
macro called @0. @0 is a five digit decimal number which is
incremented each time a macro is invoked. Like the user's
paramebrs (@1 to @9), @0 is saved when macros are rpstcd.
It should be appended to labcls that are used in mactos. Of
course a label can be passed to a rnacro as a parameter.

The assembler keeps a counter called the location' counter
which is the address at which the instruction will be assembled.
In a lirrker file the location counter is the offset from the start of
the section (except in ASECT). The labcl is normally given the
value of the location countcr at the start of the line. Thus if a
label is defined on its own it simply receives the value of the
location counter. Another label on the next line will have the
same value. The EQU,= and QUERY pseudo-ops redefine the
value of a label to the value of the operard field.

When a label is used in an operard it is rcferred to as a symbol.
The assembler keeps dl its labels, macros and other items
rrceded to assemble the source in a table called the symbol table.
When the symbol is referenced in an operand the assembler
substitutes the value from the symbol table. All absolute
symbols with values gteater than 255 can be defined anywhere
in the program . bro page symbls must be defined before they
are used. A third type of symbol is an external one. When an
external symbol is referenced the assembler makes a note of the
place in the object progmm that the symbols value should go.
The linker then substitutes the value into the program. If you
put a zero page label in an operand before it is defined, or any
external label, the assembler will always generate a long form (3
byte) instnrction. It is good practice to include z&ro page
symLots at the start of the program in a DSECT.

-
All

unknown symbols in pass 2 will bc flagged as errors.

4.8

4.9

4.10

Assen$ler refererrc

The Opcode

Thc sccond ficld of cach statcnpnt is thc opcodc. It is scparatcd
from tbc labcl by whirc sl)rcc. If thcrc is no labcl thcrc mut bc
at lcast orE spacc or tab bcforc thc opcodc. Thc sarnc charactcrs
uscd in labcls aru uscd in opcodcs. Firstly thc asscmblcr trics to
march thc opcodc to or of thc standard 65C00 scrics
mrcnrlnics, plus thc altcrnatiyc rrurcmonics for sornc brarching
instructions allowcd with this asscmblcr. At this stagc only
thrcc charactcr opcodcs arc considcrcd and ttrcy arc convertcd
to uppcr case. If thc opcodc is mt recogtrlscd thc asscmblcr
scarchcs for a pscudo-op, again convcrti4g thc charactcrs to
uppcr casc. If thc opcodc is rnt a pscudo{p it must bc a Elacro.
Thc asscmblcr looks at thc macros dcfincd to datc and thcn, if it
is not amorry thcm, in thc curcnt macro library. If thc macro is
found in thc library it is loadcd into nrcmory. If thcrc is no
spccificd macro library or thc opcodc is not in it thc rsscmblcr
givcs up ad flags an unknown instnrction cror in pass 2. This
sounds a lcngthy prcccss but most statcmcnts will bc 65C00
mrrcmonics ard so thcy will bc rccogniscd immcdiatly. Macro
namcs can bc mixcd uppcr and towcr casc and thc casc is
significant unlcss thc U opion is in cffcct. Thc asscmblcr
rccogniscs tokcns for thc 65C@ scrics opcodcs, in thc range 128
to 255. hr[dctails arc gnrcn in tbc ADE plus Teclnical
Rcfcrcncc Guifu.

Ihe Operand

Thc opcrard ficld of thc statcmcnt is rcquircd in a prccisc
format by cach rnncmonic or pscudo-op. ff thc format is rvrong
thc asscmbler flags a format cror in pass 2. Thc opcrand
contains an cxprcssion formcd out of constants, symbols and
opcraton plus syntlrx information srrch as an indication of which
addrcssing modc is o bc uscd. Thc standard addrcssing modcs
arc usc4 as uscd in thc BASIC mini-asscmblcr. Thc arithmctic
opcrations havc m preccdcncc croept for thc usc of brackcts and
arc evaluated from lcft to right. Thc only arithmctic qror
flaggcd is division by rrlno.

The Comment t

Thc commcnt ficld is uscd to docunpnt thc progran Thc
asscmblcr prints the @mmcnt in thc listing but othcrwisc it is
igmrcd. A commcnt starts with a scmicolon or back slash and
crrds at thc cnd of thc linc. Thc asscmblcr dso rccogniscs
statcnrcnts whosc first non-blank charactcr is an astcrisk as
commcnt lirps and igrrcrcs them.

+9

pluc Uoer Gulde

4.1 I

4.12

Expressions

In the description of the pseudo-ops that follow, the term
<expD is used to denob an expression. Expressioru consist of
one or more terms separatcd by arithmetic operators. Each
tenn is a conscant or symbol which may be signed, or it is
another expression in brackets (...). Expressions are long (16
bi$ or short (8 bit, less than 256). If the assembler finds a
forward reference in an expression ttren ilte expression is long
even if its value turns out to bc less than 256. The length of the
expression is used to generate long or short form irutnrctions.
Expressions between &,FF80 and &FFFF generate long
instructions but can be used as negative values -1..-128 in
operands that should be one byte long.

Constants ..

The assembler recognises four t)?es of constant: ASCII
constants and three t)?es of numeric constant. Numeric
constants may be binary, decimal or hexadecimal. The first
character of a constant shows what tlpe of constant it is.

Decimal numbens

Decimal constants consist of a sequence of ASCII digits 0..9.
These represent the integer values 0..65535. Overflow beyond
65535 is ignored so the value mod 65536 will be used.

Hexadeclmal numbers

Hexadecimal constants represent numbers in base 16 and coruist
of the digits 0..9, the letters A..F and an identifier $ or &. The $
or & character precedes the hexadecimal digits. The value is an
intcger in the range &0000 to &FFFF. Once again overflow is
ignored. The $ or & alone represent the value zero.

Binary numbers

Binary numbers are numbers in base 2. They are used most
frequently for bit masks. The first character must be Vo thenthe
digits 0 and I may be used. If a digit bigger than I is used a bad
number error will be flagged. The percent sign on its own
represents the number roro.

ASCil constants

ASCII constants represent the ASCU code for a single character.
They ue preceded by a single or double quotc and may
optionally be followed by the same quote. A quote alone will
assemble a space character (&20).

4.13

4.14

4.15

Agsernbler reference

Strings

Somc asscmblcr pscudo-ops asscmblc a scguercc of ASCTI
ctraracters, callcd a string and denotcd by <string> in thc pseudo-
op descriptioru. The start and end of a stn ng must be delimircd
in thc sourcc codc. This asscmblcr allows any character exccpt n

and I to be uscd as a dclimiter. Thc string must start and cnd
with thc samc charactcr, and this characrcr is not asscmbled as
part of thc string. Within thc string thc bscapc'charactcrs ̂ and
I are uscd as follows: Thc charactcr following n is assembled
with bit sevcn set. The ctraractcr following I has 64 subractcd
from its ASCII value making it a control character. Two up
arrows asscmblc an up arrow anC two doublc bars a double bar.
Three up arrows asscmble an up arrow with bit seven set e.nC
thrce double bars asscmblc a bonnol-double-bar'.

Reserved words

Only the lener A on its own is treated as a rcservcd word in this
assembler. A is uscd to dcnote ttre accumulator and may be used
as an opcrand. This is optional so that l,SR is the same as LSR
A.

Arithmetic Operators

The assembler supports thc following arithmctic operators,
which must be uscd as the solc separator bctwcen two tcrms of
an expression. Spaccs are not allowcd in exprcssions, except as
an ASCII coruutnt.

t,-.:,1,$ add,subtract,multiply,dividc and modulus
&,! - bitwise AI.ID,OR
r,),(,)r,(r,() lOgiCal OpCfalOfS
>>,<< strift right or left (eg32<<2 is 128)
-r-rr unary NOT, minus, plus (default)
? unary symbol type

The asterisk may bc used alr a tcrm in an expression and it
denotcs thc currcnt valuc of thc location fuintcr. It is a
symbolic term so that in a rclocatable assembly an exp:ession
using I ss a tcnn is a rclativc cxprcssion.

The only unusual operator is ?. ? <expn or ?<symbol> returns
the tlpc of a symbol or cxpression. Thc possible values are 0
for absolute, 128 for relocatablc and 64 for cxternal. External
symbols have a value of 0 and rclocatable symbols may be less
than 256. Thc assemblcr uses the typc value to correctly
generatc long instnrctions in these cases. You may wish to do
the same in macros.

+il

Cur Ure Gulde

4. 16 Relocatable and external expressions

Expessions arc catcgoriscd ino three bpes. Absolutc
expressions are the normal t)?c produccd in notE linker
assemblies. When a linker module is bcing assembled the
exprcssions may contain a relocatable part or an exrcrnd part.
All operaton may bc uscd in absolutc cxpressiors but
rclocatable and extcrnal symbols can only bc added or
subtracted from an expression. _9."tf orE cxtcrnal referencc
rnay appcar in an cxprcssion. If it does, the listing will bc
marked with a " in the hex codc corresponding to the external
cxprcssion. m00' signifies a simple external referencc but the
extcrnal rnay bc addcd or subnacrcd from an absolurc
expression and that may use any of the opcrators. Thc linker
does not check for arithmetic overflow when adding the
external to a word value. For example:

FARCALL EXT
JSR FARCALL ; output ls 20 00 00'
LDA FARCALL+6 ; output ls A9 06 00n

When an expression uses relocatable symbols, its value is
flagged by a'. If scveral relocatable symbols are addcd and
zubractcd the result may be absolute. For examplc:

DAT 1
DAT2

DB4
DB6
LDA DAT1
LDA DAT2
LDA DAT2-DATl
LDA DAT1-DAT2

output ls A9 00 00'
output ls A9 01 00'
output ls AA 01
output ls A9 FF FF

If an expression attempts to add twice the relocation oonstant ,
or use morc than onc cxternal reference, then a L (linkcr
violation) onor will bc flagged.

High and Inw bytes

This assembler uses xxpresslon to denotc the low bytc of the
cxprcssion (<expn MOD 256) and <expresslon tro denote the
hishbytc (<expn DIV 256). For example:

LDX *>str lng
LDY f l<str lng
JSR pr lnt st r lng

'l 12

4.17

Assembler reference

The Assembly Listing

Thc listing produced in pass 2 of the assembly consists of threc
parts: the program listing, thc symbol table and a report on the
asscmbly. The listing of each stat€ment starts with thc first error
that was flagged for that statement or three blanks followed by
thc contents of the location counter in hexadecimal. If the code
is relocatable the location counbr will bc followed by an
apostrophe to show that its final value will bc adjusted. If the
location is absolute it is followed by a colon. A spacc follows
ard the object codc is prinrcd in hexadecimal. Normally only
the first three bytes of object code are printcd but a list option
allows all byrcs to be printcd on successivc lines. This only
affects data definitions bccause an instnrction cannot be longer
than threc bytes. The line number of the current filc is listed
next in decimal. This can be suppresed by a further list option.
The line number is reset to I each time a new file is included or
chained. This numbcr is for refcrence purposes only.

The listing is set out on pages. The format of each page is
contnolled by the PACE and WIDTH pseudo-op. The default
width is 132 charactcrs. The default page length is 66 lines.
This irpludes 55 statements and the headers ard footers. The
headers and footers can bc turncd off with a list option, in which
case the assembler prints continuous stalements with no
pagination. Line feeds are sent to thc printcr at thc end of each
line; unless, for example, you have set thc printcr ignore
character to ASCII &0A using rFX 6,10. Formfecds arc scnt at
the foot of each page unless you set the no form feed list option,
in which case the footer is made up of blank lines. The header
consists of the file namc followed by a title if specificd by TTL
or a default copygight message. This is followed by the date if
available and thc time if available. The time is the time at thc
start of the assembly in hours and minutcs and will help sort out
which is the latest listing. Finally, aligned in the right hand
margin, is the page number in decimal. The valuc of the
location counter is omitted on EQU,=,QIJERY and conditional
pseudo-ops. Insrcad the operand for the statement is printed
followed by an equals sign. Statements thht are conditioncd out
are marked by an S in column 18 unless conditionds are not to
be listed, in which case the statements are omitted as they
generate no code. In a repcating conditional only thc first
occurrence of the statement will bc listed for a DO though all the
code will be listed if the full code list option is in effect. For a
REPEAT or WHn F the whole passage is listed over and over.

+t3

r Uror Gufde

Llst optlons

Cbtion Mcaning Vdue

0 - No pagination I

I - No line nos. 2
2 - No formfeed 4
p - No symbol table 8

5 - All object code 32

These symbolic names are part of the additional symbol table
held in the ROM that will be used unless OPT O is specified.
Example:

LISTO 8 + 32

4.18

4.lg

Assenbler reference

Assembler Pseudo-Ops

Assemblcr pscudo-ops arc lisrcd acconding to the category in
which they fall. Each pseudo-op is used likc a nonnal opcode in
thc sourcc line.

Assembler Directives

Asscmblcr directivcs arc general purposc pseudo-ops which
control the valuc of various assembler flags and variables. In
additioru asscmblcr dircctivcs diffcr according to whether the
asscmbly produccs a linkcr filc or an cxecutable filc. Linker
filcs havc a MODLJLE statcmcnt bcfore any code gcnerating
statcmcnts. Exccrrtablc filcs have an ORG statcment before any
codc gcncrating stratcmcnts. Thc common featurc of these
pscudo{ps is that ttrcy do mt gcncratc any codc.

ORG

(dabeb) ORG <expb (;omment)

Thc ORC directivc cstablishcs thc valuc of thc location counter
in an assembly prodrcing an cxccutable objcct filc or in the
absolutc scction of a linkcr filc or in a dummy section. In a non-
linkcr asscmbly ORG sets thc load address in thc object file's
cataloguc Gntry. Thc cxprcssion must bc absolute- ard not
contain forward rcfcrcnccs, so that thc cxact valuc of the
location counrcr is known on pass l. If thc load addrcss is o bc
diffcrent from thc codc origin a scoond ORG may bc rscd at thc
cnd of thc program bccausc thc valuc put in thc catdoguc is thc
valuc spccified by thc last ORO on pass l. Each timc an ORG is
crrcountcrcd in a nor-linkcr asscmbly, thc object filc's cxecution
addrcss is also sct to thc vduc spccificd, implying that cxccution
bcgins at thc first byrc of thc filc. If this is rnt thc casc thcn a
diffcrent cxecution addrcss may bc specified by using thc EXEC
pscudo{p or thc EhID statcment. Rcmcmbcr to put the EXEC
statcmcnt afrcr thc last ORG in thc program. Thc MSW pseudo-
op is also uscd to cstablish thc cxacfload addrcss on systems with
sccond proccssors. An ORG sarcment in a linkcr filc is only
valid in a DSECT or ASECI. DSECTs arc valid in both linker
ard non-linkcr files and thc ORG spccifics thc valuc of the
location oountcr for thc dummy scction. ASECTs arc only valid
in linkcr modulcs, ORG scts the valuc of the ASECT location
countcr which is thc samc as that dcscribed abovc for non-linker
filcs. If an ORG is used anywhcrc clsc in a linkcr filc. it is
igmred ard produes a warning nEssqgc.

+15

pluo Ueer Gulde

A tr t

; Examples

start

oRG e2000

QUERY Start address
ORG start

EXEC

(dabel>) EXEC <expb (;omment)

'The EXEC pseudo-op defines the address of the first byte of
executable code in a non-linker assembly. The expression rnzst
be absolutc and contain ff) fonvard references. The E)(EC
statement may be the last statcment in the program. The value
specified is written into the catalogue entry for the object file.
If more than one E)(EC is specified, or an address specified
with the END statement, then previous EXEC statements are
ignored. Note that an ORG after an EXEC statement me:uu
that the EXEC will be ignored. An EXEC smrcment in a linker
file will be ignored and produce a warning message. In the case
of a linker assembly the execution address for the program is set
by a global symbol SYSE)(EC, which you may define anywhere
in one of the modules being linked.

; Example

start

oRG e2000
EXEC start
DATA L,2 r 3, 4
JSR lnl t

MSW

(<label>) MSW <expb (;comment)

The MSW pseudo-op defines the high order address of the
object file in a non-linker assembly. Alttrough the 65C00 series
use 16 bit addressing, the operating system allows files to have a
32 bit address. The high order bytes specify whether the file is
loaded in the IO processor or the second processor. The default
value for MSW is 0. If MSW -l is used then programs will
always run on the IO processor. When writing ROM software
use MSW - I if you are loading the program into sideways RAIvI
for testing. MSW is ignored in linker assemblies.

; ExamPre
BrE. :i::l
MSW &FFFF

Assen$ler referenoo

DSECT

(dabeb) DSECT (;omment)

Thc DSECT directive is uscd to defirE an arca of mcmory, such
as page ?Bro, a data tablc or jump tablc, without actudly
genirating any codc in thc objcct filc. DSECT stands for
dummy section DSECT has its own location countcr which
may be sct anywhcrc by an ORG following the DSECT
statcmcnt. At thc crd of thc DSECT thc prcviors location
countcr is restored. Thc first DSECT will havc an implicit
ORG of znro. At thc crd of thc DSECT its location counter is
prcscrycd so that thc ncxt DSECT will bc continuous to it. Use
DSECT rathcr than EQU to definc variablcs bccauc it allows an
cxtra variablc to bc inscrrcd in a list ycry simply and shows
cxplicitly thc amount of storagc requircd by cactr variable.
DSECTs are allowcd in all asscmblics. A DSECT is tcrminated
by a DEND in a non-linkcr asscmbly or by thc occrurencc of
ASECT or RSECT is a linker asscmbly. Symbols defirrcd in
DSECTs arc absolutc symbols.

; Example
DSECT
oRG e70

varyt r DS 2
val.ue DS 2

DEND

DEh[D

(dabob) DEND

ASECT

(dabeb) ASECT

Tbc DEhID dircctivc signals thc cnd of thc currcnt DSECT and
thc rcsumpion of codc gcrcration from thc prcvious addrcss
savcd when thc DSECT was startcd. If your program produccs
no output thcn look for a missing DEI{D. 'Whcn asscmbling a
linkcr modulc, atry usc of ASECT or RSECT causes an implicit
DEbID.

(;omment)

\

(;omment)

Thc ASECT dircctivc is only ucd in linkcr modules. It
spccifics that thc linkcr should load thc codc following at an
absolutc addrcss, which must bc spccified by using ORG within
thc ASECT. Thc linkcr will producc a scparatc output filc for
cach ASECT cnoountcrGd, whosc nanre is dcrived from thc
main program namc. This is bccausc thc BBC MOS filing
syslcm oonvcntions do not allow scancr loading from a singlc

+r7

J! User Gulde

object file. Conveniently it allows the usc of overlays by having
one main program (the RSECT) and a number of overlays
loading in at the same absolute address. This is explained in
section 1.5 Advarced linker techniqws. An example of an
ASECT would be a jump table that is to be at the top of a ROM
such as the operating systcm ROM. ASECT stands for Absolute
SECTion. The ASECT is terminated by an RSECT. Symbols
defined in ASECTs are absolutc symbols.

; Example
ASECT
oRG e C00

f;3il.r "osFsDo,"ll:il:",""".

EMBED

(dabeb) EMBED .rrpri (; comment)

The EMBED statement is used to embed a section of code inside
a program which should bc assembled as if it were at a different
address. An embedded section is in effect data which must be
moved to the conect address at run time before it will execute.
The code in an embedded section is absolute code and the
<expD following EMBED must be an absolute expression
containing no forward references. The embedded code is
terminated by RESLJME or an ASECT, DSECT, RSECT or
ORG statement. Be careful when programming with embedded
sections. The label attached to EMBED will be the old location
pointer. The first label following it witl be the new location
pointer which will initially be the value of <expD. This
example shows a small routine to be moved to zero page and
executed there:

Assembler reference

i Example:
; Search memory buffer for byte ln Y reg and leave
zero Page
r polnter at e71 point ing to byte found. Rapid i f
buf fer ls
t large.

fast fward ldx { iend code-code start
: L lda code, X

sta code start , X
dex
bpl :1
sty cp_byt,e + 1
Jsr code start
r ts

code EMBED e70
code start lda buf start t patched
cp_byte cmp #0 r patched

beq :r ts
l-ncw code st a rt + L
bne code start

: r ts r ts
end code RESUME

RESUME

(dabeb) RESUME (;comment)

RESLJME marks the end of an embedded section. If RESLTME
is specified without EMBED a warning is given. Similarly,
RESLJME will be done automatically by the assembler if the
source code indicates a change of location pointer value through
ORG or a change of section type. fn this case the assembler will
issue a warning that it is performing a RESI"JME operation.

RSECT
-

(<labeb) RSECT (;omment)

The RSECT directive is used only in linker modules. It
specifies a Relative SECTion and is the default section at the
start of a linker assembly. Code generated in an RSECT is
relocatable and all symbols defined (as labels) are relative
symbols. The linker will attempt to string all RSECTs end to
end and produce the smallest executable object file. One
RSECT may irrclude a special symbol SYSEXEC which will be
the execution address of the linked program. SYSECEC may
occur in an ASECT or DSECT but normally speaking it will be
an address in the code segment which is usually the RSECT. As
SYSE)(EC is a global symbol it may only occur once in all
modules being linked. The end of the RSECT is specified by an
ASECT. DSECTs may be embedded in an RSECT since they
producc no output. Similarly an RSECT may contain an

+19

ilue Ueer Gulde

EMBEDed section of absolutc code.
DSECT, EMBED, RESUME.

END

Sec ASECT, ORG,

(dabel>) END (.expp) (;comment)

The EhlD directive specifies the end of the assembly soruce
.program. Any lines following it are ignored and can be used to
document the module. If an erpression is specified it is used as
the D(EC address in a non-linker assembly. If EI{D is specified
in an include file or a WHIIJ or REPEAT loop then a warning
is issued and the END statement ignored. '

; Examples
END '

END start ; set exec address

MODULE

(dabel>) MODULE <name> (; omment)

The MODLTLE directive specifies that a linker file will be
produged as the output from the current assembly. There
should be one MODLJLE statement per source program and it
must occur bcfore any code gcnerating statements since the
default is for a non-linker assembly. The module name is used
by thc linker when producing the map ard cross refererrce files.
The MODLJLE statement implies an RSECT but can be followed
by a directive indicating any other t)"c of section. The name
must be between I and 32 characters, contain no spaces and is
not errclosed in quotes.

; ExamPre
M.DULE DATA

EQU

dabeb EQU <expb (; comment)

The EQUate pseudo-op is used to assign a value to a symbolic
label. The label must be present on the same source line and the
expression must evaluate on pass one. If the expression is
absolute then the symbol defined will be an absolute iymbol. If
the expression is relative the symbol will be relative. Note that
an expression containing an even number of relative symbols
may be an absolute expression. The use of forward references
wjll produce an elror. Symbolic labels should bc used in place
of numeric constants wherever possible since they make

The = pseudoop allows the value of <label> to be defined (like
EQU) or redefined. = should bc used with caution since it does
little t)?e checking. Its main purpose is for setting the value of
variables used during the assembly to control conditionals and
loops.

; Examples

progranN easler !o
already predefined
I t

-a

i Examples

low EQU
hl EQU
here EQU
zeror nul l EQU

--

dabel> =

low
Iow -

GEQU

; Examples
base GEQU e19

RSECT
here GEQU *

Assembler reference

maintain. The operating systcm calls are
using cquates but may be redefined using

L2
Iow+2 0
* ; PC value
0

<expD (;mmment)

0
Iow+5 i redef ine

dabel> GEQU <expb (;comment)

The GEQU pseudo-op stands for Globd EQUatc and may be
used only in the assembly of a linker module. It combines the
actiorur of ENT rrd =. The labels are set to the value specified in
<expD which may contain no forward references or external
values. The label is thcn declared in the module's enEy list. See
EQU,ENT,EXT.

; absolute

i re I at l-ve

QUERY

<label> QUERY <prompb

The QUERY pseudo-op is similar in operation to the EQUate
pseudo{p, in that the value of the symbol is defined. fn the case
of QUERY the expression to be evaluarcd and assigrrcd to the
label must bc typed in at the keyboard during pass l. <prompt>
is output to the screen as a prompt to the user. All the characters
to the end of the lirp are output, and the prompt is not

+2r

Urer Gulde

considered to be a delimitcd string. QLTERY allows the values
of labels to bc changed each time the program is assembled and
its main use is for swirching various corditional sections in or
out by assigning the value 0 or -l to labels used in IF statements.
QLJERY may be used to give the prograrn ORG in a non-linker
assembly. When the prompt appears the input buffer is flushed
and most erors rapped. Entering a blank line or one that
contains an undefined symbol will cause the assembler to ask
you to t)?c in the value again. The input to QUERYs may be
piovided in advance on the assembler command line (see seition
4.2). See QSTR.

; Example
start QUERY Program start
yesrYES - -L
norNO = 0
debug QUERY debugglng (yes / nol

ENT

dabef> ENT (;omment)

The ENT pseudo{p creatcs an entry in the global symbol table
passed with the object code to the linker. The symbol is assigned
the current value of the location counter which may be in
AsEcT, RSECT or DSECT. If the ENTry is made in DSECT
the symbol's value is absolutc as if it were in the ASECT.
Normally the entry point is the start of a subroutine that is
globally available to all the modules being linked. ENTry
symbols can be redefined with '='. Using ENT and = global
equates may be made. Global symbots are all given 16 bit values
but references to them may be 16 or 8 bit and may reference the
MSB or IJB of the symbol. The linker checks that the value fis
and will produce an effor message if you try and use a global
symbol bigger than 255 in a place where an 8 bit quantity is
required.

, Example
prlnr

i l : (prr) , y

ENDM

(dabel>) ENDM (;comment)

The ENDM statement defines the end of a macro definition. If
you miss the ENDM statement out in the source program the
assembler will try to save the whole source in memory as a
macro and you will probably get an "Out of memory" error
messag,e.

+23

Assenbler reference

; Example
prlnt MACRO

Jsr _pr lnt
DATA @1, eEl
ENDM

QSTR

<label> QSTR <?rompt>

; Example
name QSTR Enter name

copy r

EXT

<label> EXT (;comment)

The EXTernal pseudo-op specifies to thc assembler that the
givel labels are not to be defined in this module but are global
symbols whosc value will bc supplicd by thc linkcr. you may
use as many EXT statements ils you like but the fewer global
symbols used the faster the linking proccss will bc. An cxternal
reference can bc added or subtracted from an absolute
expression or used alone as an opcrand. I.ogal symbols should
not be used as extcrnal refercnces becausc they are not
supportcd by thc linkcr.

ASC 'The ohrner of th ls"
ASC "program ls: n

$name

; graph l tb

; MOS l lb

; Examples
lnl t , graf EXT
heI io, mult EXT
fs_open EXT

EXZ

The
that

EXternal hro page pseudo-op
the labcl so dcfincd is zero

is identical !o E}(T except
page and generatcs short

Urcr Gulde

4-24

irutnrctions. This label will bc declared elscwherc wittt RZP or
GEQ or ENTs in a dumrny sction.

MACRO

dabeb MACRO (; comment)

The MACRO pseudo-op indicatcs that thc sourcc lines that
follow form a macro dcfinition. Thc obligatory labcl is thc
nime of the rnacro. Orce dcfincd the macro may bc rscd as an
opcode, but not a symbol. A macro is gerrrally a short
sequence of instructions used repcatedly. By programming
extensively with macros the program looks more likc a high
level language program and is easier to rcad. Sec Scction 4.26
for more details about macros. I{ACRO dcfinitions are held in
memory so keep them as bnicf at possible with comment
passages just above the tvlACRO statcment. Thc macro
definition ends with thc ENDM statement. Macros may contain
any assembler sour@ statcmcnt exccpt a furttrer fv[ACRO
statement. They may refer to other macros in the opcode field.
The total nesting dbpth for macros is limitcd by the amount of
available memory. Each level qses oIE pagc of mcmory to store
parameters and the REPEAT MIIII tr shcks. ArgWncnts may
be supplied to macros when they are invokcd but the arguments
are not specified in thc MACRO statcment. In the definition
when an argument is to be ued it is given the predcfincd name
@n where n is the argument numbcr. Up to nine uscr
arg,uments may be used in each macro togcther with an
additional argument @0, which is a five bytc ASCII numbcr
supplied by the assembler. @ is uscd to defirrc labels in the
macro so that each macro invocation generates different labcls.
@0 is incremented each time a macro is invoked. When one
macro calls another all the argumcnts irrcluding @0 arc saved.
See EhlDM.

GET

(dabel>) GET <macrs>,(<mocro),.) (; omment)

The CET directive fetches a nracrc dcfinition from the current
macro library opened with thc MACLIB statemenl Warnings
will be issued if the named symbols already exist or arc not in
the library. OET functions differently from ADE versions I
and2.

; Example
MAcLr B

l lall l l"*r ,rurw, drw

^ 4.20

+?5

ASSemUer reterence

BLOCK

(<labeb) BLOCK (;omment)

; ExamPre
BLocK:1 Bfiil :1

:1 Bl9'*
BNE :1

OPT

(dabeb) OPT (-).option>(,<option>).. (;@lnment)

The OPT directive sets an assembler option. The options are
single letrcn and may be given on thc assembly command line
or in the source code. Any letter A.z may be given to set one
ot-?6 flags in the assembler but only certain flags will have any
effect. The culrent list of options is given in iection 4.3. A;
option m?y be turned off by precedinf it with a minus sign. A
'plus sign is pcrmitted but ignored.

; Example
-OPT P, G t pr lnt & go

Listing Directives

The listing directives control the listing in pass 2 of the
assembly. They are optional but they can save space and
imprwe the readability of a program. Au of the listing
directives will accnpt a label which is assigned to the current
valuc of the location counter. However most listing pseudo-ops
are not themselves printcd, so the label will not appcar in the
listing, though it will appcar in the symbol tablC.- It is not
recommended that labels are used in this manner. Listing
directives do not generate any code output.

rlus [Jsor Guide

LST (LISr)

(dabel>) LST ON I OFF I FULL (;comment)

The L,ST directive switches the listing of various source
statements on and off. l,ST ON switches the listing on. I.^ST
OFF switches it off. This may bc overriden using certain
assembler OPTions. I-ST FtrLL lists out all source statements
in macro expansions whereas IJT ON does not. Sections of
code that are conditioned out of the assembly will normally be
listed and marked with an S. Use OPT C to suspend listing of
these conditioned out statements. LIST may be specified instead
of I-ST.

LLST (LLIST) -
(<label>) LLST ON I OFF I FULL (;mmment)

The LLST pseudo-op is identical to LST except that output goes
to the printer instead of the screen. I,ST and LLST can be used
independently.

I I IST may be specified instcad of LIJT.

TTL

(dabeb) TTL <string>

The TTL pseudo-op sets the title up to a maximum of 2l
characters to appear at the top of each page. The default title is
a copyright string. The string is not delimited; everything up to
the end of line is used. If ttre title is too long for yotrr width of
p?per, the top of each page may look untidy so keep titles brief
and to the point.

; ExamPle
TTL support rout ines

SKP

(<label>) SKP <expb I H (;comment)

The SKiP pseudo-op skips the given number of lines on the
output device. SKP H causes a page eject.

4-27

Assembler reference

PAGE

(dabeb) PAGE <expr> (;comment)

The PAGE directive sets the form length for the listing to
<expD lines. The default is 66 lines per page, of which 6l are
printed (55 statements plus the header). The assembler always
leaves a five line gap between pages, plus a formfeed to the
printer, which can be deselected using LISTO. If the assembler
thinks the value of PAGE is too small (less than 20) it will
ignore it and issue a warning message.

WIDTH

(dabeb) WIDTH <expr> (; carment)

The WIDTH directive sets the line width sent out to the prinler.
The default is 132.

LISTO

(dabeb) LISTO <expr> (; comment)

The LISTOption pseudo-op sets flags in an 8 bit variable to
control the listing format. The flags are toggled. The curent
assignments are: Bit 0 (LISTO l) controls the title line. If bit 0
is zero then no titlcs or page ejecs or page numbers occur. Bit I
(LISTO 2) controls the line numbering. The default is line
numbers and page numbcrs on. LISTO 3 will toggle both line
and page numbers. Bit 2 controls formfeeds. LISTO 4 toggles
this. The default is that formfeeds are sent to the printer. Bit 3
controls the syfrUol table listing. LISTO 8 means that no
symbol table is listed. Bit 5 controls thc listing of object code
over three bytes per line. If LISTO 32 is specified then
statements generating more than three bytes of object code will
generatc multiple lines.

"
ExamPre

Lrsro 32+g

u Urcr Cuidc

SYSVDU
(<label>) SYSVDU <expr>(,.expr>..) (; comment)

SYSVDU sends the I-SB of each expression to OSWRCH. Use
with caution. It is basicdly the same as the VDU command in
BASIC. Changing screen mode to a mode that uses more
memory will probably crash the assembler. Choose the pass that
you want SYSVDU to be used in by enclosing it in a pair of
cbnditional statements using the # logical symbol which is true
in pass 2. The SYSVDU allows an optional output stream
specifier. This must be the first expression and must be
preceded by a #(hash). The stream is selected using FX3 and the
original stream restored at the end of the SYSVDU statement.

; Example .o

IF #
SYSVDU 2
INFO Temporary versLon
FI

SYSVDU #0, . . . rDefaul t to VDU

3I3Y33 1,3','.: :;3li:i::'and vDU
SYSVDU #10, . . iPrLnter only
SYSVDU {13, . . . iRS 423 only

SYSFX

(<label>) SYSFX <expr>(,.expr>(,<expr>)) (; comment)

The SYSFX command issues an OSBYTE call. It can, for
example, select different output streams using SYSFX 3... This
command is clearly open to misuse, so reat it with caution. The
first expression is loaded into the A register; the second
(optional) to the X register and the third (optional) to the Y
register. No result is returned. Use conditionals and # to decide
in which pass SYSFX will be executed.

; ExamPle

3["*
' lo

i Pass 1

FI

Assenbfer referenoe

SYSCLI

(dabob) SYSCLI <string>

SYSCU scnds thc string to OSCLI. SYSCU is a powerful
pseudo-op that allows the issue of * cominands during pass I of
thc asscmbly. Usc with extreme caution Use conditionals and #
to decidc in which pass SYSCLI will bc exesutcd. The string is
not delimitcd, the remainder of the linc is passed to the MOS.

; Example

31331, ilffiffi'onext
disc

CHN Fl le 2

INFO

(dabeb) INFO <prompt>

This pscudo-op sends <prompb to the console. It should be
uscd with conditional statements to give warning and progress
messages. Use with conditionals and # to decide in which pass
you wish the string to be sent to the console. <prompb is not
delimitcd. All characrcrs to thc end of the line arc sent.

i Example

I$to i3"",nbr tns dat,a
FI

STOP

(dabeb) STOP <prompb

The STOP pseudo-op causes assembly to be aborted. INFO is
called to print the message and the fatd error "Stoppcd" occurs.
Again, this statcment should bc used with conditionals to detect
an abnormal circumstance such as invalid QLJERY data or a
program exceeding a predetermirpd nremory limit.

; ExamPre

l[on ;::rg?g ror RoM

\

FI

+29

plu Urcr Cnd&

{.21

PAUSE

(dabeb) PAUSE <prompb

The PAUSE statement sends <string> to the console. The
assembly pauses until you Fess the spacc bar. This may bc used,
for example, to pnompt for a disc change. Sce SYSCLI, INFO,
STOP.

bata Definition Directives

These directives are used to define arcas within the prograrn.
Directives to build address tables and messages and hcx data are
provided as well as byte, word and storagc allocation All of '
these pseudo-ops may haye a labcl, which addresses thc fint bytc
of the data. They may all bc followed by a commenl Thcse
psando{ps generarc objcct code outtrlL

ASC

(<labef>) ASC <string> (; omment)

The ASC pseudo-op defines an ASCII string within the
program. Bit seven of cach charactcr is controlled by the up
arrow charactcr (n). Control characters may be assembled with
a vertical bar as in *KEY comrnands. Two up arows assemble
an up arrow, two vertical ban assemble a vertical bar charactcr.
The string is delimitcd by the first non-blank character. The last
character is the same as this and the dclimiters do not form part
of the string.

; Example
prompt ASC

STR

(dabel>) STR

The STR pseudo-op is identical to ASC except that a carriage
return charactcr (&0D) is appcded to the string.

; Example
LDX *>mos baslc
LDY *<mos-basLc
JMP OSCLI- ; exl t

mos baslc STR ' tBASIC'

n=; n

<string> (;comment)

Assembler reference

DC

(dabeb) DC <string> (;omment)

The DC pseudo-op is identical to ASC exccpt that bit seven is set
in the last characrcr generated and not set in any other character.

i example
keywords r TNPUTII

' 'PRTNTl|rr Lr sTt,
rGoTorl

0

MSB

(dabeb) MSB ON I OFF (;comment)

Everywhere the assembler gercratcs an ASCII character in the
output code bit 7 is first sct according to thc MSB pseudo-op.
The default MSB OFF means that bit scven is always zero (BBC
format). MSB ON means that bit seven will bc l. This allows
assembly for different machirps such as APPLE II. Note that
this does not apply to the DC pseudo-op which explicitly srips
bit 7 on all ctraracrcrs ex@pt the last.

DFB (DB)

(dabeb) DFB <expb(,expr...) (; comment)

The DeFine Byte pseudo-op separately defines one or more
bytcs of data. Lcgd values ue -127 to +255, A comma
separates each defined byte. DB may also be used in place of
DFR.

; ExamPle
DB Lr2rzssr-r27r- lorrow+?

DC
DC
DC
DC
DB

DW

(dabeb) DW <expb(,.expr>...) (; @mment)

The Define Word pseudo-op defines words in 65C00 series lo-hi
format. Any label used points to the lo-byte of the first word
defined. Several words may be entered on the same line
separated by conrmas. See DB.

+31

r I Iner Guide

DDB

(dabel>) DDB <expb(,.expr>...) (;comment)

The Define Double Byte pseudo-op is used to define words of
memory in hilo- format. The label will point to the high byte of
the first word defined. See DB, DW.

DS

(dabel>) DS <expr>(,.expr>) (; comment)

The Define Storage pseudo-op reserves space in the object
program for data. By default the assembler fills the bytes with
zeros but a second expresgion may be used to define the 8 bit
quantity used to fill each expression. The expression following
DS must not contain forward references since the assembler
needs to know the exact space requirements on pass l. However
the byte used to fill the space need not be known until pass 2. If
the space allocated is large (bigger than a page) DS should be
used in a dummy section. The label points to the first byte of the
space. In linker modules DS may be used with complete
abandon to define variable sectioru since the assembler
generates linker information about the space rcservation rather
than lots of bytes of zeros. The file produced by the linker will
still contain these bytes but it is possible to produce relocatable
un-initialised variable storage by using the linker U option or
adjusting the final object rile when all the storage is at the end.

; Examples

B3 ll3o, eAA r paee or HEx AAs

HEX

(<label>) HEX <hex string> (; comment)

The HEX pseudo-op is used to define hexadecimal data tables.
The string must be delimited and contain an even number of
valid hex characters or else a B (bad string) error will be
flagged. The bytes are assembled in the order in which they
occur with the label pointing to the first byte.

; ExamPre
HEx ,, oA23BcD7 ,,

4.22

+33

Assembfer referenoo

DATA

(dabel>) DATA <expb | <string> (<expr, | <string>..)
(;ommenq

DATA allows all kinds of data o bc dcfircd on thc same linc.
Thc following convcntioru apply. <cxpD will gcncratc a bytc
of data. f,<cxpD will gcncratc a word of data Strings must bc
delimited by doublc guotcs. Hcx strings must bc dclimitcd by a I
(slash).

; ExamPre
Biffi ?z!',!;;y)ffiFin"

RZP

<labeb RZP <expr, (;omment)

RZP stands for Rcscrvc linker 7so Pagc. RZP mrst havc a
labcl and creatcs an cxternal symbol with thc labcl that is
marked as a zero pagc variablc of sizc <expr> bytcs. Thc linker
creates absolutc addresses for each zaro pagc variablc. <expr>
must be lcss than 256. When making linkcr librarics or working
with them it is imponant !o definc all zero pagc variablcs with
RZP to avoid conflicts at link timc.

; Examples
ptrL rptr2 RZP
zptab RZP

Conditional Assembly Directives

Full conditional aSsembly is supported by thc asscmbler using
IF...EISE...FI which may bc ncstcd up to 255 levcls deep. Thc
EI,SE statement is optional. Conditional statcments may bc
labelled and may bc followcd by a commcnt. Bc careful to notc
which labels will bc defined. It is wise not to use labels with
conditionals in most cases. The special symbol # may bc used as
<expD and is true on pass 2. Only non codc gencrating pscudo-
ops should be conditionally assembled on olE pass only. Sec
INFO, PAUSq STOP, SYS\yDU, SYSFX, SYSCLI.

2
1.0

r Uror Guidc

a-tA

IF

(dabeb) IF <exp> (;omment)

The IF pseudo-op marks thc start of a conditional block The
statcments that follow arc asscmblcd if thc cxprcssion is non
rrlro. The expression mut contain no fonvard references or
relative symbols.

Elsn
(dabeb) ELSE (; otment)

The FI SE pscudo-op may only occur inside an IF..FI block or
the assembler will flag a Q(conditional) error. Thc result of the
eoresponding IF is reversed, so that if assembly was bcing
skippcd it mw nesurlEs.

FI

(dabeb) Ff (; omment)

The FI directive tcrminates a conditional block. Thc assembler
retunu to ttre previouly nested corditional state or caries on
assembling if thc FI was the outcnnost orp.

i Example, the starred statements are sklpped
IF -1
bTock 1
IF O
block 2
ELSE

ii""* 3
bTock 4
ELSE

::: L\""r s-l
*** ELSE*tt

i i""*
6

FI

DO
(<fabel>) DO <expb (;comment)

The DO statcment causes the next non-blank line to bc assembled
<expr> times. Thus, the line following it should not be a pure
comment line (no action will result) and should not contain a
labcl as the label will bc multiply defined. The expression must
be absolute and contain no forward references.

+35

Assen$ler reference

; Example, SHR <operand>, <bi ts)
SHR MACRO

IF GN:L
DO Gl
LSR A
ELSE
DO Q2
LSR Gl
FI

REPEAT...UNTIL

(dabeb) REPEAT (;ommeng
{<statement>...}

(dabeb) UNTIL <expr> (;comment)

REPEAT...LINTIL is a high level assembler construct. The
statcments between REPEAT and UNTIL are repeatedly
assembled until the cxpression following UNTIL is non-zero.
This is dorr by moving thc filc pointcr back to the statement
following REPEAT each time (unless in a macro). The
statcmcnts will be assembled at least once. REPEAT...I-INTIL
cannot bc nesrcd within the main body of the program text, but a
REPEAT loop may occur inside a macro which is called from
within a REPEAT. In such a case the coffesponding UNTIL
must occur in the same macro. REPEATS may not be nested
within the macro but a nestcd macro may havc its own
REPEAT...LJNTIL and so on. In the case of an INCLLJDE file
within a REPEAT l*p, the wholc filc may be assembled many
times. You must cnsurc no multiplc label derinitions occur.
Onc way to do this is to use local labels and makc the first
statcrtpnt a BI-OCK.

; Example
DCLIST MACRO
CNT Er ' O i counter

REPEAT

cNr
Dc

3.[iTI+1 I

Hil3ilt
cNr>cN

WHILE.,.IryEND \

(dabeb) WHILE <expr> (;commen$
{<statement>...}

(dabeb) WEND

The WHn F statement is the conversc of REPEAT UNTIL.
The exprcssion is evaluatcd and if it is non zero thcn thc
statcments following ure assembled, otherwise thc assembler
rcads forwards for the statement after WEI\[D. When thc
<expn is true, then WEhID causes the sourcc filc to bc wound

lu Urcr Cuide

1,23

A-1A

back to the WHILE statement and the <expD is re-evalu,ated.
WHII F...WEND follows the same nesting rules as
REPEAT...I.INTTL.

i Example
DCLIST MACRO
cNr

irr* t 'cNr >o
Dc C tcNTl

:*t ir*o
cNr+l

ENDM

File Control

The last group of assembler pseudo-ops deals with the various
typcs of file processed by the assembler. A maximum of three
files will be open in pass'l. If a listing file is specified on the
command line four files may be open in pass 2. In addition any
EXEC file or SPOOL file adds orp morc file opcr, so check
your filing system can copc before using all of these pseudo-ops.

INCLUDE

(dabel>) INCLUDE <file> (; omment)

Irrclude the file following in the source stream. The file is
inserted between the INCLLTDE statement and the statement
following it. Thus a main assembly source filc may just be a list
of INCLLJDE statements. The main source file remains open at
the correct point throughout the assembly of the INCLLTDE
file. A fatal enor occurs if the file is not fourd.

CTIN

(dabel>) CHN <fife> (;omment)

The CHN pseudo-op chains to the next file in the assembly
source program. A fatal error occurs if the file is not found.
The previous file is closed and thc CHN file becornes the current
source. This statement makes programs compatible with ADE
versions I and 2 but new programs should bc written using
INCLUDE for fasrcr assembly.

Assentler reference

MACLIB

(dabeb) MACLIB <file> (;comment)

IvIACUB defincs the filc that is used to fetch macro definitions.
Macro definitions can bc fcrched uing GET statemsnts. In
addition, if an opcode is not fourd in pass one ard IvIACLIB is
defirp4 then a scarch will automatically bc made. Scc GET.

NOLIB

(dabeb) NOLIB (;csrment)

The NOLIB directive cancels the II{ACLIB directive. After a
NOUB unknown opcodes will not be looked up in the current
library file. A new MACLIB rnay b specified after NOLIB.
NOLIB also frees 2K of workspace so, if room is tight, open
your I\,IACLIB at the start of the source (pass l) and read in all
thc macros you need with GET, then close the library with
NOLts. You will have 2K extra memory for symbols.

OBJ

(dabeb) Ozu <file> (;comment)

The OBJ pseudo-op causes the cunent output file to be closed
ard a new output rile to be opened. No othcr variables are
affected, but by specifying a new ORG a second program may
bc assembled which can reference thc first program because it
strares thc symbl table. OBJ is not valid in linlcer assemblies
and produces a warning message.

; Example

OBJ Jt,ab
ORG eFFEO ; rom jumps
JMP start
JMP procA
J!!P procB

+37

rlus User Guide

1.24 Assembler Addressing Modes

This section describes how the various 65Cm and 6502
addressing modes should be specified in the assembler source
program. The addressing mode is specified by the format of the
operand field. Norc that not every addressing mode is valid with
every instruction. If the assembler detects an invalid addressing
mode ttren aformat eror is flagged duing pass 2.

m tfrr descriptions that follow <addr87> is an 8 bit address in
the range 0..255. <addrl6> is a 16 bit address in the range
0..65535. <expr8> is an 8 bit expression in the range -128 to
+255. 'ix' means one of the irdex regisrcrs X or Y.

Operand format
blank
A (or a)
#<expn8>
<expr8>
<addr16>
<addr8>
(<addrl6>)
(<addr8>)
<addrl6>jx
<addr8>,ix
(<addr8>X)
(<addr8>),Y
(<expr16>,X)

Addressing mode
irfiplied or accumulator
accumulator
immediarc
relative offset
absolute
absolute page zero
absolute indirect
zoropage indirect (not 65V2)
absolutc indexed
?tropage indexed
pre-indexed indirec t znro page
post-indexed i ndirec t znro page
pre-indexed irdirect absolurc

(not 6W2)

If the assembler detects a z-ero page address but there is no short
form for the instnrction then the absotutc form will be used if it
exists. Some addressing modes only apply to certain
instnrctions when assembling for 65C00 series CPUs. These
'extended' instructions will generate format errors if you sit the
restricted instruction set option either in the source or in the
assembly command line.

IMPLIED ADDRESS MODE

There is no operand. Examples TAX, SEC, PFD(.

ACCI.JMULATOR ADDRESS MODE

The operand is an A or an I or there is no operand. Examples
ASI. ROL, DEC A, DEC, ASLA.

Asserbler referen@

IMMEDHTE ADDRESS MODE

A # character is followed by an I bit expression. Examples
LDA#&Ttr,CXUP #Z

RELATWE ADDRESS MODE

Uscd by branching instnrctions to spccfy the offset of the
branch. The intcger is the offset from thc next instnrction so it
effcctively lies in the rangc -126 n +129 b14es.

ABSOLUTE ADDRESS MODE

Thc operand is a two bytc integer stored in lo-hi format and
specifies thc addrcss to bc refcrcnccd. Examplcs LDA &7000,
JMPSTART.

ZERO PAGE ADDRESS MODE

Thc operard is a single bytc specifying an addrcss in the range
0..&IiF. Examples LDA &30, ADC accl, where aenl is in the
pcrmittcd range.

ABSOLUTE INDIRECT ADDRESS MODE

Thc opcrand is a 16 bit addrcss in brackets. Only JMP indirect
uscs this modc. Examplc: JMP (&2000). JMP (vcctor). The
bug in thc 6502 pr@essor JMP Q insruction has been fixed in
thc 65C00 scries so JMP indircct will behavc differently on the
two t)?es of CFU if the vector lies on a pagc boundary.

ZERO PAGE INDIRECT ADDRESS MODE

The operand is an 8 bit addrcss in brackets. This mode is only
valid on 65C00 series prooessors. The addressed location and
thc one following specify a 16 bit address in thc same format as
thc absolutc indirect address mode, but the address of the vector
can bc specified in one bytc. Examples LDA (&40), SBC
(&12). \

ABSOLUTE INDEXED N)DRESS MODE

The operand is a 16 bit address to which the contents of the X or
Y register are added, making a final targct address; for
cxample, LDA table,Y, BIT &2000,X. In the restrictcd
instruction set for the 65V2 some instnrctions will not allow
cither irdex registcr to bc tsed (BIT for examplc).

+39

Sulde

ZERO PAGE INDEXED ADDRESS MODE

The operand is an 8 bit address to which the contents of X or Y
are added. This forms a target address which must still be in
page z&ro. The Y register is only valid to load and store the X
registcr. Examples STX &50,Y, ROR l2X.

PRE-INDEXED INDIRECT ADDRESS MODE (ZERO
PA9E)

The operand is an 8 bit address followed by a comma and an X
in brackets. The target address is formed by adding the X
register to the 8 bit address and using this (zero page) address as
a pointer. Examples LDA (0X), STA (10,X).

POST-TNDEXED INDIREET N)DRESS MODE

The operand is an 8 bit address in brackets followed by a cornma
and a Y. The target address is the address stored in the zero
page location and the one following. To this address is added the
contents of the Y register giving a final address anywhere in
npmory. Examples STA (pr),Y, CMP (&67),Y.

PRE-INDEXED INDIRECT ADDRESS MODE
(ABSOLI.ITE)

The operand is a 16 bit address followed by a comma and an X
in brackets. This address mode can only be used with JMP
instnrctions on the 65C00 series of processors. Example JMP
(vectab,X).

Assembler reference

m aoo fnnd rrl t. rP (tt fPl $,r lP.l (T.x) epl,Y loJr)
ADC
AtlD
ASL
BCC
BCS
BEQ
BIT
BMI
BI.IE
BPL
BRA

.J

.J
a,

0

.J

.J

.J

.J

./

.J
o

.J

.J

.J

a,

.J

.J

.J

.J

0
0

.J

.J
x

0x

.J

.J
x

0

.J

.J
.J
.J

BRK
cLc
CLD
cLt
CLV
CMP
cPx
CPY
DEC
DEX

'J.J
./
',J
.J

Q,
./

0

./

.J

./

.J
'J./
.J

.J

.J

.J

.J

0 ./

x

.J

x

.J 'J

DEY
EOR
rNc
tNx
INY
.lrP
JSR
LDA
LDX
IDY

\,

Qr
a,

a,

0
.J

./

.J

./

.J

.J

.J
a,

'J.J
./

./

.J

.J
a,

J

.J

0

0

.J
I

.J
v
I

./
I

.J
v
I

.J

.J

.J

.J

0

lsR
NOP
ORA
PHA
PHP
PHX
PHY
PI.A
PLP
ruX

a,

.J

.J
0
0
a,

.J
0

.J

a,

a,

.J

.J

a,

-

0

x

.J

x

.J .J .J

PI.Y
ROL
ROR
RTI
RTS
sBc
sEc
SED
sEl
STA

0
D

D

.J

.J

./

.J

.J

.J

.J

.J

./
a,

.J

.J

./

.J

.J

.J

0

0

x
I

a,

'J

x
I

.J

.J

./\

.J

.J

.J

+41

Table of opcodes part 1

I

ADE plus User Guide
Table of opcodes - part 1 cont.

List of abbreviations used in the tiables:

Addressino modes

valid on 6502 and 65C0O series
onfy valid on 65C0O series
only valid with X register index
only valid witr Y register index
equimlent to accumulator mode

tmp
a@
imd
rel
abs
zp
(abs)
(zp)
ab,X
zP,x
(zp,X)
(zp),Y
(ab,X)

lmplied
accumulator
immediate
relative
absolule
zeto page
indirec{ (absolute)
indirect (zero page)
absolute indexed
zero page indexed
pre-indexed indirect
post-indexed indirect
absolute pe-indexed i ndirect

The first table shows opcdes that are vdid for the 65C12 used
in the BBC second processor and master series. The second
table shows additional 65C00 series instructioru supported by
the assembler but not valid on the second processor or master
unless you upgrade your CPU. These are BBR,BBS,RMB and
SMB. The remaining opcodes are alternatives for opcodes in
the first table. CLR is an alternative to SW. DEA is an
alternative to DEC A. INA is an alternative to INC A. These
are not valid when the reduced instnrction set is used. BLT is an
alternative to BCC and BGE is an alternative to BCS.

./

./

./

./

./

./

.J
',/
0

0
0

./

./
0

0
0

sTx
STY
STZ
TN(

TRB
TSB
TSX
TXA
TXS
TYA

lmp lcc knd rel $s e (ebr) (p) rb,r zp,x (zp,r) (zp),Y (eba,x)

BBR
BBS
RMB
SMB
CLR
DEA
INA
BLT
BGE

0
0

',/
./

0

0
0
0
0
0 0x 0x

Table of opcodes - pail 2

4.25

Assembler referencs

Additional Opcodes for the 65C00 Series

The standard chip now used in Acorn machincs is the 65C12.
This chip supports additional opcodes listed in table one but does
not meet the full 65C00 series specification. The assembler
provides the following opcodes that may bc used when writing
for a CPU that supports them. The assembler will not know
whether thesc instnrctions are valid or not for your processor so
you should use them with caution When the reduced instnrction
set option is in effcct none of these codes are valid.

BBR Branch on bit reset

This instnrction tests a bit of a zero page location and branches if
the bit is zero. The syntax for this instnrction is:

BBR <bib,<addr8>,<addr I 6>

<bi> is a number between 0 and 7 and specifies the bit to be
tested. <addr8> is an address in zero page and specifies the
location to be tcsted. <addrl6> is the target of the branch and
must be in the normd range for branch irutnrctions.

BBS Branch on blt set

This insrr.rction tcsts a bit of a raro page location and branches if
ttre bit is set to orp. The syntax is thc same as that for BBR.

RM Reset memory bit

This instruction sets a selected bit of a zero page location to
zoro. The synta:1is:

RMB <bib,<addr8>

SMB Set memory bit

This instruction sets a selected bit of a zero page location to one.
The syntax is the same as RMB. '

+43

Gulde

MACROS

Macros are short sequences of assembly language statements that
are grouped together under a single word (the <label> in the
IvIACRO statement). Whenever the macro name is used as an
opcode the whole sequence of statements will be assembled. If
I-ST ON or I LST ON is selected only the source statement
invoking the macro will bc listed, but if I-ST FIJLL or LI-ST
FUII is in effect then each statement in the macro will be listed
showing how any parameters passed to the macro have been
substitutcd. A macro does not have to generate code, it can
simply be a group of pseudo-ops. The amount of code generated
by a macro may vary in each invocation because the macro may
contain all the conditional statements allowed by the assembler.
A macro may invoke other macros by using the = pseudo-op a
macro may set a flag on its first invocation and vary its code
accordingly. For example, an error macro may define a
subroutine on its first invocation and simply call that routine on
zubsequent invocations.

The use of macros in the source program makes the program
easier to read, but their true flexibility comes from the fact that
they may be supplied with :uguments, or paramcters, that vary
each time the macro is invoked. The arguments supplied to the
macro are known as @l to @9. Whenever the symbols @1..@9
occur in the macro text the assembler substitutes the relevant
parametcr. If a parameter is not supplied then the null string is
substituted. The assembler generates an additional parameter
@0 which is a five digit ASCII string that starts at 00000. The
string increments each time a macro is invoked and is used to
define symbols in the macro so that multiple definition erors
will not occur. The text for macros is held in memorl, in the
symbol table, so that you should keep the text as brief as possible
to avoid running out of room. @N is a one byte ASCII digit
giving the number of arguments supplied. (@n may be used).
@A to @J return the length of the argument 0..9. @A will
always be five of course. The argument number in the macro
text can be a variable or expression provided the expression is
absolute, contains no forward references, and is in the range
0..9. The assembler must evaluatc the expression whilst
expanding the line, before the argument is substituted. To tell
the assembler to do this the argument number is enclosed in
square brackets, for example @[a+21 or @[arg_cntJ where
iug_cnt is a predefined symbol. Round brackets may be used to
substitute a substring of the argument in place of the entire
argument. Two expressions are specified separat€d by a
comma. Both must be absolute and evaluate in pass 1. The first
is the st:ut character and the second is the number of characters.

4.27

Aorcrnbf cr rclercnce

If you go off tlrc end' of an argunEnt rp exha charactcrs ue
substituted. If you start off the end of thc argument a null string
will be substitutcd. @(4,3)9 means start at the fourth charactcr
of argument nirr and substitute three characters.
@(2,2)lug+7J is a valid argument expression. @?[<expn]
returns the length of an argument. Unlikc @A to @J, the
argument is variable, specified by <expr>. @?tOl will return 5
always.

The arguments are specified in the macro invocation as strings
separated by conunas. I-eading spaces in each string are
ignored. If a string must include a conuna or a leading space
then it may be encloscd in square brackets. Examples: A,X,Y

[AJ,[XJ,[YJ,[I I4,[(pn),YJ. As arguments can be used
anywhere without restriction, labcls and macro names may be
passed.

Macro Libraries

Macros may bc defined in the program using the MACRO
statement or obtairpd from libraries. A library is a file that
contairu macro tcxts put there by the MLIB command of the
ADE plus MM[J. The library file contains a catalogue of the
macros in it and their position in the file so that the assembler
can find a macro quickly using random access filing rather than
a slow se4uential search. The I\{ACLIB starcment specifies the
library to use. When you use I\{ACI-IB the assembler reads the
catdogue of macros from the head of the file into the symbol
table so that all the macros in the library are available to you.
The actud tcxt for each macro is not read into memory until the
fint time the macro name occurs in the opcodc field of an
assembly sourcc statement. To save a little time you may force
load the tcxt for firacros from the library using the GET
statement. This is also used if you then wish to open a second
library using a firther MACLIB statement. You must close the
fint library file with NOLIB before using a second library.
The full format of the library file is specified in the ADE plus
Teclnical Referencc Guide .

\

i Examples:

MACLIB ml lb4 i open l ibrary f l le
GET Lncw, decw, stw ; get three macros
NOLIB ; c lose l ibrary f l le
MACLIB genl tb i open another l lbrary
push * ; th ls macro ln genl tb
Lncw scrn_ptr ; th is in mem from mltb4

+45

lur Ueer Gulde

1.28

l,2g

The Frsh macrc might bc defirrcd as:-

push

ar9

t

arg

MACRO
IF rroLrr-rr* f r

Pha
phx
phv
EtSE
-1
l{HILE C? targl >0
phG I a rg;
: arg+ 1
T{END
FI
ENDM

Error Reporting

The assembler undroorU, three kinds of errors. Fatal erors,
non-fatal errors and warnings. A fatal eror is one which causes
the assembler to abort the assembly. A non-fatd error is an
error in the source code which meahs the assembler could not
compile it properly but is able to continue. A warning is a
misuse of some assembler constnrct, usually the wrong use of a
pseudo-op. A warning means that thc assembler is able to
continue compilation of the sourcc correctly at the time the
warning ls lssued. fui cxample of a warning is when the
GET statement includes a macro rurrrc not found in the library.
Use of that macro latcr on will produce a non-fatal etror.

Fatal Errors

All enors reportcd by the operating system to the assembler are
fatal errors. Most fatal errors will be errors related to the filing
system and IO. kessing the escape kcy also generates a fatal
error and running out of room for the symbol table generates a
fatal erTor.

4.30

Asgenbler referenoa

Assembler error messages

Thc asscmblcr gerrratcs tlre following non-fatal cror messages

A
B
c
D
E
F
H
I
L
M
N
o
P
R
s
T
U
v
w
x
z

Address out of range
Bad sring
Conditional cror
Dvide by zcro
Eqtratc or EntrY eror
Foimat illegal (cS IMP &J000,Y)
Bad hex
Illegal symbol
Unkcr rules violation
Multiple dcfinition
Nesting eror
Opcode illegal
Phasc error (t"O"t with diferent value on pass 2)
REPEATerror
Syntax cror
Term missing
Unknown symbol
Value >255
Werror
Macro cxpansion error
Tnropage address exPected

Exrcnded syntax cror mcssages, when opionE is in cffect

S Lirp starts with illegal charactcr
S Y regisrcr exPccted
S X regisrcr exPcctcd
S Illcgal indcx rygisrcr
S Comma exPectcd
S Illcgal cbarrcwr in exPression
S Illegal digit
S lllcgal oPcrator
S Missing)'
S ON or OFF exPectcd
S No statcment afrcr DO -

S Illegal oPion
S Illegal bit number

Extcrded linker rule violations, when option E is in effect

Branch to extcrnal address (not allowed)

Illegal symbol in linker asscmbly
net6catiUle and extcrnal symbols mixed

Absolutc address exPected
Illegal usc of extcrnal sYmbol
Molre tlun one extcrnal symbl in expression

L
L
L
L
L
L

+n

I Urer Gulde

3l Fatal errors during an assembly

The assembler poduces tlre following fatal errors. These
errors are trapped by thc BRK mechanism and are in addition to
other faal errors that may occur in the filing system software.
When a fatal error occurs all open files arc closed and the
assembler returns to the ADE MMU prompl The cnor is
reported with the line number of the current file and the pass
nurrber, I or 2. The eror numbers specified are the ones
reported if the BRK is intcrcepted.

4(r. Text ln memory lost
An assembly of a RAM filc (t) did a CHN or an
INCLUDE.

41. Canl nest ltplilde
An attcmpt to INCLLIDE afile in an INCLLIDED
file was made.

42. Oblect buffer overllowed
OPT G has bccn spccified wittr no output file and ttre
object code is too big for thc ouput buffer.

4f. lnvalld assembler corrrmad llne
The assembler was cntcred with an invalid comman
line.

U. lnvalld QUERY statement
Unable to process a QUERY.

4ti. Stoped
hoduced by the STOP@mrnand.

46. MODULE sper;ltld ln absolute assembly

47. ENDM expecled
The asscmbler got to thc end of the current source
file in a macro definition.

48. MACLIB llbrury notlound

49. MACLIB tud enor
The required macro is not at the position indicated in
the IvIACLIB catalog.

50. Canl run llnker module
OPT G and MODLJLE both specified.

4.32

Assembler relerence

51 CanT run null/unbuftered oblect
OPT G - thc assembler can't find any code to execute.

52. Unknown Inllne strlng
The assembler encountered a $<labeb in the opcode
field where <label> w:ls not defined previously with
QSTR.

53. Bad WHILE
The expression after WHILE contains an error.

54. Ob]ect flle ls a dlrcctory
An attempt has been made to open an ADFS
directory for output.

55. Obled tlle has E attrlbute set
An attempt has bcen madc to opcn a filc for output
that has the E attributc set (ADFS).

56. lnsufflclent workspace
There is not enough memory to begin an assembly
(.3b).

Warnings given by the assembler

A warning is issued when the error errcountered does not
immediately lcad to invalid object code. Howevcr a warning
indicates something wrong with the sour@ and should bc
investigated. The following warning messages may bc issued

l. Can'ruse OBJ in linker assembly
2. Wrong use of ORG (in RSECI)
3. E)(EC ignored in linlccr module
4. In DSECT (produced by DSECT statement)
5. Not in DSECI (produced hy DEND)
6. In ASECI (produced by ASECT statement)
7 . Page length ! (use 20 or more) .
8. MODLJLE name alredy spccificd
9. Illegal module name ignored
10. EI{D in INCLUDE/REpEATAMI{II F (ignored)
I l. Discontinuing embedded scction
12. RESLJME without EMBED
13. Can't use MACLIB in macro
14. Not a macro library (MACLIB handler)
15. Macro not in library (GET)
16. Name already known (GET - macro rctfetclvd)

+49

Jrr Gulde

WarningS arc produccd by pcudo-ops ad most warnings causc
ttrc pecudo-op to bc igrnred.

1

,

Chapter 5

5.1

Linker reference

The Linker

Description of the Linker

The linker is designed to takc separate output files from the
assembler, called linker modules, and produce from the
information they contain an object program that is ready to run.
The difference between this and the assembly process is that
most of the assembly in linker modules has been done. The files
only need to be relocaied to some address in memory and have
missing symbol values filled in. Thus linking is much quicker
than assembling and linker filcs are smaller than source files. In
a large program it saves time to assemble a small module being
worked on and then link it with other code already tested.

The linker also allows the code to be split into sections, common
data areas to be used between modules and libraries of
assembled modules to be used. With a linker there should never
be any need to re-invent the wheel. Once a routine is debugged
it can bc put in a library and used again and again without the
need to reassemble the sotuce.

Linking is initiated from the ADE plus control prompt by the
LINK command, as describcd below. The linker is a two pass
linker. On pass one the linlar reads a header from each file that
contains all the information the linker needs about the contents
of the file. The hcader gives the sizc of each segment of the file
and all the global symbols referenced and all the public symbols
declared in the file. This is done for each file in the linker
command line. Next, if any symbols have been referenced but
not declared and a library specified, then the linker looks in the
library for the relevant module and loads the header for that
module.

A second pass reads the remainder of each file, the object code.
This code has been assembled in linker format and is in a series
of code records. Using the information gained in pass I the
linker can take each code record and produce the iequired
machirp code at an absolute address. This code is written to the
output file. When this has been donc for each file in the linker
command line the linker reads any library modules that are
required and generates code from them in the output file. The
output file is then ready to run.

Aborting a linking operation

A linking operation may be aborted at any stage by pressing the
escapc key. All files opened by the linker are closed.

5- l

l lus User Guide

i ,2 The Linker Command Line

Linking is started from a LINK command after the ADE plus
prompt. The LINK command is always followed by at least one
space. The rest of the line specifies the files to be linked and
various options supplied to the linker. The general format for
invoking the linker is:

LINK (obj) (rsyf f i l (/11st) :modlcl { rmodlcl . . . } { ;opts} (-)

l / t ibtcJ t ' I ib lcJ-.))

The meaning of each part of the command line is:

{obi}

t,syml

fllist)

The eutp.rt file. The curly brackets show that it
is optional. If not specified then linker output is
confined to the symbol tables and cross
reference listings etc.

An optional symbl dump. The name of the
file is given preceded by a comrTul.

A listing file. All printed output is duplicated to
this optional file.

= The separator between the output and input
parts of the command line. This character is
mandatory.

mod A linker module output by the assembler. Any
number of modules are specified separated by

{tcl}

commas.

A conditional label. The label if specified must
immediately follow the linker file name and be
enclosed in square brackets. The label must be
an absolute symbol that has been defined
(globally, to the linker) before the current link
file. If the value of the conditional is zero then
the module is missed out of the linkage. Thus it
is possible to include a module of test routines
and run-time routines - the required module
being selectcd by a switch, o conditional label,
set in the main program.

(;opts)

{nib}

([c]]

t-)

Linker reference

A linker option Linker options follow the
linker file list ard are separated from it by a
semicolon. Each linker option is a single letter
but may have a parameter following it in square
brackets. Options are processed before pass l.

A library filc. The first library file is preceded
by a slash. This file is searched at the end of
pass I for missing modules.

A corditional label. If this labcl is zcro, then the
library file Feceding it is not searched.

A hlphen may occur anywhere on the linker
command linc ard indicate that the line
continues with the next line, which is read from
the keyboard or the EXEC file.

A linking operation involves linking rnodules ard libraries to
produce an executable program.

5-3

us User Guide

Linker Options

A number of options may be entered on the linker command
line. Each option is a letter A..Z (or a..z) and controls the value
of one of the linker variables. Several options require a
parameter immediately following the option enclosed in square
brackets.

Option A[adrJ - address to link

The linker begirn linking relocatable sectioru at this address. If
the address is not spccified then the lowest available address will
be used as provided by OSIIWM. Thus if the linker is being
used on the second processor or master turbo, the program will
normally begin at &800. Such a progam will not run on the IO
processor alone. The address may bc 8 hex digits, specifying a
full 32 bit load address and is given without a leading
ampersand.

Option B[adrl - begin execution at...

Set the execution address of the program. The address must be
given in square brackets. The address may be 8 digits long,
specifying a full 32 bit start address. This can be ovenidden by
the specification of SYSE)(EC as a global symbol in the
program.

Option G - run program after linking

Run ttre program if linking completes with no erors.

Option L - library symbols not listed

Omit symbols obtained from libraries in the symbol table listing

Opt ionM-mapf i le

koduce a memory map duing pass one showing where each
module will be located in memory.

Option P - echo output to printer

All linker output is sent to the printer.

Linker reference

Option Ulfilel - us€ symbol file

Use the specified file narne, which must be enclosed in square
brackets and be a symbol table file. The symbols from the file
are included so that they are known to the linker. Typically
these could be a table of enny points to the operating system of
some other compuler for which the program was being
compiled.

Option Wtwidthl - set printer width

Set the width of the printer page in characters. [width] is
specified in decimal. The default is W[l 321.

Option X - cross reference listing

Send the cross reference listing to the screen or printer if
selected.

Option Zladrl - define zero page address space

This option sets the first address available for the linker to
allocate zero page relocatable addresses. The address is
specified in hex without a preceding ampersand and must be
b-etween 00 and fiF. The default, if no Z option is specified, is
00. The address given will be the first address assigned to
relocatable zero page labels produced with the RZP assembler
pseudo{p. Use theZ option if your program has need of some
absolut e zero page, which should precede the address given.

5-5

lus User Guide

,4 Example Linker Command Lines

PUZZEL=L.PUZZ:EL

Simplest linker conrmand line. koduce an executable progrirm,
HI'ffiL, from the moduleLPlJZEL.

=PROGI,PROG2,PROG3 ; M,X /LlB

Test link the files PROGI, PROG2 andPROG3, produce a map,
cross reference and symbol list on the screen using the library
LIB.

GROM,S.GROM=GR1,GR2,GR3 ; A[800q,A4O|LGL|B

A typical ROM linkage. Link files GRl, GR2 and GR3 to
produce GROM with a symbol file S.GROM. The code is to be
located at &8000 and zero page allocation to begin at &40. IJse
L.GLIB as a library.

Linker Sections

This section describes the meaning of each ty?e of linker
section. The linker considers the program to be divided into
three sections. These are called the dummy section @SECT),
the absolute section (ASECT) and the relocatable section
(RSECT). Each section functioru in the following way.

Dummy sections may be defined an)'where in the program with
a DSECT command and they generate no code output in the
linker file. However, the assembler assembles the statements in
the dummy section and throws the ouput away but remembers
the values of all the labels defined. Thus if global symbols are
defined in a dummy section then the linker knows about them.
The most common use of this would be to define the allocation
of zero page storage. The following macro allocates a global
name to a specified amount of zero page storage. The name
points to the first byte:

RESERVE MACRO

Gl Bii"
DS Q2

3f;ilil
The DEND statement reverts to the previous type of section at
the previous location counter value. The initial value of the
location counter in each section is zero. The value of the
Iocation counter in DSECT may be changed using ORG.

D

.5

Linker reference

ASECTs may contain ORGs that set the absolute value of the
location counter. Each ASECT or ORG (within an ASECT)
results in the opening of a new object file. This is because the
filing system format used by ACORN will not support 'scatter
loading'. Each file takes a name derived from the parent file
including a three digit number appended to up to four letters of
the original name. For instance, the first ASECT in a linking
operation to produce file GAME will be GAME000, the next
GAME001 and so on. This convention is the one most often
used for overlay programming. You must keep track of the
ASECTs in your program. It is best to make each ASECT a
sep:uate module so that the numerical order of the ASECT
object files will follow the order the modules are specified on
the linker command line.

The relocatable section normally forms the bulk of a linker file.
There is only one relocatable segment of memory and the linker
joins all the RSECTs end to end during the linking process. All
the addresses labelled in the RSECT are labelled as an offset
from zero and so the linker must add the acnral start of the
RSECT on to each offset. The linker also has to be clever
enough to recognise the use of just the top or bottom byte of a
relocatable label. An RSECT is ended by the end of the source
or the occurrence of another section. ORG must not be used in
an RSECT. If ORG is used a warning message will be given,
and the ORG will be ignored. This will not affect the assembler
output.

Program with RSECT at 1900 and three ASECTs with ORG
&3000, showing a possible overlay structure.

5-7

s Usor Guide

The Linker Map

As the linker comes across each new section it makes an entry in
its section table and this table can be printed out. The table is
called a map because it is in effect a memory map of the
program. Each entry shows the section number and the start
address and the length. DSECTs do not appear in the map since
they only define labels. The linker prints the module name and
section type followed by the first and last address used in the
section. The last address is in fact the linker's location pointer
value at the end of the section, so this is in reality the first
'unused' address in the section and will, in the case of RSECTs,
be the first used address of the next RSECT.

The Cross Reference list

The cross reference table is output during pass 2. A heading is
printed for each module and then every external reference
encountered in the module is printed together with the module
name containing the external reference. For example:

Module: INIT
lnl tgra f : SBRS
lni t snd : SBRS
ini tbrk : I - IAIN
start : l t lAIN

This shows that the module INIT accesses global symbols
"initgraf' and "initsnd" in module SBRS then "initbrk" and start
in module lvIAIN.

The Symbol Table

The linker symbol table is intended for use with a symbolic
debugger. The table is stored on disc in non-ASCII format when
a symbol table file name is included in the linker command line.
Such a table can be recovered with the U option or used with a
symbolic debugger. The format is documented in the ADE plus
Teclnical Reference Guidc. When the symbol table is listed the
user has a choice of omitting library routines using the L option.
The table is listed on the screen in alphabetical order, with the
absolute value of each symbol provided.

5.9

Linker reference

Linker Brror Messages
The following fatal error messages rnay be issued by the linker:

13. lnvalld llnker aommand llne
The command line passed to the linker by the
ADE plus MMU could not be processed correctly.

14. Not a llnker module

15. Llnklng abandond
The errors reported during pass one of a linking
operation mean that the linker is unable to continue.

16. Bad module
A module name is too long or conrains illegal
characters.

17. Escape

18. Conditlonal mlsslng

19. lllegal condltlonal
The linker expected a valid label between square
brackets following a linker or library module.
Note this eror is not detected when the linker
command line is processed, but when the module
in question comes to be read in.

20. Zero page exceeded FF
The allocation of linker relocatable zero page (eg
with RZP) has exceeded the allowed limit.

21. lllegal llnker record
A file has been specified as an input module that does
not conform to the ADE plus linker module fire
format.

22. Not ADE symbol flle
The U oprion artempted to load a symbol table file
that was not in the correct ADE plus format.

5-9

lus User Guide

Chapter 6

6.1

6.2

6l

Utilities

The Debugger

Description of the Debugger

A debugging monitor based on thc SPY debugger of ADE
vcrsions I and 2 is supplied on disc with this package. The
dcbugger is supplied in thrcc versions. Version I called
DEBUCL nrns below the mode 7 screen memory in main RAM.
Vcrsion 2, called DEBUGH, runs in the sccord processor
mcmory just bclow &,F800. These versions are activated by
typing +DEBUGx. The third vcrsion is suitable for sideways
RAM ard called DEBUG. Oncc loaded (cg with +SRI-OAD)

and regisrcred Oy pressing crl-break) it can be acccssed from
the ADE plus MMU with the DEBUG command. The utility
program LBUC loads the debuggcr and pagcs in a given RAM
slot. For example !o debug RAM slot l5 t1pc.

ILBUG 15

On entering thc debugger the screen displays a 64 byte block of
mcmory, the processor regisrcrs and a command line. Most
comnrands are re-cntered with a singlc key stroke. If the * key
is pressed, the debugger accepts a whole line of input and lrasses
thc lirc to OSCLI. Thus, to exit, you can type *ADE. The
memory display can bc in hex or ASCII or in disassembly
format.

Debugging comrnands

Unless otherwisc spccified, all the commands are single key
cntry.

L - Display dissasembly

Thc L key will toggle the mcmory display bctwecn hex and
disassembly. Thc memory pointcr will then point to one of
cight instnrctioru disassembled on the scr@n.

TAB r Display in ASCtr

Display memory in ASCII text with a full stop printcd for
charrctcrs that are unprintable.

Urer Guide

62

M - Set memory pointer

Tl Tel,lightcd location in thc middle of the memory disptay is
called the memory pointer. This is the location tltat tiifi Uc
ygqa!:d if you cntcr commands to rype datzinto mcmory. Typ,
M followed by thc hex address. N6 ampcrsand is cntircq iU

)mpt will appcar when you press
m when dan is expectcd io bc
r have cntered thc addrcss. Thc
emory ccnned on thc address

I,D2A05

Note that this can also be achieved by tlprng

2AO 5M

without pressing return

RETURN - Increment memory pointer

Move the memory poinrcr to the next highest address.

+ - Increment memory pointer by g

Move the memory pointer up by onc column. Ty?ing ; has thc
same effect.

- Decrement memory pointer

This is the oppositc of pressing the return kcy.

- Decrement memory pointer by 8
Move the mcmory poinrcr back by 8 locations.

PC
in the PC

trop of thc

- Update memory pointer from

- Update PC from memory pointer.
'l-he program counter is set to
Iocation as the memory pointer.
single stepping, for example.

The memory pointer is set to the address cont,airpd
registcr, as shown on the register display at the
screen.

U

@

pornt
This

at the same memory
may bc donc prior to

Util it ies

6.3

I - Set memory pointer indirectly

The memory pointer is updated from the contents of the current
memory pointer location and the location following it. The
current location is considered to bc the low byte of the address.
This procedure is often called word indirection.

R r Set memory pointer relative

The memory pointer is set as if the contents of the current
location pointed to by the memory pointer were the
displacement in a branch irutnrction.

G - Get first occurrence of pattern

N - Get next occurrence of pattern

These two commands enable a search to be made for a specified
byte pattern or string. kess G followed by the pattern. This
may be entered in hex one byte at a time. Each byte is followed
by return. Strings are entered between quotes. Press return on
its own to begin the search. The search commences at the byte
following the current memory pointer. If the pattern is found
the search stops with the memory pointer at the first byte of the
pattern. Further occurrences of the pattern can be found by
pressing N. When the pattern is not found (memory pointer
goes past zrro) the message ?err? is displayed. For example to
find the instnrction JSR &2IAF, enter:

G
>20
>AF
>2L

Altering Memory

To alter the current memory location indicated by the memory
pointer, enter a hex number and press the space bar. If you
enter a number and press return, the number will be entered and
the memory pointer will advance by one. To enter a string into
memory, type a quote character and enter the string which will
be terminated with a second quote. Each character will be
stored and the display updated as each key is pressed. To see
text in ASCII on the display, press the TAB key.

6-3

;er Guide

r Fill memory block with byte

This command allows a range of memory to be filled with the
same byte. To clear four pages from &1900 to &ICFF, for
example, type:

P
f i rst : 1900
-l ast ; LCFF
with.' 0

If the last address is less than the first the debugger displays
? err? . As the debugger enters the data it reads it back and
checls the value. If the data does not verify (eg if you write
over a ROM) then the message ?fault? will be displayed with the
memory pointer set at the offending location.

S - Shift memory contents

This command will intelligently move a block of memory of
any size to a new starting address. To move a page from &1900
to &1980, enter:

S
f i rst : L 900
-1, ast .' L 9FF
to: 1980

If the last address is less than the first then the debugger displays
? err? .

V r Verify two memory blocks

This command compares the contents of two memory blocks
and if a difference is found prints ?fault? with the memory
pointer set to the offending address in the first block. If the two
blocks are the same o/c is displayed. To verify that pages &19
and &29 are the same, for example, tlpe:

V
f i rst . ' 1900
J ast . ' 19FF
with: 2900
ok

Utilities

6.4

6.5

Altering the registers

Miscellaneous commands

Z - Single step

Pressing the Z key cxecutes the instruction at the current PC
location. This instnrction will bc displaycd in disasscmbly form
bctwecn the rggislet(t) and memory display(s). Thc tegister(s)
and memory display(s) will bc updated to show the resutt of tiri
stcp.

K - Continue from PC

The program being debugged is atlowed to run from the surgnj
PC location with the registers set as shown.

J - Jump to address

Executc a program from the address entered after the J
command. Typc in the address and press return. The debugger
does a JSR to the location entered, so subroutines may be teJted.
II you press J but thc,r ,Jecide rxlt ro jump, press thc iscape key.
To run a progri[n f, , r;,, JZ I i;,Jr), enter:

, j>1900

: - Clear break points

Clear all 8 break points.

, - Toggle break point

Set or clear a break point. Up to 8 break points may be used.

G5

Urr Oulde

Advarrcc thc npmory pointcr to thc rext brcakpoint

f, - Advance to next instruction

Advarrce thc mem)ry pointcr o ttrc rrrt insrrrction.

X - Exit

Return o ADEMMU (ftomROM debugger).

Index

INDEX

The main section dealing with each subject is shown in bold t)pe. Other references
are to page numbers.

A
Abbreviations
Absolute
Addressing modes
ADE plus MMU
ADFS
Advanced

Editor
Debugger

Arguments
Arithmetic operaton
ASC
ASCII
ASECT
ASM
Assembly

aborting
directives
from memory
listing
options

B
Batch commands
Binary
Block

copy
delete
move

Buffers
resetting

c
Cartridge
Cassene files
CHN

files
Clear

to end of line
markers

Clock
cMos
Econet
System

CLOSE
COMTvIANDS

Editor
Comments
Compilers
Conditional

Unking
Opion
Directives

Constants
Cross reference
Cursor keys

L2,2-g
t-19

4.U,+38...4-4O
LT
l- t

l-7,3-l
l-7

+9,+36,4-44
4.15,4- I I
421,4-30
4.12,4-lO

*19,1-19,+17,5-6
42,1-9,2- 1,4- l,+2

+2
4-15,4.19

l-9
4-13

4.3,+4

l-13
4.12,4-10

+19,+8,4-25
3-7
3-6
3-7
l-5

l-8,2-7

l,l, l-2
l-6

4.23
+2,4-36

3.9
3-5
3-8

t4
t-4
t-4

Ll,2-l
2.1,1-8,2-l

3-3
4.10,l-17,+9

2-3
422
r-22
+4

+tz,X--3rl
s.7,1-205-5,5-8

3.8,3-3

definition
Date
DC
Debug
DDB
Decimal
Dele!e

line
char
block

Demo disc
DEND
Disassembly
DFB,DB
DFS
DO
DS
DSECT
DW

E
Econet
Edit

from memory
command mode
leaving
status

Editing
ELSE
EMBED
END
ENDM
ENT
EPROM
EQU
Error

extended
summary
list file

'

fatal
MMU
assembler
wait after
reporting
linker

Escape
E)(EC
Exec address
Expressions
EXT
External

index- l

4.21
+30,4-32

l-4,2-8
4.21,4-31

L1,6,2-2,6-l ...6-5
4.21,4-32
4.12,4-lO

3-5
3-6
3-6

1.1,1 -l, l-2,1-10
4.19,4-17

GI
1.21,-4-31

l- l
4.22,4-34
4.21,4-32

4.19,4-9,+17 ,5-6
421,4-31

l-4
3.1,1-7,1-9,2-2

1-9
3.9,1-2,3-7

3-2
3-3

3.t,1- 10,3-2
4.22,4-34
4.19,4-lg
4.19,4-20
4.19,4-22

4.19,1-16,+7 ,4-22
t- t

4.19,4-20
t-t2

l-12,+5
l-13,4-5

l-13
2-1,+46,4-49

2-9
4-47
+5

4-46
5.9,5-gr-8. . . r - 1 l,t-r.ii;ifi?

l-21,5-4
4.t1,+1o..,4-12

4.lg,l-16,4-23
4.16,1-16,4-12

D
Data

ADE plus User Guide

F
FI
Find next
File control
Filter
Form feeds
Function keys

User defined

G
GEQU
GET
GO
GOTO

labei
line
markers

H
I{EX
Ilexadecimal
High & low bytes

I
IF
Immediate
INCLUDE
Inline string
INPUT

edit buffer
INFO
Insert

line
char

IO processor

J
Join line

L
Labels

local
Ubraries

linker
macro
symbols

Line feeds
LINK
Linker

aborting
command line

List options
LISTO
Listing

disc
option
assembly
directives

LLIB
LLST

FULL
LOAD

4.22,4-34
34

423,4-36
l-2,1-22,3-8

4-t3
3.E,3-3 . . .3-7 ,l- l0

3-9

4.19,4-21
4.19,4-24

2.1,2-2
3.E

l-9,3-4
l-r I
3-7

4.21,4-32
4.12,+10,4-32

4-t2

4.22,4-34
4.24,4-39

4.23,4-36,1-6,+2
4.lg,l-9,4-23

2.1,1-5,1-7,2-2
3-l

4.19,4-29
3.9,3-3,3-4

3-5
3-6
t-5

lrad address
L-ocal labels
LOPT
I.ST

FULL

M
IvIACLIB
MACRO

arguments
Markers
Master
Memory map
Memory pointer
MLIB
MMU

prompt
commands
variables

Mnemonics
MODE
MODULE
MSB
MSW

N
NEW
NOLIB

o
OBJ
Object file
OLD
Opcode
Ooerand
oFr

G
Optioru

assembler
linker

ORG
OS labels
OSCLI
OSF'IND
OSGBPB
OSWRCH
Output
Overlays
Overtype

P
PAGE
PAUSE
PRINT
hinter
PROT
Pseudo-ops

a
QSTR
QUERY
QUIT

inr ter-2

l-21,54
l-16

l-7,24,5-4
4.19,4-26

4-4/,

4.23,2-5,4-37
4.191426,2-5,+1,4-24

+M...4-46
+8

3-3,3-6,3-7
l- l , l -3, l -6

1.5,5.6,l-205-4,5-g
6,6-2

2.1,2-5
2.1,1-3
14,+'

2-r
2-l
+l

2.1,1-6
5, I -.1 6,1-19,2-4,+15,5- I . . .5-g

4.21,4-31
4.19,4-16

3.9,3-7
4.23,4-37

4.23,4-37
4-2,+37,5-l

3.9,3-g
4.8,+9,+41...4-43

4.9,+9
2.1,419,1 -'1,2-5,4 -?S

1-l1,44,+5
l-7,2-4,2-5

+3
53,5-4

4.19,+ 15,5-6. . .5-g
+4

l- 13,6- l
+?

l-6,2-3,+^
l-16

2.1,1-6,2-6
l-18

3.9,3-3,3-4

4.lg,l-5,+13,4-27
420,4-30

2.1,1-7,2-6
l-6,4-4,5-4

2.1,2-7
4.18,4-1,+9,4-15

4.lg,l-9,4-23
4.19,+3,4-21
3.9,1- l1,3-g

3-5

4.7,+7
+7

l- 18, l-21
+9,4-45

5-4
4-t3

l-17,2-3,5-l
5,1- 15,5- I

5- l
s.2,5-2

4-r4
4.19,4-14,4-28

4.17
l-13,4-2,5-2

+4
4-13

4.20,4-?5
2.1,1-21,2-4

4.19,4-26
4-44

3.9,3-8

R
RAIVI

w
Warnings
WEND
WHILE
WIDTH

x
Y

z
280 assembler
ZASM
7nrc page

#
I

*ADE
rFx
*TIELP
*INFO
*LOAD
*RUN
*SAVE
*TY?E

lndei

4.32,4-39
4.22,4-35
4.22,4-35

4.19,+13,+27 ,5-5

sideways
available
protected
disc

Reduced instruction set
Registers
Relocatable

TfIo Page
REPEAT
Replace?
Report
Reserved words
RESET
RESUME
ROM
RSECT
RUN
RN

s
SAVE
Screen
SEARCH
Second processor
Sections
Single step
SKP
Split line
SPY
Source
STAT
STOP
STR
Strings
Symbol file
Symbol table

linker
dump to disc
assembler

Svntax check
SYScLI
SYSE)(EC
SYSFX
SYSVDU

T
Tab key
Text window
Time

editor
TTL

U
I.JNPROT
UNTIL
Upper case

v
View

l-3,2-6
l-5

l-5,2-6,2-7
+6
+4

6.4,G5
4.16,1-17 ,l-18,4-12

l-19,4-33
422,4-35

3-8
l- 10,4- l3
4.14,4-ll

Ll,l-8,2-7
4.19,4-19

l- l, l-7,3- I
4.19,1-19,+19,5-6

3.9,1-8,3-9
4.21,4-33

3.9,1- 13,3-8
l-5,1-6,2-3,2-6
3.9,1-9,3-4,3-8
l-5,1-6,2-3,2-6

5.5,1- 18,5-6
6.5,G5

4.19,4-26
3-5

6.l,G1
4.6,4-3,+7
13,14,2-7
4.20,4-29
4.21,4-3O
4.13,4-ll

t-zt5-2,5-5

I - 17,5.t,5-7
r-20

4-1,4-13
4-4,+6

4.19,4-29
l- l6

4.19,4-28
4.19,4-28

3-4
3-2

Ll,l-4,2-8
3-3

4.19,+13,4-26

2.1,2-6,2-8
4.22,4-35

2-4,4-5,+7

l -8,3- 1,4- I

@
%
&
$

l-7,2-8
2.1,2-8

5-5

2-4
4.19,+7,4-21
+8,+36,4-44

4- r0
4.12,4-10
4.12,4-10

4-12
4-12

+39,4-29
2-2,3-1,4-3,G1

13,l-3,2-4
4-t3

I -8,2- I
l - l8

l-6,2-3
l- l l ,+ l

l-6
l -13

index-1'

l ' l r f s lJsor Guide

This function key strip can be cut out

and used with the ADE+ min i text

editor.

Your Key to
Expanding the
Powgr of rrr

Technical
Reference
Guide

soUTHYoRKSH|REsYsTEMSFoRTRA|N|NG,EuJcAT|ot.|AND
unMceMENT LIM]TED , 1I@LIEGIATE cREscENT, SHEFFIELD S1O 2BA. TEL: (07421 68ru1

ADEflrs Technical Rcfcremc Guidc

Published in the United Kingdom by:
South Yorkshire Systems for Training Education
and Management Limited,
111 Collegiate Crescent,
Sheffield, Sl0 2BA,
England.

Copyright @ 19Ed South Yorkshire Systems for Tralning Educatlon
and Management Llmlted.

First Publishd 19E6

All righs reserved. This book is copyright. No part of this book may be copicd or
stored by any means whatsoever whether mechanical, photographic or electronic.
While every precaution has been taken in ttre preparation of this book and
accompanying software, the publisher assumes no responsibility for crrors or
omissions. Ncither is any liability assumed for damages resulting from thc use of
this book and accompanying software.

CONTENTS

Chaprcr I

Chaptcr 2

Chaper 3

Chapcr 4

Chapcr 5

Chaper 6

Cbapcr 7

Ctuper 8 Example kograms

Acknowledgements

Thc authors wistr to thank all thosc who havc hclped in the developnrcnt of ADE
plus. Thanks are due to all thc original dcvelopers of ADE and custiomers ovcr the
ycars who havc made valuable suggestions. We havc tried to includc all of the best
idcas that you have oomc up with. Thanks are duc (again) to Ray for trials.work
and to Nigcl for rials and suggcstions for this uscr guide. Programming was by
Stcvc with hclpful assistarrce from Davc, who also wrote thc BASIC program
convcrsion utility. Dr Oliver Blatchford made useful additions to the CONVERT
program.

Introduction

System Overview

MMU Variables

Operatiorui Performed Dring +ADE

ADEOSWORD

File Formats

Assembler Objects and Variables

ADE plts Technical Reference Guide

u Technical Referencc Guidc

I

1.1

TG- I

ALIE pius 'l ershrutxl Rcfcrencc Guidc

Introduction
The ADE plus Technical Reference Guide is a supplement to the
ADE plus user manual and can bc clippcd in the back of your
ring binder. None of the information contained in this manual is
necess:uy to operate the ADE plus software; that information is
already contained in the user guide. What this supplement will
do is enable you to understand how the ADE plus system works
and expand the system to meet your own requirements. You will
need to read all of the inforrnation in the subsequent chapters in
order to be able to write sideways ROM modules that extend the
ADE plus systenr and take full advantage of the memory
management unit (MMU) facilities.

This guide does not explain how to write sideways ROM
software. A full explanation of the Acorn MOS calls to sideways
ROMs, and the format that a ROM must take, is provided in the
Advanced User Guidc fo, tlv BBC Microcomputer published by
the C-ambridge Microcomputer Centre and the Reference Manual
Part Onc to the BBC Master series, published by Acorn. Either
of these books provide all of the information required to write
generic software. Applications taking specific advantage of the
Master's capabilities will need the Acorn manual.

Generic Software

The philosophy of the ADE plus system, if it has one at all, is that
of generic application.s. This means that all of the programs
supplied with the ADE plus system will work on the BBC B,
BBC B+, Master, Master Turbo and Master Compact. The
software wil l opcrare with the DFS, ADFS, NFS and ANFS fi l ing
systems. It will oper:rte with most third party add-ons provided
they stick within the rules and meet the full specifications of the
Acorn MOS. Sadly many third party filing systems that we have
tested fail to do this. Users are strongly encouraged to make their
applications generic when extending the ADE plus system. This
will allow users to share new modules among themselves without
due regard to the system each user has.

Writing generic software does not mean that the system cannot
take advantage of the extended capabilities of the Master series.
What it does mean is that the programs must be aware of which
system they are running on and take appropriate action. For
example, when you type +ADE the MMU will obtain the time
and date from the CMOS RAM if running on a master or, failing
that, from the network (if that is the current filing system) or, as
a last resort, will ask you for the information. The main
restriction of generic software is that the extended instruction set
of the 65C12 or 65C02 microprocessor cannot be used. The

ts'lbchnical Referenoe Guide

' l ' (; l

main conscquence of this is that programs are slightly larger and
very slightly slower than they would otherwise bl Uut in-reality
there is no problem, everyone agrees that ADE plus is a fast and
extensive system. Of course the potential market for generic
software is -much bigger than for software tied to a Jpccific
machine or filing system.

You will only be able to use the routines listed in the Technical
Reference Guide on systems where ADE plus is already present
since they all use the MMU facilities.

System Overview
Th9 ADE plus system consists of a memory management unit,
which is also an overall system manager, and a number of
modules. These modules are either supplied with the system or
supplied as additional software or are your own creation. A
module is either residcnt in which case it is in sideways ROM or
RAM, or tranient in which case it is held on disc (or RAN,I disc)
and called into memory by the filing system when required.
Examples of resident modules are the 65C00 series assembler,
the Linker, the Debugger (DEBUG) and the macro librarian.
trqpple_s_ of transient modules are the RAM based Debugger
(DEBUGUH) and the file filter program. Transient modules
fall into two categories. The filter program is an example of
software that makes no use of the ADE MMU variables and
routines. This program will run without ADE plus being
present. Other transient modules will make use of the MMU
information and can only run alongside ADE plus. In this guide
any program that makes use of the MMU, or is useful to the
MMU is referred to :ls a module. The golden rule for any
module is that it returns control to the MMU variables incact.

The MMU can be in ROM or loaded from disc into sideways
RAM (the software is the same). It will be referred to as tire
MMU ROM. The Linker and Librarian modules are part of the
MMU ROM and called directly from the MMU command level.
These modules cannot, therefore, bc replaced. The assembler
and any additional modules are all external to the MMU and can
be replaced by your own code if necessary. The MMU follows
specific rules for calling modules in sideways RAlvI. Transient
modules are always *RUN by the current filing system.

An exception to the rules described above is the editor module.
'lhe MMU will send editing instructions to a ROM based editor
rtttdule if present. If no such module is found then the MMU
will use it's own internal rcxt editor. The MMU will not

3

TG-3

ADE pluE Tcchnical RcferGrrcc Guid.

immediarcly recognise VIEW or WORDWISE as an cdior
module, but if you have facilities to patch these ROMs they can
casily bc made to appcar as the advanccd editor that thc MMU
craves.

MMU Variables
This section describcs the location and purposc of each of thc
ADE MMU variables.

The MMU functions as a language. This means that it will nrn on
the second processor if present. It is allocated lK of workspacn
by the MOS, from &400 to &7FF. The MMU variables that
must be preserved are all held on page 4 between &400 and
&490. Modules must not interfere with these variables under
any circumstances. It is not good enough to rely on restoring the
variables unless you intercept the BREAK key. If your modulc
also furrctions as a language it will be re-entcred on BREAK. It
must rpte that this is a re€ntry and not simply save the variables
again. If your module is not a language then you should note that
the MMU variables will bc held on the langruge pr@essor.
Thus if a sccond proccssor is corupct€d, npdules running on thc
IO processor will not be able to access the MMU variables. To
curcumvent this problem, all modules should nrn on the
language processor. This is achieved by setting thc top bits of
their load and execution address to zgro

As well as passing the variable on page 4 to a module, the MMU
also passes the command line or command line tail to the module
in page 7 of the lang,uage processor. Modules that only nrn from
the ADE MMU command level can always find the command
line here and do not need to go through MOS calls to access it.
Oncc the command line has been processed by a module it can bc
thrown away.

A full description of each variable is given thofgh not all
variables are useful. Many variables are referred !o in the
following chapters and their usc will bccome more apparent.

&4OO SYSTEM STATUS

SYSTEM_STATUS is normally zaro. Modules can set this
variable !o &FF to indicate that they have been entered onse.
The MMU will not reset it, so modules should set it back to zero
before exiting to the MMU. Rom based modules can use the
ROM workspace byte allocated to them by the MOS to store their
status, but the MOS byte is on the IO processor and dependent on

'l echnical Reference Guidc

' l ' (i 4

the ROM page that the module sits in, so SYSTEM_STATUS
may be used more conveniently.

&401 LINK-ROM-SLOT

This variable contains the ROM id of the ADE MMU, Linker and
Librarians. To exit to the MMU load the X registcr with this
variable ard perform OSBYTE 142.

&N2 ASM-ROM-SLOT

This variable contains the ROM id of the ADE 65C00 series
macro assembler. To perform an assembly from another
module set up the assembler command line tail (everything $tr
the ASM command) at &700 and load the X register with this
variable then do OSBYTE 142. Editor modules that contain a
RUN command should follow this procedure. When no 65C00
assembler is present this variable contains &FF,

&403 EDIT-ROM-SLOT

This variable contains the ROM id of the advanced editor module
or &FF. If it contains &FF then EDIT commards are passed to
the MMU's intcrnal text editor. If the variable contains a
positive value then the MMU calls this ROM with the EDIT
command line (in is entirety) at &700.

&404 DEBUT-ROM-SLOT

This variable contains the ROM id of a ROM based debugger
module of &FF. DEBUG commands will be passed to this
module, if present, in the same way as EDIT commands are
passed.

&405 ZASM-ROM-SLOT

This variable contains the ROM id of a 40 assembler or &FF.
The command line tail of a ZASM command will be passed to
this ROM at &700. The ZASM command could be used with any
utility module as a way of extending the system, for example a C
compiler. The MMU will not process ZASM commands unless a
comnrand line tail of at least one non-blank character is prcsent.
You will note that the EDIT ard DEBUG commands do not
require parameters and thtrs the whole command line is passed
for analysis. The ASM and ZASM commands always require
parameters and the MMU moves these to &700 for your
convenience.

TG-5

ADE plus l echnical Reference Guide

&406 OPT A

This is the first asscmbler global option, as sct with the OPT
command. The asembler must copy 26 bytes from OPT A into
is local options since these may bL moOifieO by the coirmand
line or by OPT statements in the sot^rrce file. OPT A must not
bc modified. The 7AO and 65C00 assemblers ari deemed to
share the same list of options and you should stick to the
interpretation of them if you write a 280 assembler, though
unused options will be available to you for any pu{pos€ .

&420 LOPT-A

This is the first linker global option. Since the linker is internal
to the MMU, these options are of no interest to external
modules.

&438 HIGH-WATER-MARK

This is a word variable, low bytc first. It specifies the value of
OSHWM on the language processor. Its main use is internal to
MMI,J.

&43D RAM-TOP

This work variable spccifies the top of the workspace RAM on
the language proccssor. The assembler, for example, sets up a
stack at RAM TOP for macros and libraries at this location.
Transient modules running on the second processor will b€
passed their start address as a value of HIMEM from the
opcrating system, which is of little use. RAM_TOP will give
the tnre value which will ncver be greater then &8000.

&43F TUBE STAT

This variable is set to &ftr and is the language processor, a
second processor or co-processor.

&M RAM-STAT

RAM STAT is a list of 15 variables, one for each page of
sideways ROM or RAM starting at page 0. For each pade n, the
variable at RAM-STAT+n is defined as follows: Bit 7 is set if
the page was found to be RAM, otherwise it is reset. Bit 6 is set
if the page is protected. Protection is achieved by the PROT
command or by default because the RAM page contains an ADE
module.

u 'fechnical Reference Guide

'l(i 6

& 450 INPI.,IT-B UFFE R-ALLO CATED

This variable is set ot &80 when an input buffer is in use. It is set
to 0 if no input buffer exists or if the sizc is set to zero. Changing
MODE and issuing several other commands forces the MMU to
recalculate its buffer sizes and set this flag. If the flag is reset (0)
then the information describing the buffer is urdefined. The
assembler uses this information to set up a local buffer in the
workspace if the MMU does not provide one, so do not rely on
the buffer description unless INPUT-BUFFER_ALI-OCATED
is tnre (&80).

&45T INPUT BUFFER PAGE

This variable indicates the location of the input buffer. The only
meaningful values ue &10 which indicates the buffer is in the
second processor, & I I which indicates that the buffer is on the
IO processor but the language processor is the second processor,
and &13 which indicates that the buffer is in the IO processor
which is also the language processor. Values 0 to &OF would
indicate a buffer in sideways RAM, but this facility is not
available on Version I of the MMU. When the value is &11 then
tlre buffer is said to be far. Far buffers are acrnssed using MMU
OSWORD routines to transfer blocks of data across the tube.

&452 I NP UT-B UFFE R-STA RT

This is the first page of the input buffer. Buffers always start on
a page boundary so the lsb of the buffer start address will always
be ?Ero. When the INPUT BUFFER START will be &Cq
indicating that the buffer starts at AC00O on the second
processor. If INPUT_BUFFER_PAGE was &l I or &13 and
INPUT_BUFFER_START was &19 then the buffer would begin
at &l9m on the IO processor.

&453 INPI,IT-SIZE

This variable gives the size of the input buffer in pages. If the
buffer has been set ot 5K with the INPUT command then this
variable will be &14. When the secord processor is conrccted
the value of this variable is defined by the system memory
available and cannot be altered. If INPUT BTJFFER START is
&CO, then the variable will always be &iB indicating a size of
l4K, or a buffer extending from &C000 to &F800.

&454 O UPUT-BUFFER-ALLOCATED

This variable is a flag indicating that an output buffer exists. See
INI'UT BUFFER AL[,OCATED.

TG-7

ADE, plus l'echnical Refercnce Guic

&455 OUTPUT-BUFFER-PAG E

This variable gives the location of the output buffcr. See
INPUT BUFFER PAGE. When a second processor is in use the
largest buffer is given to the input and the second largest to the
output. Thus one buffer will bc on the IO processor, (far: &,ll)
and one on the second processor (&10). If a shadow screen is
used then the IO processor usually contains the most free space
and will be allocated to the input buffer but otherwise the
allocation depends on screen mode.

& 456 O I.,ITPI.JT-B UFFER-STA RT

This variable gives the msb of the start address of the output
buffer. See INPLTI_BUFFER START.

&457 OUTP[JT SIZE

This variable specifies the size of the output buffer in pages. See
INPUT srli'

&45E PRINT-BUFFER-ALLO CATED

This variable is set ot &80 if the print buffer is allocated. When
the print buffer is allocated the print spooling system is kicked
into life. The print buffer will bc allocated whenever thc buffers
are checked (eg at *ADE or a mode change) and there is
unprotected sideways RAIvI available. The buffer is de-allocated
with ttre PRINT 0 command or if all the sideways RAM is
protccted. When this happens, the print spooling system is
informed and relinquishes control to the MOS printer driver.
However if the buffer is not empty, then the printer spooler
informs the MMU that it cannot changc the sizc of the print
buffer or de-allocatc it.

&459 PRINT-B UFFER-PAGE

The variable gives the first page of sideways RAM available for
the print spooling system. The print spooler keeps its own
variables in the IO processor so if this information is lost (eg by
TBASIC) the print spooler will keep on working.

&45A PRINT-BUFFER-START

This will be set to &80 if the print spooler is active because the
sideways RAM pages start at &8000.

I (l l f

'l cchnical Reference Guide

&458 PRINT-SIZE

This is the size of the print buffer in K, not in pages. If the size
were in pages, then a 64K buffer would have a size of 0! The sizc
will be a multiple of 16.

&45C TUBE-ALLOCATED

This variable is used internally by the MMU. It is set to tn"re
(&80) when the tube spare memory from &C000 to &F800 has
been allocated to a buffer.

&45D IOP-ALLOCATED

This variable is used internally by the MMU. It is set to tnre
(&80) when spare memory in the IO processor has been
allocated to a buffer.

&45E TUBE-FREE-MEMORY

This variable contains the amount of free memory available on
the second processor for buffers. Its normal value is 0 (none) or
&38 (l4K).

&45F IOP-FREE-MEMORY

This variable contains the amount of free memory available on
ttre IO processor for buffers. Its value depends on screen
nrmory usage and the IO processor setting of OSHWMN.

&460 IOP-PAGE

This variable contains the value of OSHWM (msb) on the IO
processor. When a second processor is in use, this value is
different from OSHWM for the langtrage processor.

&461WATER-MARK

This is a very important variable. It is the page boundary on
which the workspace available to modules (on the language
processor) begins. This may be the same as OSHWM but is not
necessarily so. If buffers are allocated by the user in the
language processor, fren they will be allocated between OSHWM
and WATER MARK. You must not use memory below this
address if you want to usc the MMU buffers for file ortrations.

TG-9

ADE phrs I'echnical Reference Guide

&462 SCREEN-MODE

This variable contains the screen mode upon which all thc
memory calculations are based. Modules may change mode but
must set this mode again before returning to the MI\rfl.J. The
screen mode will normally be 128 or greater because the MMU
likes to select a shadow screen, if available, in order to maximise
the amount of frec memory.

&463 - &46F Reserved for future expansion.

&470 DATE

This variable contains the system date as dercrmined from CMOS
RAM or Econet or entered by the user. It is in the form of an
ASCII string terminated with a CR (ASCII &OD). The
maximum length of the string is 16 characters including the CR.
If the date was not specified, then the sring would be just a CR.
When the TIME command is issued with a second parametcr,
then the parameter is stored here. The datc can be in any format
since no calculations are done with it.

&480 TIME

This variable holds the MMU tirne as printed on the prompt line.
The time is updated each time an MMU command is entered, so it
represents the time that a module was invoked. The time is
actually kept in the MOS system timer because this is common to
all BBCs. During initialisation the system timer is loaded from
the CMOS clock, Econet clock, or from the user's watch.
Unfonunately the system clock tends to run a little slow because
of missed interrupts, especially in cases of much disc access.
However the good news is that when you enter a TIME command
only the system timer is changed, not the CMOS of Econet clock
so you cannot upset these irnportant time pieces accidentally.
The time string is HH:MM <cp (6 bytes).

&490 - &4FF' Reserved for future expansion but may
be used by modules until further notice.

The memory between e.463 and &,46F may be used in Version I
of the ADE MMU. Modules must not use these memory
locatiorn. Memory after TIME will not be used in Version l.

plus 'fechnical Reference Guide

l(; t0

I
2

3
4

9pgrations performed during
*ADE

COLD_START - scr by hard break.
wnnM-srART, dara in page 4 is ok. This is set if
the BREAK key is pressed. -

ADE_START - sct by *ADE.
ADE:CONT - set to ihis value by the MMU before
calling a module.

The ADE MMU ROM responds to the following service calls:

&27 Issued during BREAK key processing on the mastcr.
&03 Issued during BREAK key processing and initialisarion.

kint ROM tirle. Set workspace bytcio
COU) START for a hard break and
WARM_STARTfor a wann break.

&09 If no parameter, give ADE ROM title (*HELP).

&08 Check processing of ADE oswoRD and perform
appropriate action.

&M Check unknown command for *ADE. p *6pE is the
command, then perform a cold start on the MMu.

The cold start sequence is:

Initialise scan of sideways RoMs for ADE resident nrodules.
scan RoMs for 65c00 Assembler. Result to AsM RoM sl-or
(&FF= not found).

Scan RoMs for Advanced editor. Result to EDIT ROM S[,OT.
scan RoM.s for Debugger. Result to DEBUG RO-M sLbT.
.Sc:rn RoMs for a0 Assembler. Result to ZASM n6na SLOT.

TG-I I

ADE plns'l'echnical Referencc Guide

The results are only copied into the ROM_SI-OTs when the
language is started. They are saved in temporary locations
during the rest of the initialisation. It is important to remember
that the memory between &400 and &7FF could contain the
Tube operating software at this stage.

Search system and determine the amount of available memory.

Set ROM workspace byte to ADE_START and issue OSBYTE
142 to start MMU language processing.

ADE next gains control as a language on the language processor.
It first reads the ROM workspace byte. If this is set to
COLD START then a hard break has occurred so the MMU
issues the *AfrE command to initialise properly. If a warrn start
is issued, then a soft break has occured to the MMU checks the
validity of the data on page 4. If it is not valid, then *ADE is
issued, othcrwise it carries on as if returning from a module.
Finally, if none of these reasons apply, then the reason is a start
up after the *ADE command so...

Read the ROM slots and RAM status information from the IO
processor temporary locations and expand into RAM STAT and
the SLOTs in thc variables. Chec[RAM _STAT ?gainst rhe
SI-OTs and protect any modules in sideways nnU. Read the tube
presence and set TUBE_STAT. Reset all options to zcro. Set
initial screcn mode. SeJ the initial time. Calculate the buffer
sizes and locations (this involves reading OSHWM, possibly on
both processors) and call the STAT command; then prompt for a
command. Start the print spooler if possible.

At this stage all the ADE MMU variables are set up. When a
command is issued the first work on the line is checked. If this is
a valid ADE command, then the remainder of the line is analysed
for syntax automatically, using the same information as
COMMANDS uses to print out the help screen. Then the routine
to handle the command, or the external module (such as the
assembler) is called. If the command is not recognised, then the
MMU asks the filing system if a file exists with the given niune.
If it does, then the file is *EXECed. Otherwise the command is
passed to the MOS. Thus TY?E, for example, will be passed to
the filing system after the MMU has already accessed the disc to
check for a file of the name TYPE.

When a BRK error occurs the MMU closes all open files,
inlcuding the EXEC file. On ADFS systems this can cause
another BRK error if there is no catalogue in memory, so the
MMU is ready and givcs up if another error occurs. kess
ESCAPE with no ADFS disc mounted to see this happen.

' t (i l?

ADE phs Technical Reference Guide

Calling resident modules

The MMU recognises a module is resident because its SLOT
number is positive. The slot numbers were set initially from the
IO proccssor by the *ADE routine. They scan the ROM titles for
recognisable sequenccs of characters. These arc the ROMs
currently recogniscd:

ADE 6500
This is the title of the 65C00 series Macro Assembler. The
Macro Assembler supplied with ADE plus has no service call to
initialise itself. It relies on being called by the MMU. It does
support other services, however, in order to recognise that the
BREAK key has been pressed, but there is no need in theory to
have a service entry point into a ROM module. However to avoid
the MOS confusing the ROM with BASIC, it is best to have a
service entry even if this is just an RTS.

ADEED
This is the title of advanced editor ROM. Chapter 9 shows how
to modify a well-known word processing ROM to function as an
advalrced editor.

ADEBUG
This is the title of the ADE Debugger when present a a ROM.
The program DEBUG that comes with ADE plus has this ROM
title. Oncc it is installed ADE may be retarted with *ADE and
the DEBUG command will be operational because ADEBUG
will have been spotted.

ADEZ8O
This is the title of an ADE 280 assembler module, or any user
module that you write to be accessed with the 7.ASM command.
The list of cornmands in the MMU can be found by scanning the
ROM with DEBUGL. If you are running in sideways RAM you
could change the ZASM command to your own. The command
will have to be 4 letters and bit 7 of the last letter must be set.
The command is followed by a syntax byte (&20) and the address
of the routine to call theZASM module. Do not alter the address.
Replacing the syntax byte by zero will mean tht the MMU will
not insist on parameters to the command. In this case the whole
command line including ZASM will be passed to your module in
page '1 . As it stands only the command line tail will be passed
starting at the first non-blank charactcr.

2

5

TG- 13

ADE phrs'Iechnical Reference Guide

ADE OSWORT)

The MMU and modules that communicate with it need some way
to pass information, often across the tube . This is done using the
OSWROD call mechanism. In order to reduce the possibilities of
conflict with other ROMs, a single OSWORD call is used, and the
first byte of the parameter block specifies a function number.
This chapter describes each function curently implemented.
For each function a parameter block of less than 16 byte s is
required, pointed to by the YX registers. The first byte of the
parameter block is always the functicn number. Results are
returned in the paramter block, but some calls copy memory
across the tube as well.

The ADE OSWORD number is 103 (decimal).
(The 65Cm series assembler also uses OSWORD 104)

Function &00 - Read IO processor RAM limits

On enury:
YX 00 Function call

On exit:
)x 00
YX+l OSHWM for IO processor
YX+Z HIMEM for IO processor

Function &01 - Read MMU ROM page

On entry:
n0l

On exit:
\"(ROM slot of MMU

This call enables the MMU tro determine its ROM slot from
across the tubc and set LINK ROM_SLOT correctly.

Function &02 - Activate print spooler

On Enry:
Yx 02
YX+l first page of sideways RAM
YX+Z second page of sideways RAM or &FF
YX+3 third page of sideways RAM or &FF
YX+4 founh page of sideways RAM or &FF

' tG.r4

AI)E plns Technical Reference Guide

On exit:
No results arc returned. If the parameter block is invalid the
message "Print spooler failed to initidise" is printed. If the print
spooler is active, then it attempts to change the RAM it uses to the
new values given in the parameter block but, if the buffer is not
empty, then the message "Printing in progress" will be given.

Function &03 - Kill print spooler

On entry:
Y)(03

On exit:
No results are retuned. If the print spooler was not active, then
no action results. If it was active, then the buffer is flushed (as
with F.XZI,3) and control returned to the old MOS routirrcs.

Function &04 - Blow text to edilor

Copy all the text from a file in lhr input -buffer on the IO
processor into the workspace on the second processor. This
routine is used by the editor when EDIT* is entered as an MMU
command. It is :lssumed that the file handler that loaded text into
the input buffer put azero byte at the end of the t€xt.

On entry:
YX O$
YX+ I input buffer start page (on IO processor)
YX+2 editor workspace start page (on second processor)
YX+3 size of editor workspace in pages

On exit:
YX completion flag

The completion flag is positive if the tcxt wils transfened
successfully. It is set to &ttr if the second processor workspace
w:ls filled up before dl the text was transferred. A good
completion does not guarantee that text was copied. It means
bytes were copied and a zaro byte was found before the editor
buffer was filled. The editor must do its own evaluation of the
contents.

TG- 15

ADE plus Technical Reference Guide

NJNCTION &05 - SUCK TEXT FROM EDITOR

Copy text from the editor workspace into the input buffer on the
IO processor. This routine is used by the MMU editor when
QUIT or RUN is typed. The editor must put a zero byte at the
end of ttre text as an end of text marker.

On entry:
YX 05
YX+ I input buffer start page (on IO processor)
YX+2 editor workspace start page (on second processor)
YX+3 size of input buffer in pages

On exit:
Y)(completion flag

If the completion flag is negative (&FF), then the transfer tailed
bccausc thc rcxt was larger than the input buffer.

Function 128 - Copy block to second processor

This function copies a I K block of memory, regardless of
contents, across the tube into the second processor. The Linker
and Assembler use this function when a source file is in the IO
processor memory in order to read it. lK blocks arc large
enough to keep the system running at optimum spced and small
enough to leave plenty of workspace for labcls ard macros etc.

On entry:
Yf(&80
YX+l destination RAM page in second processor
YX+Z source start page in IO proccssor

On exit:
The parameter block is unchanged.

Function 129 - Copy block to IO processor

This function is used to copy a I K block from the second
processor to the IO processor memory. The Assembler and
Linker use it when the output buffer is in the IO processor and
they :ue running in the second processor.

On entry:
\(&81
YX+l destination page on IO processor
YX+2 source start page on second processor

The parameter block is unchanged.

rs Technical Reference Guide

Print spooler Yariables

The print spooler variables are held on page 3 of the IO
processor in the cassette file workspace. Thus the print spooler
cannot be used at the same time as the cassette filing system or
any other utility which wants to pinch this memory. All the
print spooler routines are in sideways ROM in the MMU chip so
only this chip needs to be resident to operate the spooler (this
may assist sideways RAM users). The routines are called using
extended vectors.

&380 PRINT PI
The firslpage of sideways RAM the spooler may use

&38T PRINT P2
The nexTpage to use or &FF

&382 PRINT P3
The third page to use or &FF

&383 PRINT P4
The last page to use or &FF

&384 PRINT INSERT PTR
This is ithree byte pointer showing where the next
byc should be inserted in the print buffer. The buffer
is a circular buffer, so this value wraps round as it is
continu,ally incremented. The first byte is an index to
the RAITI page. It takes the values 0,1,2 or 3. A value
of 0 means that PRINT Pl is the RAM page pointed to,
a value of 2means PRINT P3 is referred t6. The nexr
two bytes specify the address in the RAM page berween
&8000 and &C000. This pointer is incremented after a
character is inserted. If it is I less than
PRINT_REMOVE_PTR then the buffer is full and the
character is not inserted. The MOS will call this routine
repeatedly until it inserts the character.

&387 PRINT REMOVE PTR
This is fihree byte frinter in the same formar as
PRINT INSERT_PTR showing where rhe next byte to
be removed is stoied. If it is thJsame as
PRINT INSERT PTR then the buffer is empty. It is
incremented after a character is removed. Whin it is
incremented to the same value as
PRINT_INSERT_PTR the output buffer empry
event is generated. The MOS calls this routine during
the centi-second internrpt .

' l ' (; . | 6

TG.I7

ADE plus Tectrnicaf Reference Guide

&388 OLD INSV
The o-ld contents of INSV are kept here and restored
when the buffer is killed by ADE OSWORD.

&38D OLD REMV
The old contents of REtvfV are kept here and restored
when the buffer is killed.

&38F OLD CNPV
The old cont€nts of CNPV are kept here and restored
when the buffer is killed.

&391 P COIJNT
tfris is the count of characters currently in the buffer.
It is incremented when a character is iruerted and
decremented when a character is removed because
subtracting the pointers is a lengthy process. when a
UKbuffer is full this value will (inconectly) be zero.
It is only used by the CNPV routine.

&393 PRINT WRITER
This f tl{ byte rourine to write a byte inro sideways
RAI\{ ad is the counter part of OSRDRM. -

6

ADE plw Technical Reference Guidc

File Formats

lEt_thptel gxp_lgrns the data format of each file tlpe used by thc
ADE plus MMU, Linker and Librarians ard the-65c00 stries
Macro Assembler.
There are six t)?es of file used by the systcm:

Text files
Object files
Linker modules
Linker libraries
Macro libraries
Symbol table files

Text files

Text files are used by the editor, the assembler and thc MM[J.

lr4 ! represented in ASCII format. The editor always
*I-OADs tcxt files and thus cannot strip line feeds from them.
Files created by the editor will not contain linc fceds, but other
g{t"tsgal include them. Lirrc feeds must be removed using the
FILTER utility provided on the ADE plus disc beforc a text filc
containing line feeds can be loaded into thc editor. The editor
takes CR (ASCII &OD) to be the erd of line characrer. bro
bytes are used consistently as end of text markers but these are
always placed by the file loading or reading routine and arc not
saved as part of the file itself. This makes the text files
compatible with all other text based applications on the BBC
micro series. When a text file is saved by the editor, the length
field in the catalog is correct but the execution address is,-of
course, meaningless (as is the load address).

The assembler filters out line feeds as it reads the file byte by
byte even if it was *[,OADed by the assembler's mlmory
management interface routines (see Chapter 7). This means you
should have no difficulty assembling files from other editors,
including the previous ADE editor.

Object files

Object files are executable programs output by the assembler or
linker. These are in standard Acorn filing system format. The
disadvantage of this format is that a file cannot be scatrcr loaded
in different parts of a machine, so data often has to be placed in a
separate file from code. The linker use symbol table option can
help with this and facilitate good overlay programming
techniques, but the limitations of the filing system tend to pnevail
when, perhaps, compared with an Apple Macintosh.

6. I

;.2

' l (; | l f

TG-lc)

ADE plus Technical Reference Guide

The load and execution addresses are specified as a full 32 bit
address. The assembler uses the MSW pseudo op and the linker
uses the A and B options to set these. The assembler accepts
tokeru for the 65C00 opcodes that would allow an advanced
editor to compress the source program somewhat. The tokens
are ASCII charactett)= 128. They are:

r28
r29
130
l3 l
r32
r33
r34
135
136
r37
138
139
r40
t4l
t42
r43
t4
r45
r46
r47
148
r49
150
r51
r52
153
154
155
156
r57
158
159
r60
l6r
r62
163
ru

BRK
gr
CLD
CLI
CLV
DEX
DEY
NX
NY
NOP
PHA
PHP
PI./.
PLP
RTI
RTS
SEC
SED
SEI
TA)(
TAY
TSX
TXA
TXS
TYA
DEA
INA
PHY
PFD(
PLY
PI)(
BCC
BCS
BEQ
BMI
BNE
BPL

165
166
r67
168
r69
170
r7r
r72
r73
174
r75
176
r77
178
179
180
181
r82
183
r84
185
186
187
188
189
190
191
ry2
193
194
195
196
r97
198
r99
2W

BVC
BVS
BLT
BGE
BRA
AND
EOR
ORA
ADC
CMP
LDA
SBC
ASL
I.SR
ROL
ROR
DEC
INC
CLR
STZ
CPX
CPY
TSB
TRB
BIT
JMP
JSR
LDX
LDY
STA
STX
STY
BBR
BBS
RMB
SMB

' l (i 2()

ADE plus Technical Reference Guide

Linker Modules

Linker modules are the most complicated file format in the ADE
plus systcm. Understanding these files will unlock a whole rrcw
world in which you will be able to write your own compilers that
will interface with the assembly language output from ADE and
with libraries of functions. The library file format is essentially
the same as the linker module format.

A linker file is considered to be a byte stream, just like a source
file. This byte stream is broken down into three sections, a
header, symbol declarations and the object output of the
assembler. The object output is in a series of records. The linker
must process the file at le:st twice. On the first pass it collects the
symbol definitioru and measures the length of each object
module. It also notcs all external symbols. Missing external
symbols (not spccified in any declaration par| :ue searched for
in any libraries listed on the linker commard line. A module
containing a wanted symbol is included as if it were a separatc
linker module file. On the second pass RSECT files are
combirpd and the main program is output as all symbol values
are now known. The declaration part in each file is skipped
duing this process. A third pass is necessary if any ASECTs arc
included as these have to be separately ouFut due to the
limitations of the FS file structure mentioned above. This
process is quick becau.se the files are much smaller than sour@
files and there is little calculation to do.

The file header
Each linker file begins with a six byte header specifying
'ADELNK' in ASCU. This is used by the linker to verify that it
has got a valid module. After the K of ADELNK the module
narne, specified in the MODULE statement of the source file, is
found. This is in ADCII and terminated by CR (&OD). Thus the
header is of variable length and always ends in &OD. Each
module name in a linking operation must be different. The
module name is associated by the linker with a module number
(the order in which modules are introduced) and a table kept in
memory with details of each module.

The declaration part
The declaration part of the module consists of a number of
declaration records. Each record has the following format:

Byte 0 The length of the symbol name being declared or 0
indicating the end of the declarations

Byte I Flags for symbol being declared
Bytes 2,3 Value of symbol being declared (depends on flags)
Byte 4 XTRA byte, available for expansion by compilers

TG.?I

Bytes 5

ADE pus Technical Referencc Guide

Symbol name, length as defined in byrc 0

Bits 0 and 3 of the flags bytc are used by the linker. Other bits
may be set by the assembler/compiler but are ignored, If bit 0 is
set the symbol is relocatable, otherwise it is absolute. The value
of an absolute symbol is specified in the value field of the
declaration record. If bit 3 is set the symbol is a zero page
declaration from the RXP pseudo-op. If the symbol is a zero
page declaration, then the value field represents the number of
bytes of storage that the label refers to. The address of the label
is found by simply adding up the sizes of each ru(P symbol
starting from 0 (default) or an address specified with the Z
option. If the symbol is a prog,ram label, then the start address of
the RSECT for the current module is added to the symbol's value
to make it absolute. The first RSECT starts from OSHWM
(default) or the address specified by the A option. Each new
RSECT finds its start address by adding up the lengths of
preceding RSECTs. A module may contain a number of
RSECTs but the total numbcr of section in the progam may not
exceed 256.

The object records

Object records define actual byles of code and data that will be
put into the output file. They are well stnrctured in sections.
The data format for ASECTs is the same as that for RSECTs. An
object record may refer to one external symbol, and this symbol
name is included as part of the object record. Each section in the
source file produces a corresponding section in the object
records. The section starts with a section type record followed
by any number of data records (here data refers to code and
program data) followed by a scction end record.

The section header record is:

&00 End of linker file
&8Oyyxx Absolurc section with ORG at xxyy
&8lyyxx Relocatablc section offset xxyy from start of first

RSECT in filc

A section may bc an empty section. For example an ORG
statement bgins a new ASECT on the 65C00 macro assembler,
so an ASECT statement followed by an ORG produces two
sections in the linker file onc of which will be empty (and have a
meani ngless address field).

The two bytes following an ASECT or RSECT section header
are called the address field. In an ASECT this is the origin of the
code. For an RSECT this value is actually the offset

lus -l'echnical Reference Guide

' l(i 22

from the start of the file but is ignored by the linker sirrce it has
arrived at the same value by adding up the lengths preceding
RSECTS an) vay. It could be used by checking routittcs.

A scction data record is:

&00 End of scction record. Every section has at least
one of these, even an empty section.

&01..&OF Absolute data records. This t)'pe of recond is
followed by I ..1 5 bytes of absolute data that is
inserted unaltcred into the ouput. This t)?e
of record would be produced by a STR statement
for example, but also by irsuuctioru to specify the
opcode byte.

&10

&20

&30

&4n

&40

&42

The byte prefix. A word record follows (3 byrcs
plus possible exterrnl symbe'\. ExEact the lower
8 bits from it and output only one b14c. On pass
two give an error rnessage if the value is outside
tlre range - 127 to +255.

The double byrc prefix. A word recond follows.
Swap the upper and lower bytcs and then outprit
two bytcs.

Defirrc storage record. Three bytcs follow.
Bytes 0 and I define the amount of storage in
lo-hi format (rnay be zcro). Byte 2 defines the
Till'value to placc in the output at this point.

External word r@ord. This record outputs two
bytcs unless it is preceded by a bytc or double
byte prefix. The record consists of an absolutc
part which is usually zcro and a symbol referellce.
The lower four bits of the record t)?e
are modifiers that tell the linker what to do
with the record. Bytcs 0 and I following
the record tlpe arc the absolute part of the
value (the starting point) and byc 2 following the
value is the length of the external name.
The external name follows immediately in ASCII.

Add the external symbol's value to the absolutc
part giving a 16 bit value.

Subtract the external symbl's value from the
absolute part giving a l6 bit vdue.

TG.23

&4

&6

&48

&4A

&8n

&80

&81

&84

ADE plns Tcchnical Referencc Guide

Add the external symbl's value then make
the high byte z&ro, but still output l6 bits.
(Eg from a LDXbEXTERNAL_REF staternenr)

Subtract the extcrnal symbl's value and make the
high byte zoro, output l6 bits.
(Eg from LDXbGEXTERNAL_REF)

Add the external symbol's value and strift right 8
bits to give the value DIV 256.
(Eg from LDX#<EXTERNAL_REF)

Subtract the extcrnal symbol's value and shift
right 8 bits.
(Eg from LDX#<O-EXTERNAL_RED

A relocatable word record. This rccord outputs
two bytes unless preceded by a bytc or double bytc
modifier. Two byres follow this rccord giving an
absolute value to which the relocation constant (the
linker's location counter at the start of the scction)
is added or subnacrcd. The lower fou bits specify
modifiers as in tlpe & nrecords.

Add relocation constant to absolute part.

Subtract rclocation constant from absolurc part.

Add relocation constant ard makc top 8 bits zaro.
(Eg from LDXbREL_S YldB OL)

Subract relocation constant and makc top 8 bits
7'.ro.
(Eg fr om LDXbO-REL_S l'IvIB OL)

Add relocation constant and value right 8 bits.
(Eg from IDX<REL_S Y-I\,IB OL)

Subract relocation constant and shift valuc right 8
bits.
(Eg fr om LDX# < GREL_SY-I\,IB OL)

Note that the bit assignments for extenral symbols and
relocatable symbols and the add or subtract bit in each case, ane
completely separate. This allows compil€rlt, in theory, to mix
external and relocatable records with a typc &Cn record. Thc
ADE plus assemblers provided by SYSTEM do not allow this
mixing but the linker does. The linker prooesses the external
reference before processing the relocation constant and any
overflow outside of 16 bits is ignored.

'l echnical Reference Guide

't'(i 24

Summary of bit assignments in linker data records:

bit 0
bit I
bit 2

bit 3

bit 4
bit 5
bit 6
bit 7

Subtract relocation conslant if bit 7 sct
Subtract external referen@ if bit 6 set
Set top 8 bits to zero after processing external and
relocation parts
Shift right 8 bits after processing external and
relocation parts
Set by DB and #operators in assembler
Set by DDB statement in assembler
Set if an external reference follows
Set if word is relocatable

Bit 6 or 7 is always set except in absolute data records in which
case the above assignments do not apply.

Linker Library files

The LLIB command in the MMU makes a linker library out of
the specified input files by concatenating them. The hard work
of identifying which module to include is done by the linker. In a
library file each module name must be different. The header for
a library is still ADELNK so a single linker module file can bc
uscd as a library.

Macro Library files

Macro libraries :ue fairly sophisticated in ADE plus, in that they
work by random access to speed up operation. Each macro
library has a 2K cat,alog at the start of the file, built up by the
macro librarian, MLIB. The librarian contains no options for
deleting or inserting into an existing cat,alog but there is no
reason why users should not write a utility to do this sincc the
stnrcture of the random access file is fairly simple. In order to
have a good number of macros in a reasonably sized catalog, the
file pointers in the catalog are l6 bits and extended to 32 bits by
the assembler using them with the addition of leading zeros. This
means that a macro library carupt be bigger than 64K.

When a library is specified in an MACLIB statement the 2K
catalog is read in on the software stack below RAM TOP. The
a.sse*6ler searches for unknown or 'GET' opcodeT from the
beginning of the catalog. When a name is found the file pointer
for the maco library is positioned and the text for the macro is
read in as if it had been defined in the sourcE code. Macro text is
held in the workspace RAM along with labels and every other
l i r rd 11l 'pI1i , . , '1 1la ' , rscemblef l teoq (" te Chaptef 7) .

6.6

TG.25

ADE plus Technical Reference Guide

The file begins with the six bytes "IvIACLffl" followed by an
entry for each macro.

Macro library catalog

"IVIACLIB " {not repeated}

Byte 0 I-ength of macro rurme or 0 for end of catalog names
Byte 1 I-SB file pointer for macro text
Byte2 MSB file pointer for macro text
Byte 3 LSB length of macro definition
Byte 4 MSB length of macro definition
Bytes 3.. Macro name length as specified by byte 0

This format is repeated. The number of macros that will fit in
the catalog depends on the name length. The end of file is
specified by a record with znro in the name length byte.

The text stored at'file pointer' for each macro stafts with the
line following the MACRO statement and ends with an ENDM
line.

Symbol File format

The linker allows you to dump the linker symbol table to a file
which can be used from a symbolic debugger, included in a
future linking operation or used in any user application. The
example program DS, on the ADE plus disc, shows how such a
file is used. The first six bytes of the file contain the characters
'ADESYM' from which the file is identified. The full format of
a symbol file is:

"ADESYM" {not repeated}

Byte 0 length of symbol name
Byte I LSB symbol's absolute value
Byte2 MSB symbol's absolute value
Bytes 3.. Symbol name, length as specified in byte 0

The end of file is specified by a record with a zero in the name
length byte.

Technical Reference GuHe

Assembler objects and
variables
This chapter liss the tlpes of objects manipulated by the 65C00
assembler.

The assembler stores dl it s objects in linked lists. Each list
begins with a pointer in zero page or the language workspace
and ends with a zero, or null, pointer. The following types of
objects are stored.

Symbols
Itral symbols
Macro texts
Block markers
ln line strings
The software stack

There is a list for local symbols originating in zero page, but this
is complicated by block markers. The start of the local symbol
list changes as the program proceeds. There is a separate list for
each initial character of the other symbol names. This is rather
like BASIC stores it s variables but is further speeded up by the
inclusion of the length as part of the name so that searching is
restricted to symbols with names of the required length.

The list of pointers is held on pagc 5, starting at &500. The first
letter of each symbol is implicit, so the actual symbol stored in
memory is minus this character. The symbls are stored as:

Bytes 0,1 Link to next symbol in ttris list or zr;ro
Byte2 l-ength of symbol name (less l)
Byte 3 Symbol flags
Bytes 4,5 Symbol value or pointer
Byte 6 XTRA byte for linker expansion
Bytes 7.. Remainder of name

The flag bits are:

bit 0 Relocatable symbol
bit? Macro definition
bit 3 EQUated symbol
bit 4 ENTry symbol
bit 5 EXTernal symbol
bit 6 inline string
bit 7 fonvard reference bit

' l (i 2(r

TG-27

ADE plus Tectrnical Reference Guide

Bit 7 is set on pass one when the symbol is defined and reset on
pass two when the symbol is 're-defined'. At the same time the
value of program labels is checked in pass 2 and phase errors are
reported. If the symbol is a macro name or an inline string then
the value field points to the text of the macro or string. In the
case of an external symbol the value is set to zero, to give
correct expression results for the linker.

The assembler uses all of zero page from 0 to 8F and all of the
language ROM workspace except for the MMU variables. The
temporary copy of the assembler options is at &680. Source
lines are assembled on page 7 at &7W. If the input and output
buffers arc not in main memory then the assembler allocates a
lK temporary buffer at WATER_MARK for each far buffer.
Thus if you break into the assembly process you will find the
source text in up to three places. Needless to say the speed
performance of the assembler has been optimised for large files
that can be buffered in far memory.

'l'cchnical Re ferelrce Guide

' t (; ?t l

Example programs

Example intelligent file read routines

The first example is perhaps the most important. It gives part of
a set of routines which will be part of each application that uses
the MIvlIJ. These routines are always inlcuded with the
application because of the requirements for rnaximum speed of
operation. The code shown does not form a completc program
but illustrates the code needed to allocatc the MMU buffers !o
your application and open and read an input file. A set of output
routines is also needed, the stnrcture of which completcly
mirrors the input routines. This particular code is taken from
the linker.

The program behaves yery intelligently. Allocate_buffers is
called as part of the application's start-up procedure. This sets
OLD WATER MARK to the first page of free memory after it
has aliocated s6-me worksp ace for iiself. Then to read-a file, a
call is simply made to OPEN_SOLTRCE with YX pointing to the
name. Calls to CHAR GET return each character in the file bytc
by byte and set carry when EOF is encountered. Apart from ihe
fact that this routine does not preserve registers it is the same as
OSBCET, so once you have the code in your application you can
forget about where the source file is and get on with the
important job of pnocessing it.

*** Al locate buffer space based on MMU map ***

i set up s ix va rJ-ables to descr ibe IO f i le s

3i3t t esoo i or wherdver
source stat DS I
source start DS 1
source size DA 1
ob Ject_stat DS 1
obJect_start DS 1
object_size DS 1
old water

#^iJ
DS 1

; This rout ine in i t la l ises both the lnput and the
i ouEput buffer descr iptors

Al locate buffe rs ENT
LDX #O

,' po I nt t
iti.

bu f t*it

I,DA WATER MARK
,' l i ; lve MMU wate r ma rk

TG-29

ADE plus Tedtnical Relerence Guide

STA old water mark
: Ioop LDA # far
i assume buffer is far

STA source stat , Y
LDA INPUT BUFFER ALLOCATED, X
BPL : i local

; buf fer a l locatedr so . o .
LDA INPUT BUFFER PAGE, X
CMP #ett ; is input far?
BEQ :L
LDA #near

; input is on same side of tube
STA source stat , Y
LDA INPUT BUFFER START, X
STA source start , Y
LDA INPUT SIZE, X
STA source si ze, Y
BNE : cont

i unless buffer is 0 pages.. .
: i local LDA #near
; buf fer is near and local

STA source st at , Y
LDA old water mark ; bump up bY L K
STA source start , Y
LDA *4
STA source si ze, Y
STA INPUT SIZE, X

; for MMU reader rout ines
cLc
ADC old water mark
STA old water mark i next f ree RAM

: CONT INY
INY
INY
INX
INX
INX
INX
cPx #8
BCC : Ioop

; do output buffer then exi t
RTS

*** oPEN FILE FOR INPUT ***

i on entry YX point to the name of the f t le
i set . source stat as fo l lows
; bl t 0 set i f f l le *LOADED or read in fu l ly
t b i t 5 set i f f i le *LOADed, else need to c lose
; bi t 7 set i f lnput is far

DSECT
source handle DS 13 ; OSGBPB block
osf i le fcb DS 1,8 ; OSFILE block

DEND

rlus Technical Reference Guide

BLOCK

Open source ENT
LDA #O
STA source handle
STX osf i le- fcb
STY osf iLe fcb+ 1
LDX #>osft le fcb
LDY *<osf i le fcb
LDA #5 i read dir info
JSR OSFI LE
cMP #L
BEQ : openl
ERR L, "Fi Ie not found"

: openl LDA osf i le fcb+12
ORA osf l le- fcb+13
BNE read f f le
LDX os f i le fcb+ 1 1
LDA osf i le- fcb+ 10
BEQ :3
INX

:3 CPX lnput s lze
; wi I I f i t in RAM?

BEQ z4
BCS read f i le

t load whole f i le

JSR Set_so[rce_pointer
, ' in i t reader pointer

RTS

; Read f i le in blocks wi th OSGBPB

; Ien >64K?

i s ize ln pages
; plus a bl t ?

; yes!

, ' Dor use OSGBPB

z4 LDA osf i te fcb+10 i save length
STA source count
LDA osf i le fcb+ L L
STA source count+L
LDA INPUT BUFFER START
STA osf i le fcb+3-
LDX #O

t load on page boundry
STA osf i le fcb+2
STA osf i le fcb+ 6
BIT source stat ; far load?
BPL :5
DEX

t load at FFFFpage on far IOp
: 5 STX osf i le fcb+ 4

STX osf i le fcb+S
LDX #>osf i le fcb
LDA #255
JSR OSFI LE
LDA source stat
oRA #e4L

; set Load and eof bi ts
STA source stat

t load f l le

read f l le LDX
LDY
LDA

osf l le fcb
osf i le- fcb+ L
#eqo

-l'(; 30

TG.3I

ADE plus Tecfrnlcal Reference Guide

i open f i le for input
JSR OSFIND
STA source handle

i must be ok cos dir i rEo was

i go zzlntE. . .

*** Read next brock of source into input buffer

READ SOURCE ENT
LDA INPUT BUFFER START
StA sourc6 handl e+2
LDX #O
STX source handle+l
STX source-handle+5
STX source-handle+7
STX sou rce-ha ndl. e+ 8
STX buffer count
LDA INPUT SIZE ; pages ro read
STA buffer count+t
STA source-handle+6
BIT source stat ; far read?
BPL :1
DEX

:1 STX source handle+3
STX source-handle+4
tDX *>sourEe handle
LDY *<source handle
LDA l t0 ; read seguent ia l
JSR OSGBPB
JSR Set source pointer
LDA source handie+S

i see i f whole f i le copTed in
ORA source handle+G
BEQ z2
INC source stat i set eof b i t
LDA buffer count

; and adjust count
SEC
SBC source handle+S
STA buffer-count
LDA buffe r-count +1
SBC source-handte+5
STA buffer count+1
RTS

* * * set text pointer to start and
*** t f necessary read a LK blbck

Set_source_pointer ENT
LDA INPUT BUFFER START
STA source-_point6r
LDA #O
STA source blocks read
STA text bTocks r6ad
BIT sourEe stat-
BPt Set_text_pointer

i source ls near. . e lse

Tectr nical Reference Guide

; Read far block accross tube

Read far block ENT
LDA {} L28
STA temp_cb
LDA source start i near Page
STA temp_cb+L
LDA source_pointer
STA temp_cb+2
cLc
LDA *4

; next page address
STA text b locks read
ADC source_pol-nte r
STA source_pointer
JSR Set_text_pointer

t gozzinta . .

Do-ADE-oswoRD
#>temp-cb

LDY #<temp_cb
LDA #I2O
JSR OSTilORD
RTS

*** set text pointer and of fset to
*** start of local buf fer

Set_text_pornter
ii lt

STA text_pointer
LDA source start
STA text_pointer+L
RTS

*** Read character f rom source ***

; This rout ine behaves l ike a fast OSBGET

BLOCK

Char_get ENT
LDA buffer count
ORA buffer count+l
BNE : cAl
SEC
RTS t EOF

: cAL LDY #0
LDA (text_pointe r)

'
Y

INC text_pointer
BNE :1
PHA
INC text ;o inte r+ L
INC source blocks read
LDA source-blocks-read
CMP lnput_ELze

i read aI I buf fer?
BCC :2
LDA source stat ; done aI I ?

' l 'G-32

8.2

TG.33

AND #1
BNE : eof
JSR Read source

i e lse read next block
PLA
cLc
RTS

; eof LDA {t0
; c lear buffer count

STA buffer count
STA buffer count+1
PLA

i return last val id char
cLc
RTS

ADE plts Technical Reference Guide

source stat
:3 i near
text b lock read
:3
Read_f a r_bl ock r ' g€t next lK

buffer count
buffer count
:4
buffer count+L
buffer count

z2 BIT
BPL
DEC
BNE
JSR

:3 PLA
:1 DEC

INC
BNE
DEC

z4 DEC
cLc
RTS

Example advanced editor "patchtt

This routine is a patch for View Version A 1.4. You should be
able to follow it through and examine your favourite word
processor to patch it in the same way. The routine relies on
View bieng loaded either into sideways RAM or into a ROM and
thcn run on thc second processor because it stores the MMU
variables in the ROM address space. A QUIT command is added
to View which returns control to the MMU with an
'ADE CONT typc resuut (see Section 2). The QUIT command
is addEd by usirig the ADE debugger to find out where View calls
OSWORD 0 to get a command line and replacing this call by
another routine which gets the line and checks for QUIT before
returning to VIEW. This program docs not suck and blow the
tcxt from the workspace into the input buffer, but you could
amend it to do so though this is not trivial. (A look at a
disassembly of the MMU editor might help here, all the
OSWORD 120 routines and variables used have been
documented to this guide).

Technical Referencc Guide

' l ' (; 14

View Al.4 has at least 4K of frec memory bctween &8000 and
&C000, so this is a god place to put the patch. The patch was
implemented as follows (addrcsscs may bc different on your
version of View):

Detcrmine which ROM slot the view ROM is in, say slot 13,
*LBUG l3 to load the ADE plus debuffcr with thc View ROM

in the address spa@.

8000M <tab> ...should see'View'at &8009
S8000<cr>
C000<cr>
2000<cp move a copy of the ROM to R/t"M at &2000
2009M should see 'View'again
''ADEED''
00<cp (quotes necded) ... alter ROM title to ADEED
2001M adjust langrnge entry point to go to parch, notc

current address
ad call this VIEW_START (&8lW in version
Al.4)

00<c> set address to &8000
B0<cr>
*IOAD patch 5000<cr> ... load the patch routine at thc correct

address: This routine will acnrally run at &8000
*SAVE ADEED 2000+4m0 8000 8000<cr>

save a ROM image on disc.

The ROM image can be loaded into sideways RAM and will be
found by ADE plus. It will correctly respond to EDIT <file
name> commands.

The code for "patch" is shown below. To use the debugger to
find the address PATCH_ADR, set the memory pointer to
&8000 and enter:

On View Al.4 this sets the memory pointer to &8278 where we
see JSR OSWORD after a p:uameter block has been set up to read
a source line to page 5. Thus PATCH_ADR is &827C. This
pntch also resets tne nU and justify fla[s each time you go to
command level because these are not wantcd when editing a
progam. On Version Al.4 they were found by experimentation
at &4F and &50.

G
&20
&Fl
&FF
<cr>

TG.35

ADE plus Technlcal Reference Gulde

TTL Patch to VLew A1.4
i Absolute assembly:
i to generate patch f t le, save as T.PATCH then
t ASM PATCH=T.PATCH
i -----

PATCH ADR EQU 8827C
; could change for other versl ,ons
CODE ADR EQU CBOOO
; 8000 C000 not used by View 1.4
VI EIT START EQU E 8 10 7

SCREEN MODE EQU 8462
L INK ROM SLOT EQU & 4 0l-

ORG CODE ADR

i control t ransfered here when the ROM is entered
i as a language af ter being patched at e8001.
t I t ls assumed we are ln s ideways RN't or
i have been copled across the tube.

PHA
TXA
PHA i save entry regs
CLI

, (I RQ disabled on ent ry)
JSR SAV VAR i save MMU vars
LDX #O

t put command in kbd buffer
:0 LDA LOAD, X

BEQ : l , ; insert I 'LOAD tl

JSR INSERT
INX
BNE :0

:1 LDX #0
t get f i le name from MMU com l lne
:10 LDA E7OO, X
, f i rst look for end of EDIT cmd

cMP #13
i no f l le name suppl led

BEQ : cancel
CMP *32 ; del lmiters
BEQ : gap
cMP *rr o rr

BEQ :gap
INX

i carry on over EDIT, ED. etc
BNE :10

3 gap INX ; sklp del lmlters
LDA e700, X

i to avold strain on kbd buffer
cMP *32
BEQ : gap
CMP *13 i any f i le name?
BEQ :cancel i no

z2 JSR INSERT
; lnsert f l le name in kbd buf

INX
LDA e700, X

'echnlcal Reference Gulde

CMP { i13 i at end of name?
BNE z2
LDX #O

i now Lnsert FX command
:3 LDA FXC, X

BEQ : done
JSR INSERT
INX
BNE :3

: done PLA
TA)(
PLA
JMP VIE9il_START i go start vLew

, ' i f no f i le name given,
i c lear kbd buffer and start

: cancel LDA *2I
LDX #O
JSR OSBYTE
JMP : done

; data to put in kbd buffer

LOAD ASC I'LOAD II

; must have space at end
BRK

FXC DATA 13r "*FXL25"r 13r 0
t terminate f l le name, cause escape

*** fnsert character in Kdb buffer ***

INSERT TAY
; char to insert (Y reg lost)

TXA
PHA
LDX #0 ; buf fer number
LDA #138
JSR OSBYTE r FX138,0, char
PI,A
TA,Y

t preserve X over INSERT
RTS

*** Save MMU var iables in ROM address space ***
*** And intercept View command l ine entry caI I ***

SAV VAR LDX #O
:sl LDA e400,X

STA eBFo0, X
INX
BNE :s l , . save a page
LDA #>GET LINE

; patch View OSWORD 0 ;al l
STA PATCH ADR
LDA #<GET LINE
STA PATCH ADR+].
RTS

'rG-36

TG-37

ADE plus Tecfrnical Reference Guide

*** Rout lne to intercept command r ine entry* * * Check for QUIT command

BLOCK
GET_LINE PHA ; save A

LDA #1
i reset Ft l l and Just i fy

STA E4F
LDA #CrP
sTA e50
PLA
JSR OSWORD

r get l ine at &500
BCS : RTS i escape pressed
PHP , . save-a1l regs
PHA
TXA
PHA
TYA
PHA
JSR TEST QUIT

i was i t a QUIT commaid
PLA

i returned, so i t wasnt
TAY
PLA
TAX
PI,A
PLP

: RTS RTS
i processes command

TEST QUIT LDX #e tr.r
LDY #O

: L INX
LDA &500, x
cMP *32

; skip leadlng blanks
BEQ :1

z 2 AND {l c 5F ; uppe r case
CMP : QC, Y
BNE : RTS
INX
LDA e500, X ; next char
INY
CPY *4
BCC z2

t perform QUIT command

LDX #O
: 3 LDA eBF00, X
i restore MMU var iables

sTA &400, x
INX
BNE :3
LDA #22

i restore ADE screen mode
JSR OSWRCH
LDA SCREEN MODE

ru Tcchnical Rcfcrence Guide

't u ltf

JSR OSWRCH
LDX LINK ROM SLOT
LDA *L42
JMP OSBYTE i warm start ADE

: QC ASC "QUfT"

A linker module disassembler

This BASIC program disassembles a linker modute file, output
from a module assembly, into the different types of linker data
records. It will help explain the srr,rcture of linker files and will
be a useful debugging aid if you go on to wrirc any language
compilers for the ADE plus system. The program could be
extended to include a machirp code disassembler as well.

] .0 REM LINKER MODULE FILE DISASSEMBLY Vl . O
20 GOSUB L60
30 PROCIoad
40 PROCverl fy
50 lnsect=TRUE
60 REPEAT
70 PROCdecIare
80 UNIT NOT Lnsect
90 insect:TRUE
1OO REPEAT
I 10 PROCsect ion
L20 UNTIL NOT Lnsect
1 30 PROCclose
1 40 HIMEM:TI
1 50 END

160 REM ini t , laI ise
1 70 TI:HIMEM
1.80 HIMEM=TOP+c400
l,90 Pt=HIMEM
200 cLS
2L0 PRINT "Linker f i le disassembly" '
2L5 out$=STRING$ (80, " ") : Ln$=STRING$ (40r " n)

: W$=tt
r f

220 RETURN

230 DEFPROCIoad
240 INPUT I tEnter f l lename",F$
250 1n=OPENIN (F$)
260 IF in:OTHEN PROCerr ("Fi le not found'r)
27 0 RAI'I=TRUE
280 I F EXT*in>Tt-HIMEM THEN Ri\ let=FALSE
290 IF RAM THEN CLOSE{l in

:OSCLI 1"LOAD t t lp$.r-r t r '+STR$-PI)

300 Et lDr l (OC

ADE plus Tecfrnical Relerence Guide

320 DEFPROCveri fy
330 LOCAL ok
340 ok=TRUE
350 FOR l t=l TO 6
3 60 IF FNget <>ASC (MID$ ("ADELNK'I , I t))

THEN OK:FALSE
370 NEXT
380 IF NOT ok THEN PROCerr("Not a l inker f i le")
390 PRINT "Fi le: ' rF$rr Module: " i
4 OO REPEAT
4 10 I t :FNget:VDU I t
420 UNTIL I t : l3
4 30 PRINT
440 ENDPROC

460 DEFFNget
470 IF RAM THEN pt:pt+l : :? (pt- l) ELSE :BGET#in

4 90 DEFPROCeTT (E$)
5OO PRINT 'E$ '
510 CLOSE#0
520 END
530 ENDPROC

550 DEFPROCdecIare
550 Lt :FNget
570 IF Lt :0 THEN insect:FALSE: ENDPROC
580 Ft:FNget AND 9
590 Vt:FNger+256*FNget
500 Xt:FNget
5L0 out$:r ' r
620 FOR I t : l TO Lt
G 30 out$=out g+CHR$FNget
640 NEXT
650 IF Ft=8 THEN PRINT "Zero page symbol : " , '
660 IF Ft=l THEN PRINT "Relat lve symbol t " , '
670 IF Ft=O THEN PRINT "Absolute symbol : " ;
6 8 0 PRI NT out $; TAB (321 i -Vt
590 ENDPROC

710 DEFPROCsect ion
720 St=FNget
7 30 IF St-0 THEN insect:FALSE: ENDPROC
7 40 Ot:FNget+ 256*FNget
750 IF St:L28 THEN PRINT 'TTASECT at . : " ; -Ot
760 IF St=L29 THEN PRINT ' ! 'RSECT of fset : " ; -Ot
770 l -nrec:TRUE
7 80 REPEAT
7 90 PRoCrecord
800 UNTIL NOT inrec
810 ENDPROC

830 DEFPROCrecord
840 in$-r t r t :out$:rr t r
850 Rt:FNget in
8 60 IF Rt-0 THEN inrec-FALSE: ENDPROC
870 IF Rt<16 THEN PROCdata
880 IF Rt=&10 THEN PROCbyte
8 90 IF Rt: &20 THEN PROCddb
900 IF Rt=e30 THEN PROCdS
91- O IF Rt AND C 4 O THEN PROCCXT

rnfcal Reference Guide

920 IF Rt AND C8O THEN PROCTEI
930 REPEAT
940 IF LEN in$ <8 THEN in$: ins+" rr
950 UNTIL LEN LnS=8
950 PRINT in$ i " : " ; out$
970 ENDPROC

9 9 0 DE FFNget l- n
1000 LOCAL ct , h$
1010 ct=FNget
1 02 0 h$:STR$ -ct
1030 IF LEN h$:1 THEN h$=rrO'r+h$
1040 in$=in$+h$
1050 IF LEN 1n$=8 THEN PRINT in$ ' r t ' t t : in$=tt r r
1060 :ct

L0I0 DEFPROCdata
1090 out$: t rDATA rr

1100 FOR l t=L TO Rt
1110 PROCbvaI
LL20 out $:out $ +t{$
1 1 30 NEXT
1140 ENDPROC

1 1 50 DEBPROCbyte
1170 PROCword
1L80 out$="DB ' r+l{$
1 1 9O ENDPROC

1210 DEFPROCddb
L220 PROCword
1230 out$="DDB "+W$
L24O ENDPROC

L260 DEFPROCdS
L210 PROCwval
1280 out $ = "DS rr +9f $
L290 PROCbvaI
1300 out$=out$+ " , "+l{$
1 31. O ENDPROC

1 330 DEFPROCwoTd
1340 LOCAL Rt
I 350 Rt=FNget in
L360 IF Rt AND &40 THEN PROCext l
1370 IF Rt AND E8O THEN PROCTEI] .
1 380 ENDPROC

I 400 DEFPROCexII
1410 PROCwvaI
L420 Lt :FNget in
1430 IF Rt AND 2 THEN W$:W$1n-r ELSE W$=W$+l l+ ' r
1440 FOR l t :L TO Lt
1 4 50 W$ =t{$ +CHR$FNger ln
1 4 60 NEXT
1470 PROCmodtfy
1480 ENDPROC

1 500 DEFPROCTeIL
1 51 0 PROCwval
1 520 WS=W$1rr t t r

'f'(; ,f0

ADE plus Tedrnical Reference Guide

1530 IF Rt AND 1 THEN W$-W$+" (-) "
L540 PROCmodlfy
].550 ENDPROC

1570 DEFPROCwvaI
1580 I{$=STRS- (FNget in+255*FNget in)
].590 REPEAT
I 600 I F LEN W$ <4 THEN 9i l$:W$ +'r ' r
1610 UNTIL LEN [r ls:4
L62O ENDPROC

l, 54 0 DEFPROCbvaI
l , 550 9l$:STR$-FNget in
1660 IF LEN W$:L THEN l{$:" "+9[$
L67O ENDPROC

l,590 DEFPROCext
1 700 PROCext 1
1710 out$:"DW rr+hl$
L72O ENDPROC

L7 40 DEFPROCTeI
L 750 PROCTeII
L 7 60 out $- "Dlil 'r +WS
L77O ENDPROC

1790 DEFPROCcIose
1 800 PRINT ' "End of f l le" '
1.8] .0 IF RAM THEN ENDPROC
L82O CLOSE*in
1830 ENDPROC

L 850 DEFPROCmodIfy
L850 IF Rt AND 4 THEN W$:rr ; r t+9{$
1870 IF Rt AND 8 THEN W$:rr4rr+WS
].880 ENDPROC

